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Abstract
Intuitively, data management and data integration tools should

be well-suited for exchanging information in a semantically mean-
ingful way. Unfortunately, they suffer from two significant prob-
lems: they typically require a comprehensive schema design before
they can be used to store or share information, and they are diffi-
cult to extend because schema evolution is heavyweight and may
break backwards compatibility. As a result, many small-scale data
sharing tasks are more easily facilitated by non-database-oriented
tools that have little support for semantics.

The goal of the peer data management system (PDMS) is to
address this need: we propose the use of a decentralized, eas-
ily extensible data management architecture in which any user
can contribute new data, schema information, or even mappings
between other peers’ schemas. PDMSs represent a natural step
beyond data integration systems, replacing their single logical
schema with an interlinked collection of semantic mappings be-
tween peers’ individual schemas.

This paper considers the problem of schema mediation in a
PDMS. Our first contribution is a flexible language for mediat-
ing between peer schemas, which extends known data integra-
tion formalisms to our more complex architecture. We precisely
characterize the complexity of query answering for our language.
Next, we describe a reformulation algorithm for our language that
generalizes both global-as-view and local-as-view query answer-
ing algorithms. Finally, we describe several methods for optimiz-
ing the reformulation algorithm, and an initial set of experiments
studying its performance.

1. Introduction
While databases and data management tools excel at pro-

viding semantically rich data representations and expres-
sive query languages, they have historically been hindered
by a need for significant investment in design, administra-
tion, and schema evolution. Schemas must generally be pre-
defined in comprehensive fashion, rather than evolving in-
crementally as new concepts are encountered; schema evo-
lution is typically heavyweight and may “break” existing
queries. As a result, many people find that database tech-
niques are obstacles to lightweight data storage and sharing
tasks, rather than facilitators. They resort to simpler and less

expressive tools, ranging from spreadsheets to text files, to
store and exchange their data. This provides a simpler ad-
ministrative environment (although some standardization of
terminology and description is always necessary), but with a
significant cost in functionality. Worse, when a lightweight
repository grows larger and more complex in scale, there no
easy migration path to a semantically richer tool.

Conversely, the strength of HTML and the World Wide
Web has been easy and intuitive support for ad hoc extensi-
bility — new pages can be authored, uploaded, and quickly
linked to existing pages. However, as with flat files, the
Web environment lacks rich semantics. That shortcoming
spurred a movement towards XML, which allows data to
be semantically tagged. Unfortunately, XML carries many
of the same requirements and shortcomings as data man-
agement tools: for rich data to be shared among different
groups, all concepts need to be placed into a common frame
of reference. XML schemas must be completely standard-
ized across groups, or mappings must be created between
all pairs of related data sources.

Data integration systems have been proposed as a partial
solution to this problem [11, 13, 3, 19, 9, 21]. These systems
support rich queries over large numbers of autonomous, het-
erogeneous data sources by exploiting the semantic rela-
tionships between the different sources’ schemas. An ad-
ministrator defines a global mediated schema for the ap-
plication domain and specifies semantic mappings between
sources and the mediated schema. We get the strong se-
mantics needed by many applications, and data sources can
evolve independently — and, it would appear, relatively
flexibly. Yet in reality, the mediated schema, the integrated
part of the system that actually facilitates all information
sharing, becomes a bottleneck in the process. Mediated
schema design must be done carefully and globally; data
sources cannot change significantly or they might violate
the mappings to the mediated schema; concepts can only be
added to the mediated schema by the central administrator.
The ad hoc extensibility of the web is missing, and as a re-
sult many natural, small-scale information sharing tasks are
difficult to achieve.
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We believe that there is a clear need for a new class of
data sharing tools that preserves semantics and rich query
languages, but which facilitates ad hoc, decentralized shar-
ing and administration of data and defining of semantic rela-
tionships. Every participant in such an environment should
be able to contribute new data and relate it to existing con-
cepts and schemas, define new schemas that others can use
as frames of reference for their queries, or define new rela-
tionships between existing schemas or data providers. We
believe that a natural implementation of such a system will
be based on a peer-to-peer architecture, and hence call such
a system a peer data management system (PDMS). (We
comment shortly on the differences between PDMSs and
P2P file-sharing systems). The vision of a PDMS is to blend
the extensibility of the HTML web with the semantics of
data management applications.

Example 1.1 The extensibility of a PDMS can best be il-
lustrated with a simple example. Figure 1 illustrates a
peer data management system for emergency services at the
Oregon-Washington border (this will be a running example
throughout the paper, so we only describe the functional-
ity here). Unlike a hierarchy of data integration systems, a
PDMS supports any arbitrary network of relationships be-
tween peers, but the true novelty lies in the PDMS’s ability
to exploit transitive relationships among peers’ schemas. In
the event of an earthquake, the peers drawn within the el-
lipse at the right of the figure may join the example PDMS.
Mappings will be specified between the Earthquake Com-
mand Center (ECC) and the existing 911 Dispatch Center
(9DC) — now, via transitive evaluation of semantic map-
pings, any queries over either the original 9DC or the ECC
peer will make use of all of the source relations (hospital,
fire, National Guard, and Washington State). ✷

Our contributions: We are building the Piazza PDMS,
whose goal is to support decentralized sharing and admin-
istration of data in the extensible fashion described above.
Piazza investigates many of the logical, algorithmic, and
implementation aspects of peer data management. In this
paper, we focus strictly on the problem of providing decen-
tralized schema mediation, specifically on the topics of ex-
pressing mappings between schemas in such a system and
answering queries over multiple schemas.

Research on data integration has provided a set of rich
and well understood schema mediation languages upon
which mediation in PDMSs can be built. The two com-
monly used formalisms are the global-as-view (GAV) ap-
proach used by [11, 13, 3], in which the mediated schema
is defined as a set of views over the data sources; and the
local-as-view (LAV) approach of [19, 9, 21], in which the
contents of data sources ae described as views over the me-
diated schema. The semantics of the formalisms are defined
in terms of certain answers to a query [1].

Porting these languages to the PDMS context poses two
challenges. First, the languages are designed to specify re-
lationships between a mediator and a set of data sources. In
our context, they need to be modified to map between peers’
schemas, where each peer can serve as both a data source
and mediator. Second, the algorithms and complexity of
query reformulation and answering in data integration are
well understood for a two-tiered architecture. In the con-
text of a PDMS, we would like to use the data integration
languages to specify semantic relationships locally between
small sets of peers, and answer queries globally on a net-
work of semantically related peers. The key contributions of
this paper are showing precisely when these languages can
be used to specify local semantic relationships in a PDMS,
and developing a query reformulation algorithm that uses
local semantic relationships to answer queries in a PDMS.

We begin by describing a very flexible formalism, PPL,
(Peer-Programming Language, pronounced “people”) for
mediating between peer schemas, which uses the GAV and
LAV formalisms to specify local mappings. We define the
semantics of query answering for a PDMS by extending the
notion of certain answers [1]. We present results that show
the exact restrictions on PPL under which finding all the
answers to the query can be done in polynomial time.

We then present a query reformulation algorithm for
PPL. Reformulation takes as input a peer’s query and the
formulas describing semantic relationships between peers,
and it outputs a query that refers only to stored relations at
the peers. Reformulation is challenging because peer map-
pings are specified locally, and answering a query may re-
quire piecing together multiple peer mappings to locate the
relevant data. In uniform fashion, our algorithm interleaves
both global-as-view and local-as-view reformulation tech-
niques. The algorithm is guaranteed to yield all the cer-
tain answers when they are possible to obtain. We describe
several methods for optimizing the reformulation algorithm
and demonstrate its performance in a number of scenar-
ios. Optimization of reformulation is a critical issue in the
PDMS context because the algorithm may need to follow
any path through semantically related peers, which may be
as long as the diameter of the PDMS. Second, since data
may be replicated in many peers, the branching factor of
the algorithm may be high.

Before we proceed, we would like to emphasize the fol-
lowing points. First, this paper is not concerned with how
semantic mappings are generated: this is an entire field
of investigation in itself (see [24] for a recent survey on
schema mapping techniques). Second, while a PDMS is
based on a peer-to-peer architecture, it is significantly dif-
ferent from a P2P file-sharing system (e.g., [22]). In particu-
lar, joining a PDMS is inherently a more heavyweight oper-
ation than joining a P2P file-sharing system, since some se-
mantic relationships need to be specified. Our initial archi-
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Figure 1. PDMS for coordinating emergency response in the Portland and Vancouver areas. Arrows indicate that there is (at least
a partial) mapping between the relations of the peers. Stored relations are located at various fire stations and hospitals. The hospitals
and fire districts run peers within the PDMS, publishing the stored relations for system use. Next, the Hospitals and Fire Services
peers mediate between the incompatible schemas at the layer below. Finally, a 911 Dispatch Center provides a global view of all
emergency services. In the event of an earthquake, a new Command Center and new relief workers can be added on an ad hoc basis,
and they will be immediately integrated with existing services.

tecture focuses on applications where peers are likely to stay
available the majority of the time, but in which peers should
be able to join (or add new data) very easily. We antici-
pate there will be a spectrum of PDMS applications, rang-
ing from more ad-hoc sharing scenarios to ones in which the
membership changes less frequently or is restricted due to
security or consistency requirements. Finally, we note that
PDMS provide an infrastructure on which to build applica-
tions of the Semantic Web [4], which essentially share the
vision of large-scale data sharing systems on the Web.

The paper is organized as follows. Section 2 formally
defines the peer mediation problem and describes our me-
diation formalism. Section 3 shows the conditions under
which query answering can be done efficiently in our for-
malism. In Section 4 we describe a query reformulation
algorithm for a PDMS, and Section 5 describes the results
of our experiments. Section 6 discusses related work and
Section 7 concludes.

2. Problem definition
In this section, we present the logical formalisms for de-

scribing a PDMS and the specification of semantic map-
pings between peers. Our goal is to leverage the techniques
for specifying mappings in data integration systems, ex-
tending them beyond the two-tiered architecture.

In our discussion, for simplicity of exposition we as-
sume the peers employ the relational data model, although
in our implemented system peers share XML files and pose
queries in a subset of XQuery that uses set-oriented seman-
tics. Our discussion considers select-project-join queries
with set semantics, and we use the notation of conjunctive
queries. In this notation, joins are specified by multiple oc-
currences of the same variable. Unless explicitly specified,
we assume queries do not contain comparison predicates
(e.g., �=, <). Views refer to named queries.

We assume that each peer defines its own relational peer
schema whose relations are called peer relations; a query in
a PDMS will be posed over the relations from a specific peer
schema. Without loss of generality we assume that relation
and attribute names are unique to each peer.

Peers may also contribute data to the system, in the form
of stored relations. Stored relations are analogous to data
sources in a data integration system: all queries in a PDMS
will be reformulated strictly in terms of stored relations that
may be stored locally or on other peers. (Note that not every
peer needs to contribute stored relations to the system, as
some peers may strictly serve as logical mediators to other
peers.) We assume that the names of stored relations are
distinct from those of peer relations.
Example 2.1 Figure 1 illustrates many of the peer and
source relations in an example PDMS for coordinating
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emergency response: relations listed near the rectangles are
peer relations, and those listed near the cylinders are source
relations stored at the lowest-level peers. Lines between
peers illustrate that there is a mapping (described later) be-
tween the relations of the two peers.

Stored relations containing actual data are provided by
the hospitals and fire stations (the FH, LH, PFD, and VFD
peers). The two fire-services peers (PFD and VFD) can
share data because there are mappings between their peer
relations. Additionally, the FS peer provides a uniform view
of all fire services data. Similarly, H provides a unified view
of hospital data. The 911 Dispatch Center (9DC) peer unites
all emergency services data.

The flexibility of the PDMS (due to ability to evaluate
transitive relationships between schemas) becomes evident
when an earthquake occurs: an Earthquake Command Cen-
ter (ECC) and other related peers join the system. Once
mappings between the ECC and the existing 911 Dispatch
Center are provided, queries over either the 9DC or ECC
peers will be able to make use of all of the source relations.
✷

We note that when a peer submits a query, it may not al-
ways be interested in obtaining all possible data from any-
where in the PDMS. We ignore this issue in our discussion,
and assume that restrictions on data sources can be speci-
fied via the user interface or that answers can be annotated
appropriately for the user.

2.1. A Mapping Language for PDMSs

Obviously, the power of the PDMS lies in its ability
to exploit semantic mappings between peer and stored re-
lations. In particular, there are two types of mappings
that must be considered: (1) mappings describing the data
within the stored relations (generally with respect to one
or more peer relations), and (2) mappings between the
schemas of the peers. At this point it is instructive to re-
call the formalisms used in the context of data integration
systems, since we build upon them in defining our mapping
description language.

2.1.1 Mappings in Data Integration

Data integration systems provide a uniform interface to a
multitude of data sources through a logical, virtual mediated
schema. (The mediated schema is virtual in the sense that
it is used for posing queries, but not for storing data.) Map-
pings are established between the mediated schema and the
relations at the data sources, forming a two-tier architecture
in which queries are posed over the mediated schema and
evaluated over the underlying source relations. A data inte-
gration system can be viewed as a special case of a PDMS.

Two main formalisms have been proposed for schema
mediation in data integration systems. In the first, called

global-as-view (GAV) [25, 11, 13, 3], the relations in
the mediated schema are defined as views over the rela-
tions in the sources. In the second, called local-as-view
(LAV) [19, 9, 21], the relations in the sources are specified
as views over the mediated schema. In fact, in many cases
the source relations are said to be contained in a view over
the mediated schema, as opposed to being exactly equal to
it. We illustrate both below.
Example 2.2 The 911 Dispatch Center’s SkilledPerson
peer relation, which mediates Hospital and Fire Services
relations, may be expressed using a GAV-like definition.
The definition specifies that SkilledPerson in the 9DC is
obtained by a union over the H and FS schemas. Note in
our examples, that peer relations are named using a peer-
name:relation-name syntax.

9DC : SkilledPerson(PID, “Doctor′′) : −
H : Doctor(SID, h, l, s, e)

9DC : SkilledPerson(PID, “EMT′′) : −
H : EMT(SID, h, vid, s, e)

9DC : SkilledPerson(PID, “EMT′′) : −
FS : Schedule(PID, vid),
FS : 1stResponse(vid, s, l, d),
FS : Skills(PID, “medical′′)

We may use the LAV formalism to specify the Lakeview
Hospital peer relations as views over mediated Hospital re-
lations. The LAV formalism is especially useful when there
are many data sources that are related to a particular medi-
ated schema. In such cases, it is more convenient to describe
the data sources as views over the mediated schema rather
than the other way around. In our scenario, H may eventu-
ally mediate between many hospitals, and hence LAV is ap-
propriate for future extensibility. The following illustrates
LAV mappings for one of the hospitals.

LH : CritBed(bed, hosp, room,PID, status) ⊆
H : CritBed(bed, hosp, room),
H : Patient(PID,bed, status)

LH : EmergBed(bed, hosp, room,PID, status) ⊆
H : EmergBed(bed, hosp, room),
H : Patient(PID,bed, status)

LH : GenBed(bed, hosp, room,PID, status) ⊆
H : GenBed(bed,hosp, room),
H : Patient(PID,bed, status) ✷

The fundamental difference between the two formalisms
is that GAV specifies how to extract tuples for the mediated
schema relations from the sources, and hence query answer-
ing amounts to view unfolding. In contrast, LAV is source-
centric, describing the contents of the data sources. Query
answering requires algorithms for answering queries using
views [14], but in exchange LAV provides greater extensi-
bility: the addition of new sources is less likely to require a
change to the mediated schema.
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Our goal in PPL is to preserve the features of both the
GAV and LAV formalisms, but to extend them from a two-
tiered architecture to our more general network of interre-
lated peer and source relations. Semantic relationships in
a PDMS will be specified between pairs (or small sets) of
peer (and optionally source) relations. Ultimately, a query
over a given peer relation may be reformulated over source
relations on any peer in the transitive closure of peer map-
pings.

2.1.2 Mappings for PDMSs

We now present the PPL language, which uses the data in-
tegration formalisms locally. First we formally define our
two types of mappings, which we refer to as storage de-
scriptions and peer mappings.

Storage descriptions: Each peer contains a (possibly
empty) set of storage descriptions that specify which data it
actually stores by relating its stored relations to one or more
peer relations. Formally, a storage description of the form
A : R = Q, where Q is a query over the schema of peer A
and R is a stored relation at the peer. The description speci-
fies that A stores in relation R the result of the query Q over
its schema.

In many cases the data that is stored is not exactly the
definition of the view, but only a subset of it. As in the con-
text of data integration, this situation arises often when the
data at the peer may be incomplete (this is often called the
open-world assumption [1]).1 Hence, we also allow stor-
age descriptions of the form A : R ⊆ Q. We call the
latter descriptions containment descriptions versus equality
descriptions.

Example 2.3 An example storage description might relate
stored doctor relations at First Hospital to the peer relations.

doc(sid, last, loc) ⊆ FH : Staff(sid, f, last, s, e),
FH : Doctor(sid, loc)

sched(sid, s, e) ⊆ FH : Staff(sid, f, last, s, e),
FH : Doctor(sid, loc) ✷

Peer mappings: Peer mappings provide semantic glue be-
tween the schemas of different peers. We have two types of
peer mappings in PPL. The first are inclusion and equality
mappings (similar to the concepts for storage descriptions).
In the most general case, these mappings are of the form
Q1(Ā1) = Q2(Ā2), (or Q1(Ā1) ⊆ Q2(Ā2) for inclusions)
where Q1 and Q2 are conjunctive queries with the same ar-
ity and Ā1 and Ā2 are sets of peers. Query Q1 (Q2) can re-
fer to any of the peer relation in Ā1 (Ā2, resp.). Intuitively,
such a statement specifies a semantic mapping by stating
that evaluating Q1 over the peers Ā1 will always produce

1Sometimes it may be possible to describe the exact contents of a data
source with a more refined query, but very often this cannot be done.

the same answer (or a subset in the case of inclusions) as
evaluating Q2 over Ā2. Note that since PPL allows queries
on both sides of the equation, they can accommodate both
GAV and LAV-style mappings (and thus we can express any
of the mappings from Section 2.1.1).

The second kind of peer mappings are called definitional
mappings. They are datalog rules whose relations (both
head and body) are peer relations. Formally, as long as
a peer relation appears only once in the head of a defini-
tional description, such mappings can be written as equali-
ties. We include definitional mappings in order to obtain the
full power of GAV mappings. We distinguish definitional
mappings for the following reasons:

• as we show in Section 3, the complexity of answer-
ing queries when equality mappings are restricted to
being definitional is more attractive than the general
case, and

• definitional mappings can easily express disjunction:
e.g., P (x) : −P1(x) and P (x) : −P2(x) means that P
is the union of P1 and P2 (while the pair of mappings
P (x) = P1(x) and P (x) = P2(x) means that P , P1

and P2 are equal).

In summary, a PDMS N is specified by a set of peers
{P1, ..., Pn}, a set of peer schemas {S1, ..., Sm} and a map-
ping function from peers to schemas, a set of stored rela-
tions Ri at each peer Pi, a set of peer mappings LN , and
a set of storage descriptions DN . The storage descriptions
and peer mappings provided by a peer P i may reference
stored or peer relations defined by other peers, so any peer
can extend another peer’s relations or use its data.

2.2. Semantics of PPL
Given the peer and stored relations, their mappings, and

a query over some peer schema, the PDMS needs to answer
the query using the data from the stored relations. To for-
mally specify the problem of query answering, we need to
define the semantics of queries. We show below how the no-
tion of certain answers [1] from the data integration context
can be generalized to our context. Our goal is to formally
define what is the set of answers to a query Q posed over
the relations of a peer A. The challenge arises because the
peer schemas are virtual; in fact, some data may only exist
partially, if at all, in the system.

Formally, we assume that we are given a PDMS N and
an instance for the stored relations, D, i.e., a set of tuples
D(R) for each stored relation R ∈ (R1 ∪ . . . ∪ Rn). A
data instance I for a PDMS N is an assignment of a set of
tuples to each relation in each peer (both the peer and stored
relations). We denote by I(R) the set of tuples assigned
to the relation R by I , and we denote by Q(I) the result
of computing the query Q over the extensional data in I .
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To define certain answers, we will consider only the data
instances that are consistent with the specification of N :

Definition 2.1 (Consistent data instance) A data instance
I is said to be consistent with a PDMS N and an instance
D for N ’s stored relations if:

• For every storage description in DN , if it is of the form
A : R = Q1 (A : R ⊆ Q1), then D(R) = Q1(I)
(D(R) ⊆ Q1(I)).

• For every peer description in LN :

– if it is of the form Q1(A1) = Q2(A2), then
Q1(I) = Q2(I),

– if it is of the form Q1(A1) ⊆ Q2(A2), then
Q1(I) ⊆ Q2(I),

– if it is a definitional description whose head pred-
icate is p, then let r1, . . . , rm be all the defini-
tional mappings with p in the head, and let I(ri)
be the result of evaluating the body of r i on the
instance I . Then, I(p) = I(r1) ∪ . . . ∪ I(rm).✷

Intuitively, a data instance I is consistent with N and D
if it describes one possible state of the world (i.e., exten-
sion for each of the peer relations) that is allowable given
the data and peer mappings and D. We define the certain
answers to be those that hold in every possible consistent
data instance:

Definition 2.2 (Certain answers) Let Q be a query over
the schema of a peer A in a PDMS N , and let D be an
instance of the stored relations of N . A tuple ā is a certain
answer to Q if ā is in Q(I) for every data instance that is
consistent with N and D. ✷

Note that in the last bullet of Definition 2.1 we did not
require that the extension of p be the least-fixed point model
of the datalog rules. However, since we defined certain
answers to be those that hold for every consistent data in-
stance, we actually do get the intuitive semantics of datalog
for these mappings.

Query answering: Now we can define the query answer-
ing problem: given a PDMS N , an instance of the stored
relations D and a query Q, find all certain answers of Q.

Section 3 considers the computational complexity of
query answering, and section 4 describes an algorithm for
finding all the certain answers.

3. Complexity of Query Answering
This section establishes the basic results on the complex-

ity of finding the certain answers in a PDMS. The complex-
ity will depend on the restrictions we impose on peer map-
pings in PPL. The computational complexity of finding all

certain answers is well understood for the data integration
context with a two-tiered architecture of a mediator and a
set of data sources [1]. The key contribution of this section
is to show the complexity of query answering in the global
context of a PDMS, when the data integration formalisms
are used locally.

The focus of our analysis is on data complexity — the
complexity of query answering in terms of the total size of
the data stored in the peers. Typically, the complexity of
query answering is either polynomial, Co-NP-hard but de-
cidable, or undecidable. In the polynomial case, it is often
possible to find a reformulation of the query into a query
that refers only to the stored relations. The reformulated
query is then further optimized and then executed. In the
latter two cases, it is not possible to find all certain answers
efficiently; but it is possible to develop an efficient reformu-
lation algorithm that does not provide all certain answers,
but which only returns certain answers.

A basic result: We begin by showing that cyclicity of
peer mappings plays a significant role in the complexity of
answering queries.

Definition 3.1 (Acyclic inclusion peer mappings) A set L
of inclusion peer mappings in PPL, is said to be acyclic if
the following directed graph is acyclic. The graph contains
a node for every peer relation mentioned in L. There is an
arc from the node corresponding to R to the node corre-
sponding to S if there is a peer description in L of the form
Q1(Ā1) ⊆ Q2(Ā2) where R appears in Q1 and S appears
in Q2. ✷

The following theorem characterizes two extreme cases
of query answering in PDMS:

Theorem 3.1 Let N be a PDMS specified in PPL.

1. The problem of finding all certain answers to a con-
junctive query Q, for a given PDMS N , is undecid-
able.

2. If N includes only inclusion peer and storage descrip-
tions and the peer mappings are acyclic, then a con-
junctive query can be answered in polynomial time
data complexity.

The difference in complexity between the first and sec-
ond bullets shows that the presence of cycles is the cul-
prit for achieving query answerability in a PDMS (note that
equalities automatically create cycles). In a sense the theo-
rem also establishes a limit on the arbitrary combination of
the formalisms of LAV and GAV. The proof is based on a
reduction from the implication problem for functional and
inclusion dependencies ( [2], Theorem 9.2.4).
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The second bullet points out a powerful schema media-
tion language for PDMS for which query answering can be
done efficiently. It shows that LAV and GAV style reformu-
lations can be chained together arbitrarily, and extends the
results of [10], which combined one level of LAV followed
by one level of GAV.

Cyclic PDMSs: Acyclic PDMSs may be too restrictive
for practical applications. One particular case of interest is
data replication: when one peer maintains a copy of the
data stored at a different peer. For example, referring to
Fig. 1, the Earthquake Command Center may wish to repli-
cate the 911 Dispatch Center’s Vehicle table for reliabil-
ity, using an expression such as:

ECC : vehicle(vid, t, c, g, d) = 9DC : vehicle(vid, t, c, g, d)

This example illustrates that we need equality in order to
express data replication, which introduces a cyclic PDMS
(the two relations mutually include each other’s contents).
While in general query answering is undecidable, it be-
comes decidable when equalities are projection-free, as in
this example. The following theorem shows an important
special case where query answering is tractable, and two
additional cases where it is decidable.

Theorem 3.2 Let N be a PDMS for which all inclusion
peer mappings are acyclic, but which may also contain
equality peer mappings.

1. if the following two conditions hold: (1) whenever a
storage or peer description in N is an equality descrip-
tion, it does not contain projections, and (2) a peer
relation that appears in the head of a definitional de-
scription does not appear on the right-hand side of any
other description, then the query answering problem is
in polynomial time.

2. if the conditions of the previous bullet hold, except
that some equality storage descriptions contain projec-
tions, then the data complexity of the query answering
problem is co-NP complete.

3. if the conditions of the first bullet hold, except that
some of the queries on the right-hand side of the peer
mappings may be unions of conjunctive queries, the
data complexity of query answering is co-NP complete.

Note that the first bullet in the theorem also allows def-
initional mappings to be disjunctive, if there are multiple
mappings with the same head predicate. The conditions of
this bullet describe the most relaxed conditions under which
query answering is tractable, and extends the results of [1]
for purely LAV mappings. The algorithm described in the
next section will find all the certain answers under these
conditions. The two subsequent bullets show that relaxing

the conditions of the first bullet cause the query answering
problem to be intractable.

Adding comparison predicates: Many applications will
make extensive use of comparison predicates in peer map-
pings. Comparison predicates are especially useful when
many peers model the same type of data, but they are distin-
guished on ranges of certain values of attributes (e.g., author
names, years of publication, price ranges, geographic loca-
tion). The following theorem shows what happens when
comparison predicates are introduced into the peer map-
pings of a PDMS. We note that the algorithm we describe
in the next section finds all the certain answers when the
PDMS satisfies the conditions of the first bullet.

Theorem 3.3 Let N be a PDMS satisfying the same con-
ditions as the first bullet of Theorem 3.2, and let Q be a
conjunctive query.

1. if comparison predicates appear only in storage de-
scriptions or in the bodies of definitional mappings,
but not in Q, then query answering is in polynomial
time.

2. otherwise, if either the query contains comparison
predicates or comparison predicates appear in non-
definitional peer mappings, then the query answering
problem is co-NP complete.

Summary: with arbitrary use of the data integration for-
malisms in a PDMS, query answering is undecidable. How-
ever, this section has shown that there is a powerful subset
of PPL in which query answering is tractable. The subset
allows both the LAV and GAV mediation languages, and it
supports a limited form of cycles in the peer mappings and
as well as limited use of comparison predicates.

4. Query Reformulation Algorithm

In this section we describe an algorithm for query refor-
mulation for PDMSs. The input of the algorithm is a set
of peer mappings and storage descriptions and a query Q.
The output of the algorithm is a query expression Q ′ that
only refers to stored relations at the peers. To answer Q we
need to evaluate Q′ over the stored relations. The precise
method of evaluating Q′ is beyond the scope of this paper,
but we note that recent techniques for adaptive query pro-
cessing [16] are well suited for our context.

The algorithm is sound and complete in the following
sense. Evaluating Q′ will always only produce certain an-
swers to Q. When all the certain answers can be found in
polynomial time (according to Section 3), Q ′ will produce
all certain answers.
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4.1. Algorithm overview

Before we describe the details of the algorithm, we first
provide some intuition on its working and the challenges it
faces. Consider a PDMS in which all peer mappings are
definitional (similar to GAV mappings in data integration).
In this case, the algorithm is a simple construction of a rule-
goal tree: goal nodes are labeled with atoms of the peer re-
lations, and rule nodes are labeled with peer mappings. We
begin by expanding each query subgoal according to the rel-
evant definitional peer mappings in the PDMS. When none
of the leaves of the tree can be expanded any further, we use
the storage descriptions for the final step of reformulation in
terms of the stored relations.

At the other extreme, suppose all peer mappings in the
PDMS are inclusions in which the left-hand side has a sin-
gle atom (similar to LAV mappings in data integration). In
this case, we begin with the query subgoals and apply an al-
gorithm for answering queries using views (e.g., [14]). We
apply the algorithm to the result until we cannot proceed
further, and as in the previous case, we use the storage de-
scriptions for the last step of reformulation.

The first challenge of the complete algorithm is to com-
bine and interleave the two types of reformulation tech-
niques. One type of reformulation replaces a subgoal with
a set of subgoals, while the other replaces a set of subgoals
with a single subgoal. The algorithm will achieve this by
building a rule-goal tree, while it simultaneously marks cer-
tain nodes as covering not only their parent node, but also
their uncle nodes (as described in the example below).

Example 4.1 To illustrate the rule-goal tree,2 Figure 2
shows an example for a simple query. We begin with
the query, Q, which asks for firefighters with matching
skills riding in the same engine. Q is expanded into its
three subgoals, each of which appears as a goal node.
The SameEngine peer relation (indicating which firefight-
ers are assigned to the same engine) is involved in a sin-
gle definitional peer description (r0), hence we expand the
SameEngine goal node with the rule r0, and its children are
two goal nodes of the AssignedTo peer relation (each spec-
ifying an individual fire fighter’s assignment).

The Skill relation is involved in an inclusion peer descrip-
tion (r1). Hence, we expand Skill(f1,s) with the rule node
r1, and its child is a goal node of the relation SameSkill.
This “expansion” is of different nature because of the LAV-
style reformulation. Intuitively, we are reformulating the
Skill(f1,s) subgoal to use the left-hand side of r1. The right-
hand side of r1 includes two subgoals of Skill (with the ap-
propriate variable patterns), so we also mark r1 as covering
its uncle node. (In the figure, this annotation is indicated
by a dashed line.) Since the peer relation Skill is involved

2More precisely, we actually build a rule-goal DAG, as illustrated in
the example.

in a single peer description, we do not need to expand the
subgoal Skill(f2,s) any further. Note, however, that we must
apply description r1 a second time with the head variables
reversed, since SameSkill may not be symmetric (because it
is ⊆ rather than =).

At this point, since we cannot reformulate the peer map-
pings any further, we consider the storage descriptions. We
find stored relations for each of the peer relations in the tree
(S1 and S2), and produce the final reformulation. Refor-
mulations of peer relations into stored relations can also be
either in GAV or LAV style. In this simple example, our
reformulation involves only one level of peer mappings, but
in general, the tree may be arbitrarily deep. ✷

The second challenge we face is that the rule-goal tree
may be huge. First, the tree may be very deep, because it
may need to follow any path through semantically related
peers. Second, the branching factor of the tree may be large
because data is replicated at many peers. Hence, it is crucial
that we develop effective methods for pruning the tree and
for generating first solutions quickly. It is important to em-
phasize that while many sophisticated methods have been
developed for constructing rule-goal trees in the context of
datalog analysis (e.g., [15, 26]), the focus in these works
has been developing termination criteria that provide cer-
tain guarantees, rather than optimizing the construction of
the tree itself.

Before proceeding, we recall the main aspect of algo-
rithms for rewriting queries using views [23] that is germane
to our discussion. Suppose we have the following query Q
and views (we use the terminology of [23]):

Q(X,Y ) : − e1(X, Z), e2(Z, Y ), e3(X, Y )
V1(A, B) : − e1(A, C), e2(C, B)
V2(D, E) : − e3(X, Y ), e4(Y )
V3(U) : − e1(U, Z)

To find a way of answering Q using the views, we first
try to find a view that will cover the subgoal e1(X, Z) in
the query. We realize that V1 will suffice, so we create a
Minicon description (MCD) for it. The MCD specifies that
an atom V1(X, Y ) will cover the subgoal e1(X, Z), but it
also specifies that the atom will cover the first two subgoals
in Q. Similarly, we create an MCD for V2 and the third
subgoal, and finally we combine the MCDs to produce the
rewriting:

Q′(X, Y ) : − V1(X, Y ), V2(X, Y )

The important point to note is that the MCD may tell us
that it covers more than the original subgoal for which it was
created. Furthermore, MCDs will only be created when the
views are guaranteed to be useful. For example, in the case
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Skill(f1,s), Skill(f2,s)
q   Q(f1, f2) :− SameEngine(f1,f2,e),

Q(f1,f2)

q

r0

r1 r1

SameEngine(f1,f2,e) Skill(f1,s) Skill(f2,s)

S1(f2,e,_)S1(f1,e,_)

Peer description:

Query:

AssignedTo(f1,e) AssignedTo(f2,e)

Q’(f1,f2) :− S1(f1,e,_), S1(f2,e,_), S2(f1,f2)    U

Reformulated query:

Storage descriptions:

AssignedTo(f2,e)
r0  SameEngine(f1, f2, e) :− AssignedTo(f1,e),

 r1  SameSkill(f1, f2)          Skill(f1,s), Skill(f2,s)

r3  S2(f1, f2)  =     SameSkill(f1,f2)

r1

r3

r1

SameSkill(f1,f2)

S2(f1,f2)

r3

SameSkill(f2,f1)

S2(f2,f1)                     S1(f1,e,_), S1(f2,e,_), S2(f2,f1)

r2  S1(f, e, s)         AssignedTo(f,e), Sched(f,st,end)

Figure 2. Reformulation rule-goal tree for Emergency Services domain. Dashed lines represent nodes
that are included in the unc label (see text).

of V3, since the variable Z is projected from the answer, the
view is useless and an MCD will not be created.

We now describe the construction of the rule-goal tree in
detail, deferring a discussion of the order in which we ex-
pand nodes in the tree. Later, we describe several methods
for optimizing the tree’s construction.

4.2. Creating the rule-goal tree

The algorithm takes as input a conjunctive query Q(X̄)
that is posed at some peer, and a set of peer mappings and
storage descriptions in PPL. We first describe the algo-
rithm for the case in which there are no comparison predi-
cates in the PDMS or the query.

Step 1: the algorithm transforms every equality descrip-
tion into two inclusion mappings. It then transforms every
inclusion description of the form Q1 ⊆ Q2 into the pair:
V ⊆ Q2, and V : − Q1, where V is a new predicate
name that appears nowhere else in the peer mappings.

Step 2: the algorithm builds a rule-goal tree T . When a
node n in T is a goal node, it has a label l(n) which is an
atom whose arguments are variables or constants. The la-
bel l(n) of a rule node is a peer description (except that the
child of the root is labeled with the rule defining the query).
Finally, a rule node n that is labeled with an inclusion de-
scription also has a label unc(n): this label always includes
at least the father of n, but may also include nodes that are
siblings of its father goal node. As described earlier, the
reason for this label is that an MCD can cover more that the
subgoal for which it was created.

The root of T is labeled with the atom Q(X̄), and it has
a single rule-node child whose children are the subgoals of
the query. The tree is constructed by iterating the following
step, until no leaf nodes can be expanded further.

Choose an arbitrary leaf goal node n in T whose label is
l(n) = p(Ȳ ), and p is not a stored relation. Perform all the
expansions possible in the following two cases. In either
case, never expand a goal node n with a peer description
that was used on the path from the root to n. This guarantees
termination of the algorithm even in a cyclic PDMS.
1. Definitional expansion: this is the case where peer re-
lations appear in GAV-style mappings. If p appears in the
head of a definitional description r, expand n with the defi-
nition of p. Specifically, let r′ be the result of unifying p(Ȳ )
with the head of r. Create a child rule nr, with l(nr) = r′,
and create one child goal-node for nr for every subgoal of
r′ with the corresponding label. Existential variables in r ′

should be renamed so they are fresh variables that do not
occur anywhere else in the tree constructed thus far.
2. Inclusion expansion: this is the case where peer re-
lations appear in LAV-style mappings. If p appears in the
right-hand side of an inclusion description or storage de-
scription r of the form V ⊆ Q1 (or V = Q1), we do the
following. Let n1, . . . , nm be the children of the father node
of n, and p1, . . . , pm be their corresponding labels. Create
an MCD for p(Ȳ ) w.r.t. p1, . . . , pm and the description r.
Recall that the MCD contains an atom of the form V (Z̄)
and the set of atoms in p1, . . . , pm that it covers.

Create a child rule node nr for n labeled with r, and a
child goal node ng for nr labeled with V (Z̄). Set unc(ng)
to be the set of subgoals covered by the MCD. Repeat this
process for every MCD that can be created for p( Ȳ ) w.r.t.
p1, . . . , pm and the description r.

Step 3: we construct the solutions from T . The solution is a
union of conjunctive queries over the stored relations. Each
of these conjunctive queries represents one way of obtaining
answers to the query from the relations stored at peers. Each
of them may yield different answers unless we know that
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some sources are replicas of others.
Let us consider the simple case, where only definitional

mappings are used, first. The answer would be the union of
conjunctive queries, each with head Q(X̄) and a body that
can be constructed as follows. Let T ′ be a subset of T where
we arbitrarily choose a single child at every goal node, and
for which all leaves are labeled by stored relations. The
body of a conjunctive query is the conjunction of all the
leaves of T ′.

To accommodate inclusion expansions as well, we create
the conjunctive queries as follows. In creating T ′s we still
choose a single child for every goal node. This time, we
do not necessarily have to choose all the children of a rule
node n. Instead, given a rule node n, we need to choose a
subset of the children n1, . . . , nl of n, such that unc(n1) ∪
. . . ∪ unc(nl) includes all of the children of n.

Remark 4.1 We note that in some cases, an MCD may
cover cousins or uncles of its father node, not only its own
uncles. For brevity of exposition, we ignore this detail in
our discussion. However, we note that we do not compro-
mise completeness as a result. In the worst case, we obtain
conjunctive rewritings that contain redundant atoms. ✷

Incorporating comparison predicates: as we stated ear-
lier, comparison predicates provide a very useful mecha-
nism for specifying constraints on domains of stored rela-
tions or peer relations, and therefore exploiting them can
lead to significant pruning of the tree. When the query or
the peer mappings and storage descriptions include com-
parison predicates we modify the algorithm as follows. We
associate with each node n a constraint-label c(n). The con-
straint label describes the conjunction of comparison predi-
cates that are known to hold on the variables in l(n).

As we build T , constraints get added and propagated to
child nodes. Specifically, suppose we expand a node n with
a definitional description r, and let c1 ∧ . . . ∧ cm be the
comparison predicates in r. Then we set c(r) to be c(n) ∧
c1∧. . .∧cm, and the labels of its children are the projections
of c(r) on the variables of the child.3 When we expand a
goal node with an inclusion peer description then the MCD
will be created w.r.t. the constraints in the parent and in the
peer description. Finally, we do not expand a node in the
tree if its label is not satisfiable (this implies that it can only
yield the empty set of answers to Q).

In step 3, when we construct the conjunctive queries,
we add to them the conjunction of their constraint labels.
If the resulting conjunctive query in unsatisfiable, we dis-
card it. Note that constraints can also be propagated up the
tree (in the same spirit at the predicate move-around algo-

3When a conjunction of constraints is projected on a subset of the vari-
ables, the result may be a disjunction of constraints. The algorithm can
either choose to manipulate such disjunctions or approximate them by the
least subsuming conjunctions.

rithm [18]), thereby detecting additional unsatisfiable labels
during the construction of the tree.

4.3. Optimizations

As explained earlier, a major challenge for reformula-
tion in the context of PDMS is optimizing the construction
of the rule-goal tree. Up to this point we described which
nodes need to be in the tree. We now briefly describe sev-
eral optimization opportunities for this context. Several op-
timizations can immediately be borrowed from techniques
developed for evaluation of datalog and logic programs, but
lifted from the data level to the expression level: (1) mem-
oization of nodes, (2) detection of dead ends and useless
paths. Note that in the presence of comparison predicates,
a node n can become unreachable is if its constraint label
c(n) is unsatisfiable. This may occur because the stored re-
lations we have access to certain data that is known to be
disjoint from what is requested in the query.

A more subtle case in which useless paths can be de-
tected is as follows. Suppose we have two sibling goal
nodes with labels p1(X̄) and p2(Ȳ ), and suppose that p1

appears in a single inclusion peer description of the form
V (Z̄) ⊆ p1(X̄), p2(Ȳ ), and that predicate p2 appears on
the right-hand side of numerous inclusion peer mappings.
In this case, the only way to reformulate p1 will be through
V , and V already satisfies the subgoal p2(Ȳ ). Hence, there
is no need to explore any of the other ways of reformulating
p2: they are all redundant.

While these optimizations have significant potential, the
challenge is to build the tree in an order that most exploits
them. The goal is to find the dead ends as early as possible
to maximize the pruning. Our algorithm employs a priority
scheme in expanding nodes: it assigns every node a cer-
tain priority based on how likely it is to yield useful prun-
ing. Finally, we note that in many contexts, there will be
a large number of reformulations, and hence an important
optimization is to generate the first reformulations quickly
so query execution can begin (in the spirit of [8]).

5. Experiments
This section describes an initial set of experiments con-

cerning the performance of our reformulation algorithm.
Currently, the major impediment to performing experiments
at this point is the lack of existing PDMS to test on. Hence,
our experiments are based on a workload generator that pro-
duces PDMS for several reasonable topologies.

The parameters to the generator are: (1) the number of
peers R in the system, and (2) the expected diameter L of
the PDMS (i.e., the longest chain of peer mappings that can
be constructed). Intuitively, the diameter of the PDMS will
correspond to the number of levels of goal nodes in the tree.
We call each such level a stratum, and to create the PDMS,
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we assign a number of peers to each stratum. The gener-
ator also controls the ratio of definitional versus inclusion
peer mappings. Finally, the right-hand sides of the peer
mappings are chain queries over a set of relations that was
selected randomly from the stratum below (for definitional
mappings) and above (for inclusions). In our figures, each
data point is generated from the average of 100 runs.

Figure 3 shows the size of the tree (number of nodes)
as a function of the number of strata, and the percent of
definitional peer mappings (in the figure, %dd denotes the
percent of definitional mappings). As shown, with 8 strata,
the size of the tree grows to 30,000 nodes. On average,
the algorithm generates nodes at a rate of 1,000 per second
(with relatively unoptimized code). We note that the size of
the tree grows with the relative percent of definitional map-
pings. The reason for this is that we get more peer relations
that are defined as unions of conjunctive queries, and hence
a higher branching factor in the tree.

Figure 4 shows that despite the large trees, the first
rewritings can be found efficiently. For example, even with
a diameter of 8, finding the first few rewritings can be done
in under 3 seconds. Hence, we believe that in practice our
algorithm will scale gracefully to large PDMS.

The main conclusions from our experiments are the fol-
lowing. First, the key bottleneck of the algorithm is the
time to find the rewritings from the rule-goal tree (step 3),
whereas step 2 scales up to rather large trees. Hence, an
important issue is to tune the algorithm to produce the first
rewritings as quickly as possible. Second, the main factor
determining the size of the rule-goal tree is the diameter of
the PDMS. In contrast, the number of peers at every stra-
tum has a relatively little effect, because it is usually the
case that most of them are irrelevant to a given query.

6. Related Work
The idea of mediating between different databases using

local semantic relationships is not new. Federated databases
and cooperative databases have used the notion of inter-
schema dependencies to define semantic relationships be-
tween databases in a federation (e.g., [20]). In previous
proposals, it was assumed that each database in the fed-
eration stored data, and hence the focus was on mapping
between the stored relations in the federation. Our work dif-
fers in several ways. First, the scale of a PDMS is assumed
to be much larger and its structure more ad hoc. Joining
and leaving a PDMS should be much easier than in a feder-
ated database. As a consequence, the relationships between
the peers are much looser. Second, peers can play differ-
ent roles — some provide data, others provide integration
services between other peers, and some provide both. As a
result, we need to be able to map both relationships among
stored relations and among conceptual relations (i.e., ex-
tensional vs. intentional relations). Third, our focus is on

algorithms for chaining through multiple peer mappings in
order to locate data relevant to a query.

In [12] we described some of the challenges involved in
building a PDMS, focusing on intelligent data placement,
a technique for materializing views at nodes in the network
in order to improve performance and availability. In [17]
the authors study a variant of the data placement problem,
and focus on intelligently caching and reusing queries in
an OLAP environment. Recently, [5] described local rela-
tional models as a formalism for mediating between differ-
ent peers in a PDMS, and a sound and complete algorithm
for answering queries using the formalism, but do not de-
scribe the expressive power of the formalism compared to
previous ones in the data integration literature.

Description logics offer an alternative formalism for
specifying peer relationships [7, 6]. We chose conjunctive
queries for our formalism mostly because we believe that
the join, selection and projection operations are the funda-
mental core necessary for expressing useful queries.

7. Conclusions

The concept of the peer data management system em-
phasizes not only an ad-hoc, scalable, distributed peer-to-
peer computing environment (which is compelling from a
distributed systems perspective), but it provides an easily
extensible, decentralized environment for sharing data with
rich semantics. This is in contrast to data integration sys-
tems, which have a centralized mediated schema and ad-
ministrator, and which, in our experience, impede small,
point-to-point collaborations.

We presented a solution to schema mediation in peer data
management systems. We described PPL, a flexible medi-
ation scheme for PDMSs, which uses previous mediation
formalisms at the local level to form a network of seman-
tically related peers. We characterized the theoretical lim-
itations on answering queries in PPL-PDMSs. Next, we
described a query reformulation algorithm for PPL. The
primary contribution of the algorithm is that it combines
both LAV- and GAV-style reformulation in a uniform fash-
ion, and it is able to chain through multiple peer descrip-
tions to reformulate a query. We described optimization
methods for reformulation, and some experimental results
that show its utility. The final result is a practical solution
for schema mediation in PDMS.

Future research includes reconciling peers with inconsis-
tent integrity constraints, and considering richer constraint
languages at the peers. More generally, peer data manage-
ment is a very rich domain that creates a wealth of new
problems, such as how to replicate data, how to reconcile
inconsistent data, and optimization across multiple peers.
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