
Designing Transactional
Memory Systems

Part II: Obstruction-free STMs

Pascal Pascal FelberFelber
University of Neuchatel
Pascal.Felber@unine.ch

Based on joint work with Christof Fetzer & Torvald Riegel
with slides borrowed from several other people

3/17/2008 Transactional Memory: Part II — P. Felber 2

AgendaAgenda

Part I: Introduction

Part II: Obstruction-free STMs

DSTM: an obstruction-free STM design

FSTM: a lock-free STM design

LSA-STM: a time-based STM design

Part III: Lock-based STMs

3/17/2008 Transactional Memory: Part II — P. Felber 3

Why obstruction freedom?Why obstruction freedom?

“Any thread that runs by itself
for long enough makes progress”

vs.
“Some thread always

makes progress”

Obstruction freedom argued to be strong
enough in practice
Obstruction freedom easier to implement
efficiently than lock freedom

Obstruction
freedom

Lock
freedom

3/17/2008 Transactional Memory: Part II — P. Felber 4

DSTM DSTM [[HerlihyHerlihy et al., 2003]et al., 2003]

First dynamic STM
No need to know which data will be accessed a
priori
Object-based, Java implementation
Non-blocking (obstruction free)

Simple API

void beginTransaction();
Object open(TMObject obj, READ|WRITE);
boolean commitTransaction();

Wrapper around ordinary objectWrapper around ordinary object

3/17/2008 Transactional Memory: Part II — P. Felber 5

DSTM: principleDSTM: principle

Problem: update a set of objects atomically
Solution:

Objects accessed indirectly through “locators”
Transaction state (active, committed, aborted)
can be read/updated by other transaction
Objects must be opened before use
Objects opened in write mode are only acquired,
updates are local until commit
Reads are essentially invisible
Incremental validation for consistent reads

3/17/2008 Transactional Memory: Part II — P. Felber 6

Why consistent reads?Why consistent reads?

Although no “damage” is done to shared data
(consistent writes), inconsistent reads can
create program crashes, infinite loops, etc.
// Invariant: x + y == 0
// Initially: x = y = 0

START;
a = x; // 0

START;
a = x; // 0
b = y; // 0
assert(a + b == 0);
x = a + 1; // 1
y = b - 1; // -1
COMMIT;
// Here: x == 1 && y == -1

b = y; // -1
assert(a + b == 0); // Ooops!

3/17/2008 Transactional Memory: Part II — P. Felber 7

DSTM: data structuresDSTM: data structures

Transaction acquires a free object (while
opening it) by registering its locator
Object is free if it does not contain the
locator of an active transaction
Locator holds two object versions (old, new)

Transaction
Old version
New version

TX descriptor
Status

ACTIVE
ABORTED
COMMITTEDLocator

Object
Data

Object
Data

Locator
TM object

3/17/2008 Transactional Memory: Part II — P. Felber 8

DSTM: open after commitDSTM: open after commit

Transaction1

Old version
New version

TX descriptor
COMMITTED

Locator
Object
Data

Object
Data

Locator
TM object

Copy

Object
Data

CAS

TX descriptor
ACTIVETransaction2

Old version
New version

New locator

Object data is in
new version

Object data is in
new version

3/17/2008 Transactional Memory: Part II — P. Felber 9

DSTM: open after abortDSTM: open after abort

Transaction1

Old version
New version

TX descriptor
ABORTED

Locator
Object
Data

Object
Data

Locator
TM object Copy

Object
Data

CAS

TX descriptor
ACTIVETransaction2

Old version
New version

New locator

Object data is in
old version

Object data is in
old version

3/17/2008 Transactional Memory: Part II — P. Felber 10

DSTM: conflict managementDSTM: conflict management

Conflicts are detected by checking status of
owner transaction when opening object
Conflicts are handled by a contention
manager (CM)

Decide which transaction to kill, delay, or let go
To kill a transaction, CAS its status to ABORTED
CM is an independent component (one can
register custom CMs)
Choosing the right contention manager is crucial
to system throughput

3/17/2008 Transactional Memory: Part II — P. Felber 11

DSTM: validation, commit, abortDSTM: validation, commit, abort

Validation is necessary on open
Check that read versions are still latest
Check that status is still ACTIVE

Commit requires two phases
Validate read set
CAS state to COMMITTED (atomically update all
objects opened in write mode)

Transaction can also abort
CAS state to ABORTED (atomically release all
objects opened in write mode)

3/17/2008 Transactional Memory: Part II — P. Felber 12

DSTM: obstruction freeDSTM: obstruction free

“Any thread that runs by itself
for long enough makes progress”

A transaction T can unilaterally abort other
transactions
Hence, T running on its own, can eventually
commit

3/17/2008 Transactional Memory: Part II — P. Felber 13

DSTM: costsDSTM: costs

Given W objects opened in write mode and R
in read mode

W + 1 CAS
W cloning overhead
O((R + W) R) validation overhead

3/17/2008 Transactional Memory: Part II — P. Felber 14

DSTM: programming exampleDSTM: programming example

MIN 14 18 25 MAX
Node Node Node Node NodeList

public class Node {
private int value;
private Node next;
public Node(int v) { value = v; }
public void setValue(int v) { value = v; }
public void setNext(Node n) { next = n; }
public int getValue() { return value; }
public Node getNext() { return next; }

}

public class Node implements TMCloneable {
private TMObject next;
public void setNext(TMObject n) { … }
public TMObject getNext() { … }
public Object clone() {
Node n = new Node(value);
n.next = next;
return n;

}
…

}

Non-transactional Transactional

3/17/2008 Transactional Memory: Part II — P. Felber 15

DSTM: programming exampleDSTM: programming example

MIN 14 18 25 MAX
Node Node Node Node NodeList

public class List {
private Node head;
public List() {
Node min = new Node(Integer.MIN_VALUE);
Node max = new Node(Integer.MAX_VALUE);
min.setNext(max);
head = min;

}
// …

}

public class List {
private TMObject head;
public List() {
Node min = new Node(Integer.MIN_VALUE);
Node max = new Node(Integer.MAX_VALUE);
min.setNext(new TMObject(max));
head = new TMObject(min);

}
// …

}

Non-transactional Transactional

3/17/2008 Transactional Memory: Part II — P. Felber 16

DSTM: programming exampleDSTM: programming example

14 18
Node Node

public boolean add(int v) {
Node prev = head;
Node next = prev.getNext();
while (next.getValue() < v) {
prev = next;
next = prev.getNext();

}
if (next.getValue() == v)
return false;

Node n = new Node(v);
n.setNext(prev.getNext());
prev.setNext(n);
return true;

}

public boolean add(int v) {
TMThread t =

(TMThread)Thread.currentThread();
while (true) {
t.beginTransaction();
boolean result = false;
try {
Node prev = (Node)head.open(READ);
Node next =
(Node)prev.getNext().open(READ);

while (next.getValue() < v) {
prev = next;
next = (Node)prev.getNext().open(READ);

}
if (curr.getValue() != v) {
result = true;
n.setNext(prev.getNext());
prev = (Node)prev.open(WRITE);
prev.setNext(new TMObject(new Node(v)));

}
} catch (Denied d) {}
if (t.commitTransaction())
return result;

}
}

Non-transactional

Transactional

15
add(15)

3/17/2008 Transactional Memory: Part II — P. Felber 17

CM: how important?CM: how important?

CM is essential for performance and livelock
avoidance
Sample CMs

Aggressive: kill enemy
Polite: exponential backoff first
Karma: increase priority with opened objects and
retries, higher priority wins
Timestamp: older transaction wins
Greedy: uses timestamp-based priorities, bounds
on worst case completion time

// Aggressive CM
void handleConflict(TX me, TX enemy) {

enemy.abort();
}

3/17/2008 Transactional Memory: Part II — P. Felber 18

CM: how important?CM: how important?

3/17/2008 Transactional Memory: Part II — P. Felber 19

SXM SXM [[HerlihyHerlihy, 2005], 2005]

As DSTM, but:
C# implementation
Use visible reads (maintain reader list)

Single writer or multiple readers allowed

Support for some advanced patterns
Conditional waiting (retry when some object
accessed by transaction have been updated)
Or-else combinator (specify alternative to use upon
retry)

3/17/2008 Transactional Memory: Part II — P. Felber 20

FSTM FSTM [Fraser, 2003][Fraser, 2003]

Provides lock freedom (stronger than
obstruction freedom!)

Implemented using helping (a transaction can
help another one)

Uses invisible reads
No extra indirection (i.e., faster data access)
Acquire objects at commit time (lazy)

3/17/2008 Transactional Memory: Part II — P. Felber 21

FSTM: data structuresFSTM: data structures

RO list
R/W list

TX descriptor
Status

UNDECIDED
FAILED

SUCCESSFUL

Object
Data

Header
TM object

Object
Old data

Handle

New data
Next Data

Object
Data

New data
Next

…

…

3/17/2008 Transactional Memory: Part II — P. Felber 22

FSTM: open (write mode)FSTM: open (write mode)

Create shadow copy (to be updated) and
store object in R/W list
Note that the write is not visible to other
transactions at this point

RO list
R/W list

TX descriptor
UNDECIDED

Object
Data

Header
TM object

Data

Object
Old data

Handle

New data
Next

Copy

3/17/2008 Transactional Memory: Part II — P. Felber 23

FSTM: commitFSTM: commit

1. Acquire the objects in some total order
Header points to the transaction descriptor

2. Decision (after RO list validation)
3. Release objects

Header points to new copy

RO list
R/W list

TX descriptor
UNDECIDED

Object
Data

Header
TM object

Data

Object
Old data

Handle

New data
Next

SUCCESSFUL

3/17/2008 Transactional Memory: Part II — P. Felber 24

FSTM: lock freedomFSTM: lock freedom

Commit phase ≡ multi-word CAS
Objects are acquired in some total order to
ensure lock freedom
Contention is detected when the header points to
another transaction
Contention is resolved by order based “helping”

If header points to the descriptor of another
transaction, recursively help it complete

Conflict detected if old versions have changed

3/17/2008 Transactional Memory: Part II — P. Felber 25

FSTM: costsFSTM: costs

Given W objects opened in write mode and R
in read mode

2W + 1 CAS
W cloning overhead
O(R) validation overhead (but may work on
inconsistent data!)

26

On STM read operationsOn STM read operations

Visible reads
Maintain reader list per transactional object
Can be used to detect R/W conflicts (pessimistic)
Contention on reader lists (e.g., root of tree)

Invisible reads
No list of readers is maintained (optimistic)
No easy way to detect R/W conflicts
Consistency must be checked (validation)

Validate on commit: may work on inconsistent data
Validate on open: costly (linear w/ read set size)

Goal: low validation costs + consistency

3/17/2008 Transactional Memory: Part II — P. Felber 27

On the cost of read operationsOn the cost of read operations

ASTM: invisible reads, eager validation
SXM: visible reads
LSA: time-based invisible reads

ASTM: invisible reads, eager validation
SXM: visible reads
LSA: time-based invisible reads

Invisible reads:
validation costs
grow linearly

Visible reads:
cacheline level
contention

3/17/2008 Transactional Memory: Part II — P. Felber 28

LSALSA--STM STM [[RiegelRiegel et al., 2006]et al., 2006]

Motivation
Speed up for transactions with large read sets
Efficient time-based snapshot algorithm (LSA) to
reduce overhead

Read-only transactions
Keep multiple object versions (no abort)

LSA-STM
Object-based (uses DSTM-like locators)
Java implementation
Annotations and AOP for ease of use
Winner of SUN’s CoolThreads contest!

3/17/2008 Transactional Memory: Part II — P. Felber 29

LSALSA--STM: algorithmSTM: algorithm

Global time base: CT
Counts the number of commits

STM objects have multiple versions
Each version V has a validity range RV w.r.t. CT
Most recent version has upper bound ∞

C1

B1

A1A

B

C

Commit time

3/17/2008 Transactional Memory: Part II — P. Felber 30

Transaction maintains a “snapshot” with a
validity range RT

Equal to the intersection of the accessed versions'
validity ranges
Initialized to [ST,∞]
If it becomes empty, transaction must abort

C1

B1

A1

S
A

B

C

Commit time

LSALSA--STM: algorithmSTM: algorithm

31

A1

RS

C1

B1

A

B

C

Commit time

Upon read, snapshot is updated
Validity range ends at time of the read
We know that the value read is valid now, but we
don’t know if it will change in the future

LSALSA--STM: algorithmSTM: algorithm

32

A1

R

RS

C1

B1

A

B

C

Commit time

Upon read, if snapshot intersects with the
latest version’s validity range:

The snapshot is a valid linearization point (as long
as there are no writes)
No need to update snapshot

LSALSA--STM: algorithmSTM: algorithm

33

C1

A1

C2

R

RS

R
B1

New version
(another TX)

A

B

C

Commit time

Upon read, if snapshot does not intersect
with the latest version’s validity range:

The snapshot is a not valid linearization point
Must try to “extend” snapshot (may fail)

Note: read-only transactions can use old
version

LSALSA--STM: algorithmSTM: algorithm

34

C1

A1

C2

R

RS

R
B1

A

B

C

Commit time

Extension tries to increase the upper bound
of the snapshot

Check if all versions read are still valid
If so, we can extend the upper bound of the
snapshot to current CT (now)

LSALSA--STM: algorithmSTM: algorithm

35

C1

A1

C2

R

RS

R
B1

A

B

C

Commit time

Extension may also increase the lower bound
of the snapshot

Set to the largest lower bound among the validity
ranges of accessed versions

LSALSA--STM: algorithmSTM: algorithm

36

Read-only transactions can commit as long as
their snapshot is not empty

No need to extend range to current CT
Linearization point anywhere in snapshot range

C1

A1

C2

R

RS

R
B1

A

B

C
C

Commit time

LSALSA--STM: algorithmSTM: algorithm

37

C1

A1

C2

R

RS

W
B1

Another TX

W
A

B

C

Commit time

Update transactions create new versions of
modified objects upon commit at CT

Validity range of newly created object versions
starts at CT

Tentative versions being written are not visible to
other transactions and are discarded upon abort

LSALSA--STM: algorithmSTM: algorithm

38

Commit time

A1

R

RS

W
B1

Another TX

A2

W C

C1 C2

C:A

A

B

C

Upon commit, an update transactions tries to
acquire a new, unique commit timestamp CT

Transaction can commit iff the snapshot can be
extended to CT - 1 (otherwise, abort)
Note: validation can be skipped if ST = CT - 1

LSALSA--STM: algorithmSTM: algorithm

3/17/2008 Transactional Memory: Part II — P. Felber 39

LSALSA--STM: algorithm STM: algorithm [DISC 2006][DISC 2006]

3/17/2008 Transactional Memory: Part II — P. Felber 40

LSALSA--STM: algorithm STM: algorithm [DISC 2006][DISC 2006]

41

LSALSA--STM: # extensions requiredSTM: # extensions required

Read-only transactions
0 (if enough versions are kept)

Update transactions
0 or 1 for commit

At most one extension per accessed object
Only caused by concurrent updates to these
objects
Disjoint updates do not increase the number of
extensions

In practice, only a few extensions are
required

3/17/2008 Transactional Memory: Part II — P. Felber 42

R/W sets

LSALSA--STM: data structuresSTM: data structures

Transaction
New version

Older versions

TX descriptor
Status

ACTIVE
ABORTED
COMMITTED

Locator
Object
Data

DataLocator
TM object Old version

Timestamp

Version
Timestamp

Version
Timestamp

…

Data

Data

Start
End

[0]

[1]

Snapshot

Shared clockSame principle as
DSTM, but maintain

timestamps and keep
(some) old versions

Same principle as
DSTM, but maintain

timestamps and keep
(some) old versions

3/17/2008 Transactional Memory: Part II — P. Felber 43

LSALSA--STM: programming exampleSTM: programming example

MIN 14 18 25 MAX
Node Node Node Node NodeList

public class Node {
private int value;
private Node next;
public Node(int v) { value = v; }
public void setValue(int v) { value = v; }
public void setNext(Node n) { next = n; }
public int getValue() { return value; }
public Node getNext() { return next; }

}

@Transactional
public class Node {
private int value;
private Node next;
public Node(int v) { value = v; }
public void setValue(int v) { value = v; }
public void setNext(Node n) { next = n; }
@ReadOnly
public int getValue() { return value; }
@ReadOnly
public Node getNext() { return next; }

}

Non-transactional Transactional

3/17/2008 Transactional Memory: Part II — P. Felber 44

LSALSA--STM: programming exampleSTM: programming example

MIN 14 18 25 MAX
Node Node Node Node NodeList

public class List {
private Node head;
public List() {
Node min = new Node(Integer.MIN_VALUE);
Node max = new Node(Integer.MAX_VALUE);
min.setNext(max);
head = min;

}
// …

}

public class List {
private Node head;
public List() {
Node min = new Node(Integer.MIN_VALUE);
Node max = new Node(Integer.MAX_VALUE);
min.setNext(max);
head = min;

}
// …

}

Non-transactional Transactional

3/17/2008 Transactional Memory: Part II — P. Felber 45

LSALSA--STM: programming exampleSTM: programming example

public boolean add(int v) {
Node prev = head;
Node next = prev.getNext();
while (next.getValue() < v) {
prev = next;
next = prev.getNext();

}
if (next.getValue() == v)
return false;

Node n = new Node(v);
n.setNext(prev.getNext());
prev.setNext(n);
return true;

}

@Atomic
public boolean add(int v) {
Node prev = head;
Node next = prev.getNext();
while (next.getValue() < v) {
prev = next;
next = prev.getNext();

}
if (next.getValue() == v)
return false;

Node n = new Node(v);
n.setNext(prev.getNext());
prev.setNext(n);
return true;

}

Non-transactional Transactional

14 18
Node Node

15
add(15)

Just add annotations
to transactional

objects and atomic
methods… et voilà !

Just add annotations
to transactional

objects and atomic
methods… et voilà !

3/17/2008 Transactional Memory: Part II — P. Felber 46

LSALSA--STM: Linked listSTM: Linked list

ASTM: invisible reads, eager validation
SXM: visible reads
LSA: time-based invisible reads

ASTM: invisible reads, eager validation
SXM: visible reads
LSA: time-based invisible reads

3/17/2008 Transactional Memory: Part II — P. Felber 47

LSALSA--STM: Linked listSTM: Linked list

ASTM: invisible reads, eager validation
SXM: visible reads
LSA: time-based invisible reads

ASTM: invisible reads, eager validation
SXM: visible reads
LSA: time-based invisible reads

3/17/2008 Transactional Memory: Part II — P. Felber 48

LSALSA--STM: Linked listSTM: Linked list

ASTM: invisible reads, eager validation
SXM: visible reads
LSA: time-based invisible reads

ASTM: invisible reads, eager validation
SXM: visible reads
LSA: time-based invisible reads

3/17/2008 Transactional Memory: Part II — P. Felber 49

LSALSA--STM: Skip listSTM: Skip list

ASTM: invisible reads, eager validation
SXM: visible reads
LSA: time-based invisible reads

ASTM: invisible reads, eager validation
SXM: visible reads
LSA: time-based invisible reads

3/17/2008 Transactional Memory: Part II — P. Felber 50

LSALSA--STM: Skip listSTM: Skip list

ASTM: invisible reads, eager validation
SXM: visible reads
LSA: time-based invisible reads

ASTM: invisible reads, eager validation
SXM: visible reads
LSA: time-based invisible reads

3/17/2008 Transactional Memory: Part II — P. Felber 51

LSALSA--STM: Skip listSTM: Skip list

ASTM: invisible reads, eager validation
SXM: visible reads
LSA: time-based invisible reads

ASTM: invisible reads, eager validation
SXM: visible reads
LSA: time-based invisible reads

3/17/2008 Transactional Memory: Part II — P. Felber 52

Conclusion (Part II)Conclusion (Part II)

Obstruction-free STM designs provide
progress guarantees (with the help of CM)

Transactions must be able to commit atomically
… and abort another transaction atomically

Typically use indirection (must be able to “steal”
objects)

Lock-free is more complex to implement
Typically based on helping

Time-based designs with invisible reads
provide high efficiency and consistency

May be obstruction-free (or not…)

