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Abstract

It has frequently been observed that most of the world’s data lies out-
side database systems. The reason is that database systems focus on
structured data, leaving the unstructured realm to others. The world
of unstructured data has several very appealing properties, such as
ease of authoring, querying and data sharing. In contrast, authoring,
querying and sharing structured data require significant effort, albeit
with the benefit of rich query languages and exact answers.

We argue that in order to broaden the use of data management
tools, we need a concerted effort to cross this structure chasm, by
importing the attractive properties of the unstructured world into the
structured one. As an initial effort in this direction, we introduce the
REVERE System, which offers several mechanisms for crossing the
structure chasm, and considers as its first application the chasm on
the WWW. REVERE includes three innovations: (1) a data creation
environment that entices people to structure data and enables them
to do it rapidly; (2) a data sharing environment, based on a peer
data management system, in which a web of data is created by es-
tablishing local mappings between schemas, and query answering is
done over the transitive closure of these mappings; (3) a novel set of
tools that are based on computing statistics over corpora of schemata
and structured data. In a sense, we are trying to adapt the key tech-
niques of the unstructured world, namely computing statistics over
text coropra, into the world of structured data. We sketch how statis-
tics computed over such corpora, which capture common term usage
patterns, can be used to create tools for assisting in schema and map-
ping development. The initial application of REVERE focuses on
creating a web of structured data from data that is usually stored in
HTML web pages (e.g., personal information, course information,
etc.).

1 Introduction and Motivation

Online information comes in two flavors: unstructured cor-
pora of text on one hand, and structured data managed by
databases and knowledge bases on the other. These two dif-
ferent kinds of data lead to very different authoring, search
and sharing paradigms. In the first, search is based on key-
words and answers are ranked according to relevance. In the
second, search is based on queries in a formal language (e.g.,
SQL), and all the answers returned for the query are correct
according to the underlying semantics of the system. In the
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U-WORLD of unstructured data, authoring data is straightfor-
ward. In contrast, in the S-WORLD of structured data, author-
ing data is a conceptual effort that requires technical expertise
and substantial up-front effort; the author is required to pro-
vide a comprehensive structure (i.e., schema) of the domain
before entering data.

This paper focuses on the profound difference between
the U-WORLD and the S-WORLD: we argue that there is a
structure chasm between these two worlds. Crossing this
structure chasm means introducing technology that imports
some of the attractive properties of the U-WORLD into the S-
WORLD, facilitating the creation of large-scale data sharing
systems. Our first goal is to try to place the problem of cross-
ing the chasm prominently in the data management commu-
nity’s agenda. While many research efforts have addressed
specific aspects of the problem, we introduce a paradigm that
places these efforts in context. Our second goal, which occu-
pies the bulk of the paper, is to provide a set of mechanisms
that address different aspects of crossing the chasm. These
mechanisms are embodied in the REVERE System, which fo-
cuses on the chasm present on the World Wide Web.

1.1 The Structure Chasm

We begin by discussing the key differences between the U-
WORLD and S-WORLD in more detail.

1. Authoring: in the U-WORLD, authoring is conceptually
straightforward. It is a matter of writing coherent natural lan-
guage text. In the S-WORLD, authoring is much more com-
plex. One needs to first conceptually organize the data into a
schema (or some domain model in a knowledge representa-
tion language), before any data can be entered. Designing the
schema (even ignoring its physical aspects) is a major under-
taking in any real-world domain. Many potential customers
of S-WORLD tools are lost immediately: they do not want to
or simply cannot create a model of their domain. Those who
proceed must invest a significant amount of effort, and they
want some return on their investment.

2. Querying: in the U-WORLD, a user need not know much in
order to query a collection of data. A set of keywords suffices,
and even if those are not the exact words used by the authors,
the system will typically still find relevant documents using
techniques such as stemming. In the S-WORLD, a user needs
to know the precise schema of the data she wishes to query —
otherwise, the query will fail. There is no graceful degrada-
tion: if a query is not completely appropriate for the schema,



the user will get no answers. This means that a user needs
to understand how someone else structured the data, which is
often a difficult task.

3. Sensitivity to change: the U-WORLD is relatively insen-
sitive to change. If an author rewords phrases in a document
or adds to them, the user does not need to change his queries.
In contrast, in the S-WORLD, certain changes to the schema
of the data may completely invalidate the queries running
against the system. In many cases, this will require signifi-
cant changes to applications using the database. Again, there
is no graceful degradation here: the S-WORLD is brittle in this
sense.

4. Ease of sharing data: as a consequence of the difficulties
in authoring and querying data, sharing and integrating data is
very challenging in the S-WORLD. In the U-WORLD all doc-
uments can simply be combined within the same corpus (or
indexed by the same search engine), and they can be queried
uniformly. In the S-WORLD, because of different domains
and tastes in schema design, different data sources are un-
likely to use the same schema constructs to represent the same
concepts. Thus we must mediate between different schemas
(or ontologies): we need to define relationships between data
providers and map queries back and forth between them. This
is a major effort and typically requires an understanding of
both schemas.

5. Accuracy of answers: on the flip side, we can pose much
richer queries in the S-WORLD, and the answers returned are
exact. The semantics of the underlying system defines a Boolean
condition for every candidate answer — it is either true or
false. This allows one to automate many tasks and build ap-
plications (e.g., managing bank accounts, reserving flights,
purchasing books on Amazon, and soon, perhaps, making an
appointment with the local dentist via web services). In the U-
WORLD, answers are approximations based on expected rele-
vance, and they are ultimately evaluated by a human. Hence,
they are useful only in applications where the answers go di-
rectly to a user who sifts through them “by hand.” The ap-
proximate nature of the U-WORLD does not mesh well with
our expectations from the S-WORLD — we are seldom happy
with approximate, incomplete, or incorrect answers. The vast
majority of the applications in the S-WORLD simply do not
tolerate such answers (and neither do the end users).

Generally, we find that the S-WORLD has more desirable
query capabilities, but the U-WORLD enables more rapid and
natural content creation, with an added benefit of a quick pay-
off for the content author. This is why the “average” user pro-
duces content in a text file, spreadsheet, or HTML document
— but typically avoids relational databases.

The points of this section come as no surprise to anyone
who has worked with structured data. The surprising thing is
how often these issues are forgotten, especially when people
try to design large-scale data sharing systems (e.g., the Se-
mantic Web [5]). The problems of creating and sharing struc-
tured data are extremely challenging and deeply ingrained in
the way people think of structured data. Even sharing struc-
tured information within a single, large organization, where
presumably everyone is working for the same cause, is known
to be a very difficult problem.

1.1.1 Crossing the Chasm

Our goal is to build tools for the S-WORLD that import the at-
tractive properties of the U-WORLD. If we can build tools that
make structured content creation, sharing, and maintenance
intuitive, fast, and rewarding, then users will be motivated to
provide the structural information needed by S-WORLD tools.
We do not expect that managing data in the S-WORLD will
ever be as easy as in the U-WORLD, but we feel that much
of the chasm is an artifact of current data management tools
and techniques, rather than the results of inherent differences
between the U-WORLD and S-WORLD. We note that crossing
the structure chasm does not mean merely combining struc-
tured and unstructured data in a single system: the two kinds
of data already coexist in documents (e.g., [3]), although their
coexistence is far from seamless: disparate operations are ap-
plied to the different parts.

To illustrate the benefits of crossing the chasm, we now
turn to a hypothetical example that runs through the paper.

Example 1.1 Imagine DElearning, an on-line education com-
pany, which leverages existing distance learning courses at
different universities and weaves them into its own educa-
tional programs. A customer of DElearning could take an
introductory ancient history course at Berkeley, followed by
an intermediate course at Cornell, and culminating in a grad-
uate seminar at Oxford. DElearning pays for the right to
send students to different courses, but charges its customers a
premium for creating coherent specialized programs that suit
their educational needs, schedule constraints, etc. DElearn-
ing’s strategy for dominating the global distance education
market is twofold. First, it plans to rapidly grow its inventory
of courses by making it easy for non-technical educators to
include their distance learning courses. Second, it seeks to
make tailoring a custom educational program easy for poten-
tial customers.

Note that neither the U-WORLD nor the S-WORLD offers
technology that can meet DElearning’s requirements. U-WORLD

technology makes joining DElearning easy for educators: they
would only need to point DElearning at the URLs for their
course web sites. However, searches of HTML pages by po-
tential customers are a tedious way to try and build a custom
curriculum. Customers would find that they need to manually
check requirements, text books, homework assignments, and
schedules, and they would have to do so across HTML pages
constructed using different languages, and vocabularies. S-
WORLD technology using a global mediated schema would
alleviate these problems, but only at the prohibitive up-front
cost of authoring a schema that would cover a large number
of universities and departments internationally. 2

1.2 Overview of REVERE

REVERE (Figure 1) is a highly distributed data management
system that addresses different aspects of the structure chasm
on the Web. Together, these components can be used to build
large-scale data sharing systems. Initially, the goal of RE-
VERE is to build a web of structured data from data that is
currently embedded in HTML pages, but which could be used
in numerous novel applications if it were available in struc-
tured form. REVERE consists of the following components.
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Figure 1: The REVERE system consists of tools for annotating or structuring existing data; a peer-to-peer data sharing environment in which
users can pose queries in any of the peers’ schemas, and receive answers from all peers; and tools for defining schemas and mappings, which
make use of a corpus of structured data to advise and assist the user. Points where the system interacts with a human are identified with a
person icon.

1. The MANGROVE data structuring component: The first
hurdle in building any large-scale data sharing system is to
structure the existing data. The top of Figure 1 illustrates the
MANGROVE component, which facilitates (and motivates) au-
thoring of semantically tagged content locally. In the case of
REVERE, much of the data that we focus on (e.g., contact
information, course scheduling, publications, etc.) already
resides in HTML pages, and the challenge is to entice users
to take the effort to structure the data. The key ideas underly-
ing MANGROVE are to try to replicate the principles behind
the Web that we believe made HTML authoring explosively
popular. Specifically, MANGROVE provides (1) a tool for eas-
ily annotating unstructured data without having to replicate it,
(2) a set of applications that provide instant gratification for
authors of structured data and therefore fuel the life cycle of
data creation, and (3) deferral of integrity constraints - these
are enforced later (to different degrees) by applications using
the data. In data-management terms, MANGROVE is address-
ing a scenario where the data comes before the schema. In
order to entice people to structure their data, we offer a set of
lightweight schemas to which they can map their data easily.

2. The Piazza peer-data management system: after data
has been locally structured, it needs to be shared with other
institutions. The second component of the system (bottom
of Figure 1) is a peer data management system (PDMS) that
enables data to be developed, mapped, and managed in a de-
centralized and ad hoc fashion. In a PDMS, peers can serve
as data providers, logical mediators, or mere query nodes.
Semantic mappings between disparate schemas are given lo-
cally between two (or a small set of) peers. Using these
semantic mappings transitively, peers can make use of rele-
vant data anywhere in the system. Consequently, queries in a
PDMS can be posed using the local schema of the peer, with-
out having to learn the schema of other peers. We note that
PDMSs are a natural step beyond data integration systems,
where queries are formulated via a global mediated schema,
and all peers must provide mappings from their schemas to
this mediated schema. In fact, a PDMS allows for build-
ing data-integration and warehousing like applications locally
where needed.

3. Tools using statistics over structures: the third compo-
nent of our system (right side of Figure 1) is a tool that fa-
cilitates the data authoring and sharing tasks sketched earlier.
This tool is based on a corpus of schemas and structured data,
and its goal is to extract from this corpus statistical informa-
tion on how terms are used in structured data. In a sense, we
are adapting the Information Retrieval paradigm, namely the
extraction of statistical information from text corpora, to the
S-WORLD. Our hypothesis is that tools built over a corpus of
structured data with associated statistics can alleviate some
of the key bottlenecks associated with distributed authoring,
querying and sharing of structured data. For example, while
authoring data, a corpus-tool can be used as an auto-complete
tool to suggest more complete schemas to a user. When map-
ping data from different peers in a PDMS, another tool can be
used to propose semantic mappings between schemas.

Deploying REVERE for DElearning: REVERE is ideally
suited as a platform for DElearning. It enables a potential
customer to inquire about courses, requirements, schedules
from any REVERE node. Moreover, the query can use the
familiar vocabulary of that node and rely on the system to
automatically translate the query (and results) appropriately.
REVERE also makes the addition of a new university or uni-
versity department into DElearning’s network as painless as
possible. Since any university already has a course web site,
all it must do is use the three components of REVERE to join
DElearning’s “inventory.” First, the university’s instructors
mark up (and periodically update) their course content us-
ing REVERE mark-up tool. Second, the university’s distance
learning specialist relies on the REVERE corpus to identify
peer universities whose schemas are “semantically close” to
his own. Finally, the specialist relies on the REVERE PDMS
to fully specify the exact pairwise mapping between the two
universities’ schemas. That is all that is required.

The next three sections detail each of the components of
REVERE.



2 Creation of Structured Data
One of the fundamental barriers to crossing the chasm, which
we address with the MANGROVE component of REVERE, is
the difficulty in enabling and enticing non-technical content
creators to author structured data. As stated earlier, the goal
of MANGROVE is to create a semantic web from data that is
already in HTML web pages. Dealing this data also raises a
challenge of scalability: how do we build a scalable system
that provides efficient access to a large collection of diverse
web pages. The principles underlying MANGROVE are that
(1) authors should not be required to duplicate data that al-
ready appears in HTML pages, (2) authoring data is local,
incremental, and distributed across many people, and (3) au-
thors will be motivated to structure their data en masse only
if they experience instant gratification from services or ap-
plications that consume the structured data and immediately
produce tangible results.

2.1 Annotating data in MANGROVE

The MANGROVE module enables people to mark-up their
data in its current place using a convenient graphical annota-
tion tool. The tool displays a rendered version of the HTML
document alongside a tree view of a schema according to
which the page is being annotated. Users highlight portions
of the HTML document, then annotate by choosing a cor-
responding tag name from the schema. When the user has
finished annotating her HTML document, she uses the tool to
publish her content, as we described shortly.

The annotations given by the user are embedded in the
HTML files but invisible to the browser. This method both
ensures backward compatibility with existing web pages and
eliminates inconsistency problems arising from having multi-
ple copies of the same data. Our annotation language is syn-
tactic sugar for basic RDF [29]. The reason we had to use a
new language is that RDF would require us to replicate all the
data in the HTML, rather than supporting in-place annotation.

Schema in MANGROVE: Users of MANGROVE are required
to adhere to one of the schemas provided by the MANGROVE

administrator at their organization. For instance, a university
or department would provide an appropriate domain-specific
schema for their users, which may be borrowed or adapted
from a schema developed elsewhere. (Section 4 describes
tools to assist with this schema creation.) This use of pre-
defined schemas provides simplicity and tractability for the
initial development of structured data and associated applica-
tions, while still allowing local variations in data expression.
Note, however, that MANGROVE users are only required to
use a set of standardized tag names (and their allowed nesting
structure); as we explain in Section 2.3, they are not required
to adhere to integrity constraints (which are often viewed as
part of a database schema). Hence, users are free to provide
partial, redundant, or conflicting information, which simpli-
fies the process of annotating HTML pages that were origi-
nally designed without an agreed-upon schema in mind.

Manual annotation vs. automated wrappers: it is impor-
tant to note that wrapper technology (e.g., [15, 38]) for au-
tomatically extracting structured data from HTML is not ad-
equate for MANGROVE. Wrappers rely on the existence of
many web pages with very similar structure, whereas in our

case, we have many pages with very differing structures. Sim-
ilarly, information extraction techniques (e.g., [44]) are inad-
equate here as they are based on domain-specific heuristics
and are often unreliable.

2.2 Instant Gratification Applications

In the U-WORLD, rendering a new HTML page on the browser
enables the user to immediately see the fruits of her labor.
Adding links enables her to immediately participate in a web
of data. MANGROVE tries to replicate these conditions for
editing S-WORLD data. Instant gratification is provided by
building a set of applications over MANGROVE that immedi-
ately show the user the value of structuring her data. For ex-
ample, an online department schedule is created based on the
annotations department members add to course home pages,
talk calendars, readings group pages, etc. Other applications
that we are constructing include a departmental paper database,
a “Who’s Who,” and an annotation-enabled search engine.
Thus, when a user explicitly publishes new data using RE-
VERE’s graphical tool, the applications are immediately up-
dated, and the user can see her changes take immediate effect.
Moreover, this tangible result encourages a feedback cycle
where users expand and tweak their documents to get the de-
sired data result, just as users modify traditional HTML doc-
uments to achieve the desired visual effects. This feedback
cycle would be crippled if changes relied upon periodic web
crawls before they took effect.

Storing annotations: creating the instant gratification ap-
plications raises another scale-up challenge. A system that
would access the HTML content at query time would be im-
practical. The reason is that the number of web pages is huge,
and there is no a priori way to prune access to irrelevant docu-
ments at query time. This is in contrast to data integration sys-
tems [20, 46, 23, 2, 31, 26, 16] and their subsequent commer-
cial incarnations that provide HTML gateways, where certain
data was left in HTML form, and accessed through a wrapper
at query time. Such systems assumed that the contents of the
web pages were described to the system, and hence most of
them could be pruned at query optimization time.

In MANGROVE, the annotations on web pages are stored
in a repository for querying and access by applications. For
ease of implementation, we currently store the data in a rela-
tional database using a simple graph representation. We use
the Jena [33] RDF-based querying system in order to pose
RDF-style queries. The database is typically updated the mo-
ment a user publishes new or revised content.

2.3 Treatment of Integrity Constraints

The third way in which MANGROVE mimics the authoring
conditions on the WWW is that it frees authors from con-
sidering integrity constraints. When a person edits her home
page to add her phone number, she does not need to check
whether her phone number appears elsewhere on the web,
and whether the number is consistent. In MANGROVE any
author is free to publish any data, regardless of what else is
published. Hence, the database created from the web pages
may have dirty data: it may be inconsistent; certain attributes
may have multiple values, where there should be only one;



there may even be wrong data that was put on some web page
maliciously.

The burden of cleaning up the data is passed to the ap-
plication using the data, based on the observation that any-
way different applications will have varying requirements for
data integrity. In some applications, clean data may not be
as important, possibly because users can tell easily whether
the answers they are receiving are correct or not (possibly by
following an additional hyperlink). For other applications, it
may be important that data be very consistent (e.g., that you
show only a single phone number), and there may be some
obvious heuristics on how to resolve conflicts. For example,
if the application is creating a phone directory of the depart-
ment’s faculty, then the application can be instructed to ex-
tract a phone number from the faculty’s web space, rather
than anywhere on the web. The source URL of the data is
stored in the database and can serve as an important resource
for cleaning up the data. In a sense, using the URL paral-
lels the operation of the web today, where users examine web
content and/or its apparent source to determine the useful-
ness of the content. Finally, in addition to dealing with in-
consistent data as necessary, one can also build special ap-
plications whose goal is to proactively find inconsistencies in
the database and notify the relevant authors. We note that de-
ferring constraint checking to the application is a significant
departure from today’s practice in data management systems.
However, it is necessary if we are going to allow large-scale
distributed authoring.

Example 2.1 Returning to our example, we note that data
about courses is typically stored in two places. The first is a
university database that contains the name of the instructor,
hour and location of the course and a course description. The
second, and more comprehensive source of data on a course,
is its web page. There one finds the instructor’s office hours,
TA information, textbook, assignments, slides, and all other
information that is specific to the particular course offering.
The first kind of data is already in structured form; MAN-
GROVE assists with the second collection, which tends to be
much less structured. Assume that Tsinghua University de-
sires to make it easier for students and staff to find relevant
course information. Tsinghua offers a very large number of
courses, and each course already has an existing web page
that provides descriptive and schedule information. While it
might be possible for the administrator to annotate the web
pages of each course, the large number of courses presents a
heavy initial and maintenance burden. Instead, the instruc-
tors annotate their own course web pages, aided by the MAN-
GROVE annotation tool. Instructors are motivated to anno-
tate (along with perhaps some encouragement from the uni-
versity!) by seeing their course added to the MANGROVE-
enabled applications. Because the annotated information is
part of the standard course page, the information will stay
current, and it is simple to maintain the proper annotations
when the course web page changes. 2

While this example focuses upon the annotation of web
pages that are constructed by hand, annotations could also be
easily added to pages that are generated from a database. Fur-
thermore, MANGROVE also enables some web pages that are
currently compiled by hand, such as department-wide course

summaries, to be dynamically generated in the spirit of sys-
tems like Strudel [17].

2.4 MANGROVE and the Chasm

The MANGROVE module takes several steps towards crossing
the structure chasm. First, it enables users to author structured
data in a familiar environment while leaving the data where
it already is. It provides a convenient tool for annotating
pre-existing data. The instant gratification applications en-
tice users to incrementally structure their data — even small
amounts of annotation can produce tangible results. As anno-
tations become common, more sophisticated applications will
arise to exploit them, which will in turn promote the creation
of more structured data.

3 Decentralized Data Sharing

In the previous section, we described how REVERE facilitates
authoring of local structured content. This section describes
how REVERE supports large scale data sharing of structured
content across multiple, disparate communities.

Most of the challenges in data sharing arise from one cen-
tral problem: different sources of data will naturally use dif-
ferent schemas to structure their information. This can arise
simply because one content developer has a different way of
conceptualizing a domain from others, or it can also arise be-
cause two different data sources have somewhat different do-
mains or requirements. In either case, combining data from
multiple schemas lies at the heart of sharing structured data.

A commonly proposed approach is the one used by data
warehousing [9] and data integration [20, 23, 2, 31, 26]: cre-
ate a common, mediated schema that encompasses the con-
cepts to be shared, and define mappings between each source’s
schema and the mediated schema. Users can query over the
individual data sources’ schemas, only getting answers from
the local data, or over the mediated schema, getting answers
from all sources with mappings. This approach works well
enough to be practical for many problems, but it scales poorly,
for two reasons. First, the mediated schema can be extremely
difficult and time-consuming to create, and also slow to evolve,
as all users of the system must agree how the data can be rep-
resented and consent to any future changes. Schema creation
at the global level is simply too heavyweight for quick data
sharing tasks. Second, data providers must learn a new (and
often entirely different) schema if they are to actually benefit
from the data sharing arrangement. They may not consider
the rewards to be worth the effort.

In REVERE, our goal is to provide mediation between schemas
in a decentralized, incremental, bottom-up fashion that does
not require global standardization, and which does not re-
quire users to learn a new schema. The goal of our peer
data management system (PDMS) component is to create an
ad hoc environment in which every participant can add new
structured data, new schemas, and new mappings between
schemas. Every user of the system can pose a query over
her preferred schema. The PDMS will find all data sources
related through this schema via the transitive closure of map-
pings, and it will use these sources to answer the query in the
user’s schema. Our approach addresses the problems cited
above, and it brings many U-WORLD-like capabilities to schema
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Figure 2: PDMS for our university example. The arrows corre-
spond to schema mappings between peers. No central mediated
schema is necessary. As long as the mapping graph is connected, any
peer can access data at any other peer by following schema mapping
“links”.

creation and mediation. We support incremental creation of
new schema concepts and new mappings, meaning that each
user can easily extend the system, without needing global
agreement. We allow users to continue to query using their
existing schemas, rather than forcing them to learn new ones,
meaning that data sharing becomes nearly automatic and trans-
parent once the appropriate mappings are established.

The natural extensibility of a PDMS can best be illustrated
by continuing with our running example. In Section 2, we
saw how individual university web sites could be annotated
with semantic information.
Example 3.1 Suppose that universities throughout the world
have adopted REVERE’s content authoring tools and anno-
tated their web pages. These universities also made use of
the REVERE query tools to support ad hoc queries from users,
and they developed dynamic web pages (e.g., university-wide
seminar calendar) from views defined over the structured data.

Now these universities want to join the DElearning net-
work of distance-education courses. Naturally, each univer-
sity used a different, independently evolved schema to mark
up its web pages. For the reasons cited above, creating a sin-
gle mediated schema for all universities is infeasible. Fur-
thermore, with a mediated schema it is hard to leverage the
work done by others — if the University of Rome, that has
a schema using terms in Italian, maps its schema to a me-
diated schema that uses terms in English, this does not help
the University of Trento. It would be much easier for Trento
to provide a mapping to the Rome schema and leverage their
previous mapping efforts.

Peer data management techniques are much more appro-
priate for this task, as shown in Figure 2. Initially, a few
universities define mappings among their schemas, such that
they are transitively connected. Now, as other universities
agree to join the coalition, they form mappings to the schema
most similar to theirs (e.g., Trento maps to Rome) — they
will be transitively connected to the others. The moment a
peer establishes mappings to other sources, it can pose queries
using its native schema, which will return answers from all
mapped peers. As a result, every participating university will
feature the full set of distance-education courses, without hav-
ing to make any significant modifications to its infrastructure
(beyond possibly extending its schema to include a few new
concepts such as the language in which each course is taught).
A student now can choose courses from all over the world, but
all interactions will be done directly through the local univer-
sity, in as transparent a fashion as possible. 2

The example illustrates an important characteristic about
mappings in a PDMS. One of the advantages of data inte-
gration systems is that the number of semantic mappings we
need to specify is only linear in the number of data sources.
We emphasize that in a PDMS, we do not need to specify
mappings between every pair of peers. Instead, every peer
specifies a mapping to the most convenient other peer(s). Hence,
the number of mappings may still be linear, but peers are not
forced to map to a single mediated schema.

The reason we refer to our system as a peer data man-
agement system is that it not only focuses on ad hoc, de-
centralized logical extensibility (in which every participant
can define its own schema and provide its own data), but we
couple that with a flexible, decentralized, peer-to-peer sys-
tem architecture. Peer-to-peer systems (popularized by file-
sharing systems such as Napster and Gnutella, but also the
topic of a significant body of research in distributed systems
(e.g., [11, 45, 41]) seek to provide a fully decentralized infras-
tructure in which every participant or peer provides resources
to the overall system, resulting in a system that scales well as
members are added; and every member can join or leave at
will.

Our initial PDMS implementation is a system called Pi-
azza [21, 25], and we now highlight some aspects of the Pi-
azza system architecture.

3.1 System Architecture

Piazza consists of an overlay network of peers connected via
the Internet. Each peer may provide new content and services
to the overall system, plus it may make use of the system by
posing queries. Piazza assumes an XML data model, since
this is general enough to encompass relational, hierarchical,
or semi-structured data, including marked up HTML pages.

A peer can provide any or all of three different types of
content: (1) new XML data (which we refer to as stored rela-
tions1 to emphasize the fact that they are materialized source
data), (2) a new logical schema that others can query or map
to (we refer to this as a peer schema or a set of peer relations),
and (3) new mappings between peer relations and source re-
lations or other peer schemas. A peer’s services may include
query answering (with respect to its peer schema, or even the
schema of another peer), materialization of views (to repli-
cate data for performance or reliability), and potentially stor-
age and processing of meta-information for coordinating the
overall PDMS.

3.1.1 Query Answering in a PDMS

The problem at the heart of REVERE’s PDMS is that of query
answering: every user query is posed over a logical peer schema
and must be rewritten so it ultimately refers only to stored re-
lations on the various peers.

In data integration, we find a two-tiered architecture, with
a mediated schema defined over a set of data sources. Two
classes of formalisms were developed to express relationships
between sources and the mediated schema (see [24]): global-
as-view, in which the mediated schema is defined as a set of

1Note that we use the term “relation” in a very loose sense, referring to
any flat or hierarchical structure, including XML.



Berkeley peer schema (XML DTD):
Element schedule(college*)
Element college(name, dept*)
Element dept(name, course*)
Element course(title, size)

MIT peer schema:
Element catalog(course*)
Element course(name, subject*)
Element subject(title, enrollment)

Figure 3: Example peer schemas (in XML DTD form) for Berkeley
and MIT.

queries over the data sources; and local-as-view, in which the
data sources are defined as views over the mediated schema.

In Piazza, we find two significant issues that need to be ad-
dressed. The first is that our mappings are specified between
small subsets of peers, and query answering must be done us-
ing the transitive closure of the mappings. The second is that
our mapping formalism needs to support querying over XML,
rather than conjunctive queries over relations.

Our initial work on query answering in a PDMS [25] ad-
dresses the first issue. We examined how the techniques used
for conjunctive queries in data integration can be combined
and extended to deal with the more general PDMS archi-
tecture. The key challenge in query answering is how to
make use of the mappings to answer a query. We must ex-
tend from the two-tier architecture of data integration to a
graph structure of interrelated mappings: a query should be
rewritten using sources reachable through the transitive clo-
sure of all mappings. However, mappings are defined “di-
rectionally” with query expressions (using the GLAV formal-
ism [19]), and a given user query may have to be evaluated
against the mapping in either the “forward” or “backward”
direction. This means that our query answering algorithm has
aspects of both global-as-view and local-as-view: it performs
query unfolding and query reformulation using views. In ad-
dition, our query answering algorithm is aided by heuristics
that prune redundant and irrelevant paths through the space
of mappings.

We are now developing a mapping language for relating
XML data, and a set of reformulation algorithms to operate
over them. (See Figure 3 for an example of peer schemas
for the DElearning example). Our mapping language begins
with a “template” defined from a peer’s schema; the peer’s
database administrator will annotate portions of this template
with query information defining how to extract the required
data from source relations or other peer schemas. This ap-
proach bears similarities to the XDR mapping representation
of Microsoft SQL Server [42] and the annotations used by
IBM’s XML Extender [49], but we actually use a subset of
XQuery to define the mappings from XML data to an XML
schema, rather than from relational data to an XML schema.
In Figure 4, we see an example of a mapping from Berkeley’s
peer schema to MIT’s schema. We have a preliminary version
(and implementation) of the mapping language, which sup-
ports hierarchical XML construction and limited path expres-
sions, but avoids most of the complex (and hard-to-reason-
about) features of XQuery; our goal is to keep query transla-
tion tractable but to support the most common language con-

<catalog>
<course> {$c = document("Berkeley.xml")/schedule

/college/dept}
<name> $c/name/text() </name>
<subject> { $s = $c/course }

<title> $s/title/text() </title>
<enrollment> $s/size/text() </enrollment>

</subject>
</course>

</catalog>

Figure 4: Berkeley-to-MIT schema mapping. The template
matches MIT’s schema. The brace-delimited annotations describe,
in query form, how variables (prefixed with dollar-signs) are bound
to values in the source document; each binding results in an instan-
tiation of the portion of the template with the annotation.

structs.

3.1.2 Peer-based Query Processing

The logical schema mapping and query translation facilities
discussed above would be sufficient to provide the decen-
tralized data sharing system we desire. One could imagine
building a central server that receives a query request made
over a particular schema, translates the query to reference
only source data, fetches the data, and processes the data ac-
cording to the query plan. However, this approach does not
make good use of the compute and storage resources available
across the peers within the PDMS, and it ultimately would be-
come a bottleneck. We would vastly prefer a more Web-like
environment in REVERE, in which each peer can receive and
process requests — and in which peers can also perform the
duties of cooperative web caches [51] and content distribution
networks like Akamai.

Thus, a major focus of research in the Piazza system is
on distributed query processing and data placement. Our ul-
timate goal is to materialize the best views at each peer to
allow answering queries most efficiently, given network con-
straints; and to distribute each query in the PDMS to the peer
that will provide the best performance. However, we must
also do this in an environment where the data sources are
subject to update at any point, and hence view updates can
become expensive.

Propagation of updates is also a major challenge in a PDMS:
we would prefer to make incremental updates versus simply
invalidating views and re-reading data. Piazza treats updates
as first-class citizens, as any other data source, in the form
of “updategrams” [36]. Updategrams on base data can be
combined to create updategrams for views. When a view is
recomputed on a Piazza node, the query optimizer decides
which updategrams to use in a cost-based fashion. Ultimately,
we want to support updating of data through views, extending
the techniques covered in [22].

3.2 Piazza and the Chasm

Piazza contributes to crossing the structure chasm by combin-
ing the ad hoc extensibility of the Web with the rich seman-
tics of database systems. The schema is not in one place any
longer — it is distributed across many peers and managed by
local relationships. In fact, there may not even be a global
consistent schema for the entire system.
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Figure 5: We propose the use of statistical information about struc-
tures to alleviate some of the key difficulties of the S-WORLD. The
technique is based on collecting corpora (perhaps domain-specific)
of structures, and computing a set of statistics on how terms are used
in structures. The statistics will be used in a set of general purpose
tools that are embedded in various applications.

4 Statistics over Structures
In the previous sections we presented the architecture of two
components of the REVERE system that ease the process of
authoring and sharing structured data. However, even with
these tools, significant design effort is required, e.g., in cre-
ating schemas appropriate for mark-up of data, and in cre-
ating the mappings that relate different peers’ schemas. In
this section, we describe a third component that will provide
intelligent support to the previously mentioned design tools,
thereby significantly reducing the tedium in authoring, query-
ing, and sharing data.

We propose to build for the S-WORLD the analog of one of
the most powerful techniques of the U-WORLD, namely the
statistical analysis of corpora. A number of techniques in the
U-WORLD are based on statistical information on word usage
and occurrence patterns in large corpora of text documents.
For example, consider the popular TF/IDF [43] (Term Fre-
quency/Inverse Document Frequency) measure. This mea-
sure is commonly used to decide the relevance of a document
to a keyword query: a document is considered relevant if the
number of occurrences of the keyword in the document is
statistically significant w.r.t. the number of appearances in an
average document. Furthermore, co-occurrences of words in
multiple documents can be used to infer the relevance of one
word to another. Such document corpora are compiled for
specific domains, thereby exploiting the special domain char-
acteristics of word usage.

Our goal is to build corpora of structured data (see Fig-
ure 5) from which we will be able to extract extensive statis-
tics about how data is structured. Based on these statistics,
we will build a set of general purpose tools to assist structur-
ing and mapping applications.

4.1 Corpus of Structures

Each corpus will include:

� forms of schema information: relational, OO and XML
schemas (possibly including their associated integrity con-
straints), DTDs, knowledge-base terminologies (ontolo-
gies),

� queries over these schemas and ontologies,

� known mappings between schemas in the corpus,

� actual data: example tables, XML documents, ground
facts of a knowledge base,

� relevant metadata that is associated with structured data
(e.g., database statistics).

It is important to emphasize that a corpus is not expected
to be a coherent universal database in the spirit of the Cyc
knowledge base [30], which attempts to model all common-
sense knowledge. It is just a collection of disparate structures.
We expect that the schema information of the corpus will be
stored and accessed using tools for model management [7],
which provides a basic set of operations for manipulating
models of data (e.g., schemas, XML DTDs). However, our
goals with the corpus go beyond those of model management
– we emphasize the collection of statistical information, and
the tools that can be built with these statistics.

4.2 The Statistics

Given the contents of the corpus, there is a plethora of statis-
tics that can be maintained over it. Finding the most effective
types of statistics to compute for the corpus is a long term
research challenge. In what follows we describe the types of
statistics we initially plan to compute and maintain in the cor-
pus. We consider two kinds of statistics: basic and composite.

4.2.1 Basic Statistics

Basic statistics are associated with words in the English (or
for that matter, any) language. Informally, these statistics in-
dicate how a word is used in different roles in structured data.
For each of these statistics, we maintain different versions,
depending on whether we take into consideration word stem-
ming, synonym tables, inter-language dictionaries, or any com-
bination of these three; the basic statistics include:
Term usage: How frequently the term is used as a relation
name, attribute name, or in data (both as a percent of all of its
uses and as a percent of structures in the corpus).
Co-occurring schema elements: For each of the different
uses of a term, which relation names and attributes tend to
appear with it? What tend to be the names of related tables
and their attribute names? What tend to be the join predicates
on pairs of tables? Are there clusters of attribute names that
appear in conjunction? Are there mutually exclusive uses of
attribute names?
Similar names: For each of the uses of a term, which other
words tend to be used with similar statistical characteristics?

4.2.2 Composite Statistics

Composite statistics are similar to the ones above, but main-
tained about partial structures. Examples of partial structures
are sets of data instances, relations with associated attribute
names, a relation with some data (possibly with missing val-
ues).

Clearly, a key challenge we face is that the number of par-
tial structures is virtually infinite, and we will not be able to
maintain all possible statistics. Hence, we will maintain only



statistics on partial structures that appear frequently (discov-
ered using techniques such as [50, 18, 39]), and estimate the
statistics for other partial structures.

4.3 The Tools

We now describe two interactive tools that will be built using
a corpus and associated statistics and used to support compo-
nents of REVERE.

4.3.1 Authoring Structured Data

The first tool, DESIGNADVISOR, assists with the authoring
of structured data, and will be used in MANGROVE. By au-
thoring, we mean any kind of user activity whose end result
is a set of structured data.

The idea of DESIGNADVISOR is illustrated in our distance
learning example. Suppose the University of Washington is
planning to join the DELearning consortium. A coordinator
is assigned the task of creating the schema that will be used
to publish course offerings. While this would have been a
daunting task, the coordinator now proceeds as follows. First,
she creates a schema fragment and some data about course
names, contents, and instructors. Then, she uses the DES-
IGNADVISOR to propose extensions to the schema using the
corpus. Note that in this case, the set of schemas already in
REVERE is an excellent starting point for a useful corpus.

DESIGNADVISOR uses the corpus and its statistics and
returns a ranked list of similar schemas. The coordinator
chooses a schema from the list and modifies it further to fit
the local context. The chosen schema may not completely
model what the coordinator requires. For example, it may not
model information about teaching assistants (TAs). So the
coordinator proceeds to add several attributes such as name
and contact-phone to the course table. At this point, DESIG-
NADVISOR, which has been monitoring the coordinator’s ac-
tions, steps in and tells the coordinator that in similar schemas
at most other universities, TA information has been modeled
in a table separate from the course table. The coordinator
takes this input and modifies the schema design accordingly.

More concretely, DESIGNADVISOR performs the follow-
ing function. It is given a fragment of a database, i.e., a pair
(S;D), where S is a partial schema and D is a (possibly
empty) set of data that conforms to S. The tool returns a
ranked set of schemas S 0, where for each S 0 there is a map-
ping of S into S 0. That is, S 0 models a superset of the at-
tributes and relations in S, but may also modify the way S

models the domain. The tool may create the mappings by
employing the SCHEMAMATCHER tool which we describe
shortly.

DESIGNADVISOR ranks the schemas in the proposed set
in decreasing order of their similarity. A general template for
a similarity function can be defined as follows:

sim(S0; (S;D)) = � � fit(S0; S;D) + � � preference(S0);

where � and � are weights on the following terms:

� fit(S0; S;D) measures the basic fit for S and S 0 (i.e.,
do S and S 0 model the same domains), and is currently
defined to be the ratio between the total number of map-
pings betweenS 0 andS and the total number of elements
of S 0 and S.

� preference(S0) incorporates user preference criteria, such
as whether S 0 is commonly used, conforms to a particu-
lar set of schemas, or is relatively concise and minimal.

The benefits of a tool such as DESIGNADVISOR are:

1. time savings: similar to other auto-compete features, the
author can begin to design the schema and immediately
be proposed a complete (or near complete) one,

2. better design: instead of the user having to design (and
redesign) the schema, the proposed schema may already
be one that is known to be well designed, and

3. conformance to standards: the system may be able to
guide the user into schemas that conform to standards or
otherwise commonly used schemas.

Note that the last case would have to be reflected in the
ranking criteria that DESIGNADVISOR uses.

4.3.2 Assisting Schema Matching

The second tool, MATCHINGADVISOR, assists local coor-
dinators in mapping their schemas to others, and hence fa-
cilitates creation of the semantic mappings that underlie a
PDMS. The general problem of schema matching has recently
attracted significant interest in both the DB and AI commu-
nities (see [40] for a recent survey). Schema matching is
also one of the proposed operations in model management,
and hence our MATCHINGADVISOR tool can be viewed as
another (yet very different) type of semi-automatic tool for
schema matching.

The goal of schema matching is the following. Given two
schemas, S1 and S2, we want a mapping M that relates the
concepts of S1 and S2. There are several variants to map-
pings. In the simple case, a mapping only provides corre-
spondences between terms in S1 and terms in S2, whereas
in more complex cases, the mapping will include query ex-
pressions that enable mapping the data underlying S1 to S2
or vice versa. Note that there may be only a partial match be-
tween S1 and S2, and hence some terms in one may not have
corresponding terms in the other. In addition, inputs to the
schema mapping problem may also include data instances of
one or both schemas.

We illustrate one way of building MATCHINGADVISOR,
which extends our previous work on schema matching in the
LSD [13] and GLUE [14] Systems. We first briefly recall the
main ideas in LSD.

LSD considered the schema matching problem in the con-
text of data integration, where the system exposes a single
mediated schema, and we need to provide mappings from the
mediated schema to each of the data sources. The idea in LSD
was that the first few data sources be manually mapped to the
mediated schema. Based on this training, the system should
be able to predict mappings for subsequent data sources. To
do this, LSD uses the information in the manual mappings to
learn a classifier for every element in the mediated schema
(in our case, a classifier for every tag in the mediated XML
DTD). The system uses a multi-strategy learning method that
can employ multiple learners, thereby having the ability to
learn from different kinds of information in the input (e.g.,



values of the data instances, names of attributes, proximity of
attributes, structure of the schema, etc). The results of apply-
ing LSD on some real-world domain show matching accura-
cies in the 70%-90% range.

The classifiers computed by LSD actually encode a statis-
tic for a composite structure that includes the set of values in
a column and the column name. Given such a structure for
a new column in a data source, the classifiers return the like-
lihood that the structure corresponds to a mediated schema
element.

We can use these classifiers to build MATCHINGADVI-
SOR, which finds a mapping between two previously unseen
schemas. Given two schemas, S1 and S2, we apply the clas-
sifiers in the corpus to their elements respectively, and find
correlations in the predictions for elements of S1 and S2. For
example, if we find that all (or most) of the classifiers had the
same prediction on element s1 2 S1 and s2 2 S2, then we
may hypothesize that s1 matches s2.

An alternative way to use the corpus for schema matching
is via the DESIGNADVISOR tool. The idea here would be to
find two example schemas in the corpus that are deemed by
DESIGNADVISOR to be similar to S1 and S2, respectively,
and then use mappings between those schemas within the cor-
pus to map between S1 and S2. In general, the corpus and its
associated statistics act as a domain expert because numerous
existing schemas and schema fragments might be similar to
the schemas being matched. This domain expert can be used
in a variety of ways to facilitate schema mappings.

4.4 Corpus and the Chasm

Exploiting statistics over structures holds great potential in
simplifying many of the hardest activities involved in manag-
ing structured data. As discussed, the corpus and its statistics
can be used to facilitate authoring structured data (and hence
useful in MANGROVE) and discovering semantic mappings
between different structures (and therefore useful in creating
mappings for Piazza).

Another area where the corpus is relevant to the chasm
is in facilitating the querying of unfamiliar data. Specifi-
cally, a user should be able to access a database (or set of
databases), the schema of which she does not know, and pose
a query using her own terminology (or possibly using natu-
ral language). One can imagine a tool that uses the corpus
to propose reformulations of the user’s query that are well
formed w.r.t. the schema at hand. The tool may propose a
few such queries (possibly with example answers), and let
the user choose among them or refine them.

5 Related Work
While we believe that the problem of crossing the structure
chasm has not previously been addressed in a comprehensive
fashion, our line of research clearly builds upon a great deal
of work from the database, AI, and information retrieval com-
munities. Because of space limitations, we can only cover
these works very briefly.

Clearly, one approach to crossing the chasm is to leave the
data unstructured and try to answer S-WORLD queries over it.
Answering queries directly over unstructured data is typically
very difficult, as it requires natural-language understanding

techniques and unambiguous text, but it may work for certain
cases, e.g., as in the natural language query answering system
of [28].

The current approach to building the Semantic Web [5]
is based on annotating the data with ontologies. Ontologies,
written in an expressive knowledge representation language
(e.g., OWL [12]), enhance the understanding of the data, and
therefore facilitate sharing and integration. In contrast, me-
diation has received very little attention in the Semantic Web
community.

The problem of querying structured data, but allowing for
approximations or ranked results in the query, has been quite
well-studied in the database community (see [8] for a survey
of a recent workshop on flexible query answering). Exam-
ples include query relaxation [10], cooperative query answer-
ing [35], returning approximate and imprecise answers [1,
37], and extensions of SQL or XQuery to support ranked
queries over unstructured text fields or elements (e.g., IBM’s
DB2 Text Extender and [48]). The semantics of these query
languages still tend to be biased towards querying structure,
but the answers are no longer guaranteed to be correct.

Originally, semi-structured data was touted as the solution
to flexible construction of structured data. XML, the most
prevalent form of semi-structured data, was intended to ease
authoring of data: one did not need to design the schema
before entering the data. However, both the uses of XML
and the tools and techniques developed for managing XML
in recent years have focused exclusively on S-WORLD issues.
For instance, XML Schema has been developed to provide
richer semantics to XML documents; XQuery and other lan-
guages for querying semi-structured data or Web hyperlink
structure [34] provide some more flexibility in querying: they
support irregularities in the structure, but are still essentially
S-WORLD languages. XML is primarily used to exchange
data that is encodable in an S-WORLD formalism. The U-
WORLD uses of XML mostly relate to using it as a format for
exchanging marked-up text documents (e.g., reports or news
articles).

The idea of mediating between different databases using
local semantic relationships is not new. Federated databases
and cooperative databases have used the notion of inter-schema
dependencies to define semantic relationships between databases
in a federation (e.g., [32]). However, they assumed that each
database in the federation stored data, and hence the focus
was on mapping between the stored relations in the federa-
tion. Our emphasis is on supporting schema mediation among
large numbers of peers, so we need to be able to map both
relationships among stored relations and among conceptual
relations (i.e., extensional vs. intentional relations), and we
must be able to quickly chain through multiple peer descrip-
tions in order to locate data relevant to a query.

In [21] we first described some of the challenges involved
in building a PDMS. The focus there was on intelligent data
placement, a technique for materializing views at different
points in the network in order to improve performance and
availability. In [27] the authors study a variant of the data
placement problem, focusing on intelligently caching and reusing
queries in an OLAP environment. An alternative language for
mediating between peers appears in [6].

In building the corpus-based tools, we expect that a vari-



ety of techniques that have been developed for summarizing,
mining, and clustering XML [50, 39, 47] will be useful for
computing the statistics associated with the corpus. In addi-
tion, the idea of using prior mappings to aid in building new
ones has been used in [40, 4, 13].

6 Conclusion

At first glance, the structure chasm between the U-WORLD

and the S-WORLD seems all-but-bridgeable as a result of the
inherent differences between the two worlds — after all, in
the U-WORLD, we have insufficient semantic information to
provide precise and complete answers, enforce integrity con-
straints, or combine information in meaningful ways. While
this is indeed true, the chasm has actually been widened by
tools on the structured data management side, which have
made content creation difficult.

Our focus in crossing the structure chasm has been on re-
thinking the design of S-WORLD tools for content creation
and data sharing. We have presented a detailed path for cross-
ing the chasm by developing the REVERE data system, which
facilitates the authoring, querying and sharing of data in the
S-WORLD. In REVERE, we have begun building a content
annotation tool that makes marking up text easy and reward-
ing, we have developed a peer data management system that
mediates between different schemas while providing the user
with a familiar schema in which they can pose queries, and
we have proposed the use of tools that exploit statistics over
corpora of structures to advise and assist schema and map-
ping designers. Together, these three components of REVERE

make it much easier to convert the vast wealth of unstructured
content into structured form. Moreover, REVERE enables in-
cremental, bottom-up structuring of data rather than requir-
ing the massive, up-front effort of creating a single, universal
schema as a prelude to any data sharing.

While we believe that REVERE is an important step in
crossing the chasm, it is also clear to us that the bigger prob-
lem — building data management tools that effectively han-
dle the vast body of real-world data, which lies outside the
database — is an immense one that requires significant con-
tributions by our entire community (as well as related com-
munities). We would like to conclude by urging others in the
database community to take a fresh look at the problems of
the chasm, and to see where techniques from the structured
world can be extended to be more broadly applicable.
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