Effectively Nonblocking Consensus Procedures Can Execute Forever – a Constructive Version of FLP

Robert L. Constable
Cornell University
July 17, 2008

Abstract

The Fischer-Lynch-Paterson theorem (FLP) says that it is impossible for processes in an asynchronous distributed system to achieve consensus on a binary value when a single process can fail; it is a widely cited theoretical result about network computing. All proofs that I know depend essentially on classical (nonconstructive) logic, although they use the hypothetical construction of a nonterminating execution as a main lemma.

FLP is also a guide for protocol designers, and in that role there is a connection to an important property of consensus procedures, namely that they should not block, i.e. reach a global state in which no process can decide.

A deterministic fault-tolerant consensus protocol is effectively nonblocking if from any reachable global state we can find an execution path that decides. In this article we effectively construct a nonterminating execution of such a protocol. That is, given the protocol P and a natural number n, we show how to compute the n-th step of an infinitely indecisive computation of P. From this fully constructive result, the classical FLP follows as a corollary as well as a stronger classical result, called here Strong FLP. Moreover, the construction focuses attention on the important role of nonblocking in protocol design.

1 Introduction

1.1 Background

The standard version of the Fisher-Lynch-Paterson theorem is that there is no asynchronous distributed algorithm that is responsive to its inputs, solves the agreement problem, and guarantees 1-failure termination. This is a negative statement, producing a contradiction, yet implicit in all proofs is an imagined construction of a nonterminating execution in which no process decides, they "waffle" endlessly. That imagined execution is

\footnote{The current draft includes improvements up to August 30, 2008. See Acknowledgements at the end of the article for grants supporting this work.}
an interesting object, displaying what can go wrong in trying to reach consensus and characterizing a class of protocols. The hypothetical execution is used to guide thinking about consensus protocol design (illustrated below). In light of that use, a natural question about the classical proofs of FLP is whether the hypothetical infinite waffling execution could actually be constructed from any purported consensus protocol P, that is, given P, can we exhibit an algorithm α such that for any natural number n, $\alpha(n)$ is the n-th step of the indecisive computation.

It appears that no such explicit construction could be carried out following the method of the classical proof because there isn’t enough information given with the protocol, and the key concept in the standard proofs, the notion of valence (univalence and bivalence), is not defined effectively, i.e. they require knowing the results of all possible executions. This means that the case analysis used to imagine the infinite execution can not actually be decided. Of course, it is not possible to find this infinite execution by simply running a purported protocol. Only a proof can show that it will run forever.

Other authors [Vol04, BW87] have reformulated the proof of the FLP in a way that singles out the infinite computation as the result of a separate lemma, but they do not provide an effective means of building the infinite computation and do not use constructive reasoning. I refer to Volzer’s classical result as Strong FLP; it is a corollary of the effective construction given here.

The key to being able to build the nonterminating execution is to provide more information, which we do by introducing the notion of effective nonblocking, defining bivalence effectively, and introducing the idea of a v-possible execution. We use the term bivalence in most of this article to make comparison with the classical ideas clear, but when contrasting this work to others, we will use the term effective bivalence.

Effective nonblocking is a natural concept in the setting in which we verify protocols using constructive logic, say the rules of the Nuprl formal programming environment or of the Coq prover [BYC04]. The logic of Nuprl is Computational Type Theory (CTT) [ABC+06], which is constructive, and the logic of Coq is the Calculus of Inductive Constructions (CIC), closely related to CTT and also constructive. So when we prove that a protocol is nonblocking, we obtain the effective witness function used in the definition below. Mark Bickford in his Nuprl formalization [BvR08] of the results from [vRDS08] has done formal proofs of nonblocking from which Nuprl can extract the deciding state and could extract an execution as well.

The importance of nonblocking can be seen from this "blocking theorem" by Robbert van Renesse in [vRDS08]: A consensus protocol that guarantees a decision in the absence of

2In the original FLP article the authors say: Let C be a configuration in an execution of the protocol, and let V be the set of all decision values reachable from C. C is bivalent if V is $\{0,1\}$ and univalent if V is $\{v\}$ for v a Boolean.
failures may block in the presence of even a single failure. This is justified by citing FLP, and it follows cleanly from CFLP as I show below. The authors [RDS08] say: “Blocked states occur when one or more processes fail at a time at which other processes cannot determine if the protocol has decided. A protocol that tolerates failures must avoid such blocked states”. Protocol designers actually carry out an analysis of blocking in debugging designs. A constructive proof of the blocking theorem could find the blocking scenario after designating a process that fails. Knowing precisely the number of blocking scenarios and their properties would be useful in evaluating protocol designs.

It is fascinating that once we use the concept of effective bivalence, it is possible to automatically translate some nonconstructive proofs of FLP into fully constructive ones from which it is possible to build the nonterminating execution. I discuss that result in another article [RC08b]. Here we look at the simpler result that we can effectively build nonterminating executions. These are executions that endlessly waffle about the decisions that are possible, decisions actually taken by decisive executions.

Since it is not possible to provide an algorithm, i.e. a terminating consensus procedure, we start with the kind of protocol that can be built, and stress the possibility of nontermination by calling it a procedure not an algorithm.

1.2 Computing Model

The results here depend on the computing model behind the Logic of Events, [BC03, BC06] which is essentially the embedding into Computational Type Theory of the standard model of asynchronous message-passing network computing as presented in the book Distributed Computing of Attiya & Welch [AW04] and similar to [FLP85]. We assume reliable FIFO communication channels.

A global state of the system consists of the state of the processes and the condition of the message queues. An execution is an alternating sequence of global states and actions taken by processes. Thus an execution α of distributed system P determines sequence of global states, s₁, s₂, s₃, These are also called configurations of the execution.

Execution is fair in that all messages sent to nonfailing processes will eventually be read and all enabled actions will eventually be taken by processes that do not fail.

A step of computation can involve any finite number of processes reading a message from an input channel, changing the internal state, and sending messages on output channels. In the proofs here, we pick an order on these steps so that there is always a single action separating the global states. We say that a schedule determines the order of the actions.
1.3 Definitions

Definition: A Boolean consensus procedure on processes $P_i, i = 1, \ldots, n$ tolerating t failures is a possibly nonterminating distributed system P which is deterministic (no randomness), responsive on uniform initializations, consistent (all deciding processes agree on the same value).

P is called *effectively nonblocking* if from any reachable global state s of an execution of P and any subset Q of $n - t$ nonfailed processes, we can find an execution α from s using Q and a process P_α in Q which decides a value $v \in \mathbb{B}$.

Constructively this means that we have a computable function, $wt(s, Q)$ which produces an execution α and a state s_α in which a process, say P_α decides a value v.

In this setting, a consensus procedure is *responsive* if when all processes are initialized to v, they terminate with decision v unless they fail. This means that all nonblocking witnesses will return v as well.

The nonblocking property requires that consensus procedures tolerating t failures can use any subset of $n - t$ processes to pick out from any partial execution a process that makes a decision. This is enough information for an *algorithmic adversary* to prevent a deterministic consensus procedure, one that does not rely on randomness, from terminating on every execution. The adversary can keep adjusting the schedule of executions to prevent processes from deciding.

It is important to have good notations for the class of all processes of P except for P_i, denoted Q_i, because we want to factor executions into steps of a specified process and those of the remaining processes. These are disjoint sets, and we can combine executions from them by appending one to another and infer joint properties from the separate properties of each.

Definition: For a $v \in \mathbb{B}$, a global state s is *v-possible* iff for some subset Q of $n - t$ processes we can find using the nonblocking witness a state s'_Q and a process P_Q in s'_Q that decides v. That is, $wt(s, Q)$ produces a computation ending in s'_Q.

Definition: A global state b is *bivalent* iff we can find executions α_0 and α_1 from b that decide 0 and 1 respectively. We can pick out the deciding process from the execution. A state is *bivalent via Q_i* if neither execution involves a step of process P_i. Note, if b is bivalent, we can effectively exhibit the executions α_0 and α_1.

Fact: It is *decidable* whether the global states of a consensus procedure are *v-possible*.
Note, we can’t decide bivalence.

1.4 Summary of Results

Initialization Lemma: For any effectively nonblocking consensus procedure P with $n > 1$, there is a bivalent initial global state b_0.

One Step Lemma: Given any bivalent global state b of an effectively nonblocking consensus procedure P, and any process P_i, we can find an extension b' of b which is bivalent via Q_i.

Theorem (CFLP): Given any deterministic effectively nonblocking consensus procedure P with more than two processes and tolerating a single failure, we can effectively construct a nonterminating execution of it.

We also say that P can endlessly waffle. The proof is to use the Initialization Lemma to find a bivalent starting state b_0 and then use the One Step Lemma to create an unbounded sequence of bivalent states.

Corollary (FLP): There is no single-failure responsive, deterministic consensus algorithm (terminating consensus procedure) on two or more processes.

Corollary (Strong FLP)*: Given any nonblocking deterministic consensus procedure on two or more processes, it has a nonterminating execution.

Corollary (Blocking)*: If all executions of consensus procedure P terminate in a decision when no process fails, then there is a global state on which P blocks when one process fails.

The asterisk means that the results are not constructive, they use classical logic. To stress that an existence claim is not constructive, we sometimes say that an object such as an execution is constructed using magic; this means that our proof requires nonconstructive logical rules in showing that the object exists, rules such as the law of excluded middle or proof by contradiction or Markov’s principle, or the classical axiom of choice, etc.

1.5 Relationship to the Original FLP Proof

Some of these results correspond closely to the lemmas used in the Fischer, Lynch, Paterson paper [FLP85]. For example, our Initialization Lemma is their Lemma 2, our One
Step Lemma is close to their Lemma 3, and the Commutativity Lemma used in the next section is their Lemma 1. Our FLP Corollary is their Theorem 1. In the proof of Theorem 1, they structure the argument around an unstated Lemma 0 which in their words is essentially "...we construct an admissible run that avoids ever taking a step that would commit the system to a particular decision." They call these runs *forever indecisive*.

If they had defined a consensus procedure as above and had stated nonblocking classically, this lemma would be: *Any nonblocking consensus procedure has forever indecisive executions*, which I call Strong FLP; it is close to Volzer’s classical result [Vol04]. Instead, Fischer, Lynch, and Paterson get nonblocking from assuming at the start for the sake of contradiction the existence of a terminating consensus algorithm. We can see the Strong FLP result emerging by factoring out an assumption they need from assuming the existence of a terminating protocol and packaging it into an explicit statement of a "Lemma 0". I discuss this technique of “refactoring” theorems to make them constructive in [RC08b].

2 Proofs

2.1 Key Lemmas

Fact: It is *decidable* whether the global states of a consensus procedure are \(v - possible \).

To decide whether a state is \(v - possible \) we note that the definition of effective nonblocking provides a function, say \(wt \) that takes the state and a subset of \(n - t \) processes and asks for each such subset whether the deciding state decides 0 or 1. It is useful to introduce a notation for sets of processes that do not include a particular process \(P_i \); let \(Q_i \) be all processes of \(P \) except for \(P_i \). Given state \(s \), we make this decision for processes tolerating one failure by computing \(wt(s, Q_1),...,wt(s, Q_n) \).

Initialization Lemma: For any effectively nonblocking consensus procedure \(P \), there is a bivalent initial global state \(b_0 \).

Proof

The argument for this is similar to the one used in the classical FLP result, but we employ the decision of witnesses rather than a purported consensus algorithm to find evidence for bivalence. We first note that if all processes are initialized by \(v \), then by responsiveness, the consensus procedure must terminate with decision \(v \), and all nonblocking witnesses decide \(v \). So if the initial state is all 0, then the witness decides 0 and likewise for 1.

Now consider a sequence of initial states where we start from the all 0 initialization, call it
s_0 and progressively change the initialization, processes by process, from 0 to 1 until we reach the initialization of all 1’s. Let these states be s_0, s_1, ..., s_n, where n is the number of processes. For each initial state, we ask whether there is a 1 deciding state produced by the witness function, which must happen by the time we reach the initialization of all 1’s.

Let s_k be the first state where a decision is 1, say $wt(s_k, Q_m)$ decides 1 for some m, and note that $k > 0$, P_k is initialized to 1 for the first time, and the process P_{k+1} is still initialized to 0 if $k < n$.

Consider the computation α from $wt(s_{k-1}, Q_k)$ in which process P_k does not participate and the decision is 0. We can replay this from s_k. To the processes participating, this computation will look like one with P_k initialized to 0, i.e. one from s_{k-1}, and we have found an execution that results in a 0 decision from s_k as we need to prove, that is s_k is bivalent. Take $b_0 = s_k$.

Qed

In the classical argument, one assumes that the procedure P terminates, and on s_k a computation α terminates with 1 for the first time in the sequence. The next step is to alter the schedule and produce a new computation α' in which P_k is slow and does not affect the decision. In this case the computation looks just like one in which P_k is initialized to 0, so the result is as for s_{k-1}, the value is 0. Thus s_k is bivalent.

The next lemma is the heart of the argument. We use it in the main theorem, CFLP, to build a round-robin schedule in which each process takes a step from one bivalent state to another, thus generating an unbounded sequence of states in which no process decides. In addition to the proof given below, I also include in the last section of the article a program that shows the computational content of this proof and also an elegant condensed version of the proof that David Guaspari produced in response to this proof and its algorithm.

One Step Lemma: Given any bivalent global state b of an effectively nonblocking consensus procedure P, and any process P_i, we can find an extension b' of b which is bivalent via Q_i.

Proof

If we knew that bivalent b was already bivalent via Q_i, we would be done. First, we can calculate one deciding state using $wt(b, Q_i)$; suppose that is d_0 which decides 0 at the end of execution α_0. Since b is bivalent, we also have an execution α_1 that decides 1 and may take steps in process P_i (see figure A).

Our plan now is to move backwards from d_1 along execution α_1 step by step toward state b using the processes in α_1, which include process P_i, looking for a state b' which is bivalent
via Q_i (see figure B). We first find a state and a computation such that the final steps to a 1 decision don’t involve any P_i steps.

Suppose that the last step to d_1 is from state u via P_k for $k \neq i$ by action a, then we have a 1 decision using Q_i from u as we wished, and we will check to see if $wt(u, Q_i)$ computes a 0 decision. If so we are done. Otherwise we look at the next process step in α_1. Before we look at the method of moving from u back toward b, we need to consider how to handle P_i steps, so look at the case when the last step to d_1 was taken by P_i, i.e. $k = i$.

If $k = i$, then we look for a new path via Q_i to a 1 decision. Compute $wt(u, Q_i)$ and let the deciding state be d' by execution β (see figure C). We claim that d' must decide 1. To see this, notice that by the Commutativity Lemma below, β followed by action a of P_i leads to the same state as action a followed by computation β, that is $a\beta(u) = \beta a(u)$ (as in figure C). But since d_1 is a deciding state, $a\beta(u)$ must also decide 1 by the Agreement property of P. Then the execution βa must decide 1 as well. So by Agreement applied to d', that deciding state must decide 1. Now β is a Q_i path that decides 1, and we have moved one step closer to b on the path α_1.

Now we keep moving back from u along α_1 toward b showing that we can maintain a path via Q_i to a state that decides 1 and looking for a Q_i path to a 0 deciding state. We will find such a path, namely α_0 by the time we reach b if not before.

As we move back from u toward b on α_1, suppose we encounter a P_k, step $k \neq i$ with action a, say going from state s to s'. We know from the construction that $wt(s', Q_i)$ does not lead to a 0 decision, and we look at the predecessor state s, and compute $wt(s, Q_i)$. If 0 is decided, and $k \neq i$, then we are done, and we take $b' = s$. However, if $k = i$ then we need a different analysis.

Thus suppose we find a state s' reached by an action a of P_i. Notice that there is by the construction so far a computation from s' to a 1 decision via Q_i, either along some β or along α_1.

Now compute $wt(s, Q_i)$ and let the result be d', a deciding state. We consider two cases based on the decision at d'.

If d' decides 0, then let α' be the computation from s to d'. We can use Commutativity and Agreement to show that this computation can be replayed from s' with same results, a 0 decision. This is a witness that s' is bivalent via Q_i and finishes the construction, with $b' = s'$ (see figure D).

If d' decides 1, then we have a new execution via Q_i, say β from s to a 1 deciding state, say d'_1. Moreover, we have taken another step closer to b along α_1.

8
We continue in this manner, incorporating P_k steps into the α_1 path or building a new β path to a 1 deciding state until we either reach b or find a state s before then that is bivalent via Q_i.

Qed

Here are diagrams of the constructions we just described. In the section on further details and alternatives, I also include a program that executes the computation implicit in this proof.
2.2 Main Theorem (Constructive FLP) and Corollaries

Theorem (CFLP): Given any deterministic effectively nonblocking consensus procedure, we can find an infinite execution.

Proof

The unbounded execution α starts with a bivalent initial state b_0 known to exist by the Initialization Lemma. We now schedule a round-robin execution of each process P_i and action a extending the current bivalent state, say s_k, to a state b' which is bivalent via Q_i by the One Step Lemma. At this state, we apply the action a of P_i unless it has already been applied in reaching b'. We can show that $m(b')$ is also bivalent via Q_i by the Commutativity Lemma, and thus we can repeat the construction using another process, say P_j and its enabled action. We compute $wt(m(b'), Q_j)$ and look for a witness with the opposite value, $wt(m(b'), Q_m)$ or use the Q_i execution at $m(b')$ with the opposite valence.

Now find an extension that is bivalent via Q_j using again the One Step Lemma. In this manner we fairly execute steps of all processes, yet never reach a deciding state.

Qed

Corollary (FLP): There is no single-failure responsive deterministic consensus algorithm (terminating consensus procedure).

Proof

Assume that A is such an algorithm. Let b_0 be a bivalent initial state. Algorithm A is the nonblocking witness for any reachable state, thus A is a consensus procedure, and thus does not terminate. So it is false that such an algorithm exists according to the CFLP Theorem.

Qed

Note, this result is constructive, and its content is a contradiction, not an infinite execution.

Corollary: If consensus procedure P is effectively nonblocking, then we can find nonterminating executions even if no process fails.

We note that in our construction of an infinite computation that does not decide, none of the processes fails.

Corollary (Strong FLP)* If consensus procedure P is nonblocking, then some execution of it is infinite.
We use the axiom of choice and the law of excluded middle to build a noncomputable witness function for nonblocking and then follow the construction in CFLP.

Corollary (Blocking): Given a consensus procedure A that terminates when there are no failures, there is by magic a computation that blocks (from which no decision is possible) when a single process fails.

Proof

Because all executions of A must terminate when no process fails, and because for nonblocking protocols there is always a nonterminating execution even when no process fails, A cannot be nonblocking. Thus, by classical logic, there is a blocking global state.

Qed

2.3 Further Details and Alternatives

There are other technical details and further intuitive insights behind the lemmas that are worth presenting.

Initializations The following notations help us make the Initialization Lemma more compact. Let s_j be the initialization in which P_i is initialized to 1 for all $i \leq j$ and P_i is initialized to 0 for all $i > j$ for $i = 1, \ldots, n$.

To find the first s_k where $wt(s_k, Q) = 1$ for some Q, we evaluate $wt(s_i, Q_j)$ systematically, increasing i after trying all subsets Q_j for that i. We know that these witnesses must eventually produce a 1 value because when $k = n$, then $wt(s_k, Q) = 1$ for all Q.

Let s_k be the first initialization producing the decision 1 using the nonblocking witness, say $wt(s_k, Q_m)$ decides one. Notice that $wt(s_j, Q_i) = 0$ for all $j < k$ and all i in $1 \leq i \leq n$, and in particular, $wt(s_{k-1}, Q_k) = 0$, say by execution α_0. If for some Q we have $wt(s_k, Q)$ decides 0, then we are done. If not, we can replay computation α_0 from s_k in which process P_k is scheduled to run very slow and not participate in the decision. To the processes participating, this computation will look like one with P_k initialized to 0, and there will thus be an execution that results in a 0 decision from s_k as we need to prove.

It seems natural to argue that $wt(s_{k-1}, Q_k) = wt(s_k, Q_k)$ since P_k does not participate and the states differ only on P_k initializations, but we do not impose conditions on the witness about how it computes, so from s_k the algorithm might produce a different computation, say with a different schedule on the participating processes. However, we can replay the
computation from s_{k-1} as in the above proofs.

Effective Bivalence In proving the One Step Lemma we need a key property of disjoint sets of processes called commutativity. It is this.

Simple Commutativity Lemma: Let s be a global state and consider disjoint sets of processes, P_i and Q_i. Suppose there is a computation α_1 from s using Q_i to state s_1 and computation α_2 from s using P_i to state s_2. Then there is a global state s' and a computation from s_1 via P_i to s' and from s_2 to s' via Q_i.

Proof

We can think of $\alpha_2(\alpha_1(s)) = s' = \alpha_1(\alpha_2(s))$ because the two computations are disjoint and can be ordered in either way, and we can delay messages from P_i to the processes in Q_i so that the two computations do not interact.

Qed

Commutativity Lemma: Let s be a global state and let Q and \bar{Q} be disjoint sets of processes. Suppose there is a computation α_1 from s using Q to state s_1 and computation α_2 from s using \bar{Q} to state s_2. Then there is a global state s' and a computation from s_1 via \bar{Q} to s' and from s_2 to s' via Q.

This result follows by induction from the simple case by delaying all messages between the disjoint sets, thus $\alpha_2(\alpha_1(s)) = s' = \alpha_1(\alpha_2(s))$ because the two computations are disjoint and can be ordered in either way.

Alternative Proof of the One Step Lemma

David Guaspari provided the following elegant compressed account of the previous proof of the One Step Lemma. It reveals quite clearly how simple the constructive proof of the FLP theorem can be, hence how simply the FLP result can be explained. Its simplicity suggests that it is worth applying the technique to open problems in distributed computing and to simplifying known proofs.

By definition, a bivalent state b can fork into different execution paths to 0 and 1 decisions. Call a pair of these paths, say (α, β) a *fork*. We call a fork an *i-fork* when one of the paths does not involve any steps of process P_i and a *full i-fork* when neither path involves steps of P_i.

The way we use forks in the One Step Lemma introduces an asymmetry on the paths. There will be a distinguished process P_i for which we are seeking a full i-fork. For a
Begin (Move along \propto, from d, toward b)

While ($S \neq b \& wt(S, Q_i)$) finds execution path β to decide(1)) do

\[\text{decide } [P = P_i ?] \]

\begin{align*}
\text{case } P = P_i & \quad (S \xrightarrow{P_i} S') \text{ then } Path := \beta; \text{Advance}; \\
\text{case } P = P_k & \quad (k \neq i) \quad (S \xrightarrow{P_k} S') \text{ then } Path := k; \text{Advance}
\end{align*}

od

if $s = b$ then stop ($b' = b$, \propto_0 is path to d_0 deciding 0, Path decides (i)) and is in Q_i

if $wt(S, Q_i)$ decides 0 by path \propto' then

\[\text{decide } [P = P_i ?] \]

\begin{align*}
\text{case } P = P_i & \quad \text{stop } (b' = b, \propto_0 \text{ is path to } d_0 \text{ deciding } 0, \text{Path decides } (i)) \text{ and is in } Q_i \\
\text{case } P = P_k & \quad Path := Path P_k; \text{stop } (b' = s, \propto' \text{ is path to decide(0)} \\
& \text{Path is path to decide(1)}
\end{align*}

End

Figure 2: A Program for the One Step Lemma

bivalent state it is trivial to find an i-fork for any i by just computing $wt(b, Q_i)$ and using that result as one branch. To simplify managing this asymmetry, we agree that the β branch of an i-fork will be the one without steps from P_i. The α path may or may not have P_i steps. If ϕ is an i-fork, let $i - \text{len}(\phi)$ be the number of P_i steps on the α path. Then ϕ is a full i-fork iff $i - \text{len}(\phi) = 0$.

Fork Modification Lemma: Let ϕ be an i-fork at state s with $i - \text{len}(\phi) = m > 0$. Suppose a_m is the last P_i action in the α branch, taking state s_m-1 to state s_m. Let v be the decision reached by $wt(s_m-1, Q_i)$, then:

1. If v is the decision reached by β, we can effectively construct a full i-fork from s_m, and

2. If v is the decision reached by α, we can effectively construct an i-fork ϕ' from s such that $i - \text{len}(\phi') < i - \text{len}(\phi)$.

Proof

For notational convenience, suppose that the β path decides 0. Figure 3 shows the i-fork $\phi = (\alpha, \beta)$, together with $wt(s_{n-1}, Q_i)$. We have, in a slightly informal notation:

- $\alpha = \delta \cdot a_n \cdot \varepsilon$
Figure 3: An i-fork

- γ is the sequence returned by $wt(s_{n-1}, Q_i)$ and b is its final state
- a_n is an action of process P_i
- none of the sequences β, γ, or ε contains an action from process P_i
- d_1 decides 1 and d_0 decides 0

Case 1: In this case b decides 0. Consider figure 4. Because a_n is an action of process P_i and γ contains no actions from P_i the parallelogram commutes, and the paths $a_n \cdot \gamma$ and $\gamma \cdot a_n$ lead to the same state, c, which must decide 0 because b does. So (ε, γ) is a full i-fork from s_n.

Case 2: In this case, b decides 1. Then $\phi' = (\delta \cdot \gamma, \beta)$ is an i-fork at s and $i - \text{len}(\phi') < i - \text{len}(\phi')$.

Qed
Figure 4: A commuting diagram

One Step Lemma

Given any fork at \(s \) and any \(i \), we can effectively construct a state \(s' \) reachable from \(s \) and a full \(i \)-fork at \(s' \).

Proof

Let \((\alpha, \beta)\) be a fork at \(s \) and let \(\gamma \) be the execution sequence returned by \(wt(s, Q_i) \). Then either \((\alpha, \gamma)\) or \((\beta, \gamma)\) is an \(i \)-fork. Now apply Fork Modification repeatedly.

Qed

A Program for the One Step Lemma

The computational content of the One Step Lemma is a program whose input is a bivalent state and a process \(P_i \) and whose output is a state that is bivalent via \(Q_i \).

Logical Conditions: \(b \) is bivalent; \(\alpha_1 \) is an execution path to \(d_1 \); \(\alpha_0 \) is an execution path to \(d_0 \); \(P_i \) is the designated process; \(P_k \) is any process.

Program Variables and Code Segments:

- \(S \), \(S' \) denotes global states on path \(\alpha_1 \) from \(b \) to \(d_1 \).
- \(P \) is the process taking \(S \) to \(S' \)
- \(Path \) is the execution path from \(S' \) to a state deciding 1
- \(pred(P) \) finds the predecessor process on \(\alpha_1 \)
- \(pred(S) \) finds the predecessor state on \(\alpha_1 \), e.g. \(pred(S') = S \).
Figure 5: One Step Program

- *Advance* is the code $P := \text{pred}(P); S' := S; S := \text{pred}(S)$ (This code finds the next step moving toward b on α_1.)

Invariants:

- I0. $\text{pred}(S') = S$
- I1. *Path* is a Q_i path from S' to a 1 deciding state.
- I2. There is no Q_i path known yet from S' to a 0 deciding state.
- I3. Initially S is d_1.
Acknowledgements

This work was funded by NSF grant CNS 872612445 and by the Information Directorate of the Air Force Research Lab (AFRL) at Rome, grant FA 8750-08-2-0153.

I want to thank Robbert VanRenesse for explaining consensus algorithms to me, for drawing my attention to the importance of the nonblocking property, and for studying my argument – a help in making it more succinct. I also want to thank Mark Bickford for responding to my early ideas for this proof and Uri Abraham for listening to my argument and sharing his course notes on the FLP theorem and providing pointers to the literature. Shlomi Dolev pointed out possible practical uses of the results that I continue to examine. David Guaspari was very helpful in reading my proof and drawing attention to points that needed clarification or correction. He also provided a very elegant condensation of the One Step Lemma that I sketched in the last section.

References

