
3/17/2008 Transactional Memory: Part I — P. Felber 1

TodayToday’’s agendas agenda

Act I: STMs — Why should we care?

The theoretical foundations

Act II: STMs — How to build one?

The gory details

“…we need to explore new techniques like
transactional memory that will allow us to get the
full benefit of all those transistors and map that
into higher and higher performance.”

Bill Gates, Businessman

Designing Transactional
Memory Systems

Part I: Introduction

Pascal FelberPascal Felber
University of Neuchatel
Pascal.Felber@unine.ch

Based on joint work with Christof Fetzer & Torvald Riegel
with slides borrowed from several other people

3/17/2008 Transactional Memory: Part I — P. Felber 4

AgendaAgenda

Part I: Introduction

Why do we need STMs?

What do STMs provide?

A brief history of STMs

Part II: Obstruction-free STMs

Part III: Lock-based STMs

3/17/2008 Transactional Memory: Part I — P. Felber 5

MooreMoore’’s Law and CPU speeds Law and CPU speed

• Transistor count still rising
according to Moore’s Law

• Clock speed flattening

• Transistor count still rising
according to Moore’s Law

• Clock speed flattening

3/17/2008 Transactional Memory: Part I — P. Felber 6

Multicores will be everywhereMulticores will be everywhere

Multicores are the answer to keeping up with
increasing CPU performance despite:

The memory wall (gap between CPU and memory
speeds)
The ILP wall (not enough instruction-level
parallelism to keep the CPU busy)
The power wall (higher clock speeds require
more power and create thermal problems)

Consequence:
Single-thread performance doesn’t improve…

… but we can put more cores on a chip

3/17/2008 Transactional Memory: Part I — P. Felber 7

Multicores Multicores areare everywhereeverywhere

Dual-core commonplace in laptops
Quad-core in desktops
Dual quad-core in servers
All major chip manufacturers produce
multicore CPUs

SUN Niagara (8 cores, 32 concurrent threads)
Intel Xeon (4 cores)
AMD Opteron (4 cores)
…

3/17/2008 Transactional Memory: Part I — P. Felber 8

SUNSUN’’s Niagara CPU2 (8 cores)s Niagara CPU2 (8 cores)

3/17/2008 Transactional Memory: Part I — P. Felber 9

AMD Opteron (4 cores)AMD Opteron (4 cores)

L1 cache

L2 cache

L3 cache
(shared)

3/17/2008 Transactional Memory: Part I — P. Felber 10

The The ““free ridefree ride”” is overis over

Cannot rely on CPUs getting faster in every
generation
Utilizing more than one CPU core requires
thread-level parallelism (TLP)
One of the biggest future software
challenges: exploiting concurrency

Every programmer will have to deal with it
Affects HW/SW system architecture, programming
languages, algorithms, …
Concurrent programming is hard to get right

… better not hit the productivity wall

3/17/2008 Transactional Memory: Part I — P. Felber 11

Traditional scaling processTraditional scaling process

1x
2x

4x

Based on slide by Herlihy & Shavit

Time: Moore’s Law

Speedup

User code

Traditional CPU

3/17/2008 Transactional Memory: Part I — P. Felber 12

Multicore scaling processMulticore scaling process

Speedup

1x
2x

4x

User code

Based on slide by Herlihy & Shavit

Multicore CPU

Time: Moore’s Law

Unfortunately not so simple…Unfortunately not so simple…

3/17/2008 Transactional Memory: Part I — P. Felber 13

RealReal--world scaling processworld scaling process

Speedup

1x
1.4x

2.2x

User code

Based on slide by Herlihy & Shavit

Multicore CPU

Time: Moore’s Law

Parallelization & synchronization
require great care!

Parallelization & synchronization
require great care!

3/17/2008 Transactional Memory: Part I — P. Felber 14

Concurrent programming is hardConcurrent programming is hard

Hard to make correct and efficient
We need to exploit parallelism

The human mind tends to be sequential
Concurrent specifications
Non-deterministic executions

What about races? deadlocks? livelocks?
starvation? fairness?

Need synchronization (correctness)…
… but not too much (performance)

3/17/2008 Transactional Memory: Part I — P. Felber 15

Parallelization (1)Parallelization (1)

Data parallelism
Split data into partitions
Let threads process partitions
Threads join after finishing their work
Example: image processing, sequencing, etc.

Good data partitioning is difficult
(correctness, load balancing, …)
Synchronization required

Join
Load balancing during runtime

3/17/2008 Transactional Memory: Part I — P. Felber 16

Parallelization (2)Parallelization (2)

Pipeline parallelism
Split work into phases
Let each thread work on jobs in one of the phases
Example: event stream processing
input → parse → process → format → output

Not every program has such phases, some
phases are longer than others
Synchronization required

One phase’s results become next phase’s input
Complex access patterns

3/17/2008 Transactional Memory: Part I — P. Felber 17

Parallelization (3)Parallelization (3)

Speculative/optimistic parallelism
Just execute concurrent jobs
Assumption: most jobs do not conflict
Partitioning or phases not required but possible
Example: event handlers, application servers,
graph algorithms, etc.

There must be little contention on shared
data structures
Synchronization required

Every access can potentially interfere with
accesses from another thread

3/17/2008 Transactional Memory: Part I — P. Felber 18

Shared memory synchronizationShared memory synchronization

Cores share main memory
Some hardware instructions are (or can be made)
atomic: inc, dec, cmpxchg, …

Loads/store usually atomic, not necessarily
ordered (no sequential consistency!)

Must use memory barriers to enforce order

Current state of concurrent programming:
Use locks built from these instructions
Build concurrent (non-blocking) algorithms from
these instructions

3/17/2008 Transactional Memory: Part I — P. Felber 19

Why transactions?Why transactions?

Based on slide by Grossman

void deposit(…) { synchronized(this) { … } }
void withdraw(…) { synchronized(this) { … } }
int balance(…) { synchronized(this) { … } }
void transfer(account from, int amount) {

if (from.balance() >= amount) {
from.withdraw(amount);
this.deposit(amount);

}

}

No concurrency control: race!No concurrency control: race!

3/17/2008 Transactional Memory: Part I — P. Felber 20

Why transactions?Why transactions?

Based on slide by Grossman

void deposit(…) { synchronized(this) { … } }
void withdraw(…) { synchronized(this) { … } }
int balance(…) { synchronized(this) { … } }
void transfer(account from, int amount) {

synchronized(this) {
if (from.balance() >= amount) {

from.withdraw(amount);
this.deposit(amount);

}
}

}

Race!Race!

3/17/2008 Transactional Memory: Part I — P. Felber 21

Why transactions?Why transactions?

Based on slide by Grossman

void deposit(…) { synchronized(this) { … } }
void withdraw(…) { synchronized(this) { … } }
int balance(…) { synchronized(this) { … } }
void transfer(account from, int amount) {
synchronized(this) {
synchronized(from) {
if (from.balance() >= amount) {

from.withdraw(amount);
this.deposit(amount);

}
}

}
}

Deadlock!Deadlock!

3/17/2008 Transactional Memory: Part I — P. Felber 22

Atomic blocksAtomic blocks

void deposit(int x) {
synchronized(this) {
int tmp = balance;
tmp += x;
balance = tmp;

}
}

Based on slide by Grossman

void deposit(int x) {
atomic {
int tmp = balance;
tmp += x;
balance = tmp;

}
}

Lock acquire/releaseLock acquire/release (As if) no interleaved computation(As if) no interleaved computation

Easier-to-use primitive
(but harder to implement)
Easier-to-use primitive

(but harder to implement)

3/17/2008 Transactional Memory: Part I — P. Felber 23

Atomic blocksAtomic blocks

Based on slide by Grossman

void deposit(…) { atomic { … } }
void withdraw(…) { atomic { … } }
int balance(…) { atomic { … } }
void transfer(account from, int amount) {

if (from.balance() >= amount) {
from.withdraw(amount);
this.deposit(amount);

}

}

No concurrency control: race!No concurrency control: race!

3/17/2008 Transactional Memory: Part I — P. Felber 24

Atomic blocksAtomic blocks

Based on slide by Grossman

void deposit(…) { atomic { … } }
void withdraw(…) { atomic { … } }
int balance(…) { atomic { … } }
void transfer(account from, int amount) {

atomic {
if (from.balance() >= amount) {

from.withdraw(amount);
this.deposit(amount);

}
}

}

Correct and enables parallelism!Correct and enables parallelism!

3/17/2008 Transactional Memory: Part I — P. Felber 25

Why STM?Why STM?

Transactions: a simple paradigm

A sequence of instructions,
executed atomically

Software transactions are good for:
Software engineering (simple programming, avoid
races & deadlocks, composability)
Performance (when no conflict, high parallelism
and no locking overhead)

A “universal” synchronization construct
Don’t care how transactions are implemented!

3/17/2008 Transactional Memory: Part I — P. Felber 26

ComposabilityComposability
Ability to build large, complex systems from
small, simple pieces

Enables divide-and-conquer strategy
Locks are not composable

Must be exposed and use “compatible” strategies
Custom concurrent algorithms are typically
not composable
Composability challenges

Must preserve correctness
Should not hamper performance

STM is composable

3/17/2008 Transactional Memory: Part I — P. Felber 27

Can we make STM fast?Can we make STM fast?

Typically, problem-specific handcrafted
algorithms are more efficient…

Whether lock-free or using fined-grained locking
Programmers can use knowledge of data flow
relationships to control contention

… but STM is simpler and safer to use…
Programmer does not need to reason about
concurrency

… and there is room for optimism
Performance can be as good or better for
complex data structures

3/17/2008 Transactional Memory: Part I — P. Felber 28

STM performance STM performance [Dice & Shavit][Dice & Shavit]

STM can be as efficient as handcrafted
lock-based implementation!
STM can be as efficient as handcrafted
lock-based implementation!

3/17/2008 Transactional Memory: Part I — P. Felber 29

STM scaling STM scaling [Dice & Shavit][Dice & Shavit]

STM scales better than handcrafted
lock-based implementation!
STM scales better than handcrafted
lock-based implementation!

3/17/2008 Transactional Memory: Part I — P. Felber 30

A brief (partial) history of STMA brief (partial) history of STM

ST
M

(S
ha

vi
t,T

ou
ito

u)

Tr
an

s
Su

pp
or

t T
M

(M
oi

r)

FS
TM

(F
ra

se
r)

D
ST

M
(H

er
lih

y
et

 a
l.)

W
ST

M
 &

 O
ST

M
(F

ra
se

r,
H

ar
ris

)

A
ST

M
(M

ar
at

he
, S

ch
er

er
, S

co
tt)

Lo
ck

TM
(E

nn
al

s)

M
cT

M
(S

ah
a

et
 a

l.)

TL
(D

ic
e,

 S
ha

vi
t)

SX
M

 (H
er

lih
y)

SI
-S

TM
(R

ie
ge

l,
Fe

tz
er

, F
el

be
r)

LS
A

-S
TM

(R
ie

ge
l,

Fe
tz

er
, F

el
be

r)

19
93

19
97

20
03

20
03

20
05

20
07

TL
2

(D
ic

e,
 S

ha
le

v,
 S

ha
vi

t)

Ti
ny

ST
M

(F
el

be
r,

Fe
tz

er
, R

ie
ge

l)

Based on slide by Shalev & Shavit

20
03

20
05

20
06

20
06

20
06

20
06

20
06

20
06

Lock-free Obstruction-free Lock-based Time-based

D
ST

M
2

(H
er

lih
y,

 L
uc

ha
ng

co
, M

oi
r)

20
06

R
ST

M
(M

ar
at

he
 e

t a
l.)

20
06

3/17/2008 Transactional Memory: Part I — P. Felber 31

Conclusion (Part I)Conclusion (Part I)

Multicores are here!
No more scalability for free
We need the right tools to exploit their power

Concurrent programming is hard
Synchronization necessary for correctness,
parallelism for efficiency

STM exploits disjoint access parallelism
Execute sequences of operations atomically
(don’t care how this is done!)
Optimistic concurrency control
Transactions are composable

