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We present a probabilistic relational algebra (PRA) which is a generalization of standard
relational algebra. In PRA, tuples are assigned probabilistic weights giving the probability
that a tuple belongs to a relation. Based on intensional semantics, the tuple weights of the
result of a PRA expression always conform to the underlying probabilistic model. We also
show for which expressions extensional semantics yields the same results. Furthermore, we
discuss complexity issues and indicate possibilities for optimization. With regard to databases,
the approach allows for representing imprecise attribute values, whereas for information
retrieval, probabilistic document indexing and probabilistic search term weighting can be
modeled. We introduce the concept of vague predicates which yield probabilistic weights
instead of Boolean values, thus allowing for queries with vague selection conditions. With
these features, PRA implements uncertainty and vagueness in combination with the relational
model.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—retrieval models; H.2.1 [Database Management]: Logical De-
sign—data models

General Terms: Theory

Additional Key Words and Phrases: Hypertext retrieval, imprecise data, logical retrieval
model, probabilistic retrieval, relational data model, uncertain data, vague predicates

1. INTRODUCTION

Imprecision in databases is a topic which is getting growing attention. New
applications of database management systems (DBMS), like technical or
scientific databases, cannot be handled properly without caring for the
intrinsic imprecision of the data. Especially for the integration of informa-
tion retrieval (IR) and database systems, methods for dealing with uncer-
tainty applied in IR have to be included in an integrated system as well.
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For this reason, there is a need for data models which can cope with
uncertainty.

In the logical view on databases, computing the answer to a query g from
a database means to find all objects o for which the logical formula ¢ < o is
true. If one would take the same approach to document retrieval, then a
document d should be retrieved in response to a query if ¢ < d can be
shown to be true. In fact, this is exactly what Boolean retrieval does.
However, since IR has to deal with vagueness and imprecision, this
approach is not adequate. For this reason, it is argued by van Rijsbergen
[1986] that IR should be regarded as an uncertain inference process
instead. By using probability theory as basis, van Rijsbergen views docu-
ment retrieval as being equivalent to computing the probability P(q¢ < d)
for a document d.

Comparing the two types of inference, one can see that uncertain
inference used in IR is just a generalization of the inference mechanism
employed in database models. So an integration of IR and databases on the
logical level seems to be feasible. In order to arrive at a model which can
both be implemented and which is applicable in practice, one has to take a
data model from the database field and generalize it such that it also
comprises probabilistic inference.

In this article, we present a probabilistic relational model. The basic idea
of this model is to assign probabilistic weights to tuples, where the weight
of a tuple gives the probability that the tuple belongs to the relation. There
is a twofold benefit from this approach. First, uncertain data can be stored
in the database. Second, the relation computed as an answer to a query
reflects the underlying uncertainty of each tuple in its weight; these tuples
can be ranked according to decreasing weights, thus yielding the most
certain answers at the top of the list.

The new model is a generalization of the standard relational model. We
regard probabilistic relations as generalizations of ordinary (deterministic)
relations. In our model, deterministic relations are treated as relations
allowing only binary tuple weights (0 or 1), whereas in probabilistic
relations, a tuple weight may take any value between 0 and 1. By
redefining the basic operators of relational algebra in order to cope with the
weights (and their probabilistic interpretation), the laws of relational
algebra remain valid, and we get a probabilistic relational algebra (PRA).
This way, we can use the full power of relational algebra. If a database
contains deterministic relations only, our model yields the same result as
standard relational algebra (RA). However, in the presence of imprecise
data, the answer to a query may contain tuples with nonbinary weights. If
ranking is applied, the “certain” tuples will come out first, followed by the
uncertain answers.

In order to handle the probabilistic weights in a proper way, our model is
based on intensional semantics (see next section). This is achieved by using
canonical propositional formulas as a semantics: each tuple of a relation is
accompanied by a so-called event expression, and the PRA operators also
manipulate these expressions. The issue of associating probabilities with
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these expressions is dealt with separately, namely by first assigning
probabilities to the expressions occurring in base relations. Then the
expressions in derived relations describe their dependence on the probabil-
ities of the base relations. Using this information, the probabilities of
derived relations are computed.

In the remainder of this article, we first describe the motivation that
leads to our model. Then we present the probabilistic algebra by giving the
basic definitions, followed by a description of the relational operators. In
Section 4, we discuss the process of computing the tuple weights, its
efficiency, and possible optimizations. Section 5 shows how imprecise
attribute values are handled by the probabilistic algebra. As an extension
to the basic algebra, vague predicates are presented in Section 6. Imple-
mentation issues are described in Section 7. The relationship of our
approach to current IR systems and other approaches for imprecision in
databases and for the integration of IR and database systems are discussed
in Section 8.

2. MOTIVATION

One of the major applications for uncertainty handling in a DBMS is the
integration of database and IR systems.

Current commercial IR systems offer very little support for data model-
ing and query languages of limited expressiveness (and most experimental
systems are even worse on these points). As users ask for additional
functions, ad hoc extensions of the query language are developed, without a
solid theoretical foundation. Furthermore, security issues (when certain
users are allowed to view only parts of the database) can hardly be handled
by current systems. So it seems to be attractive to apply models developed
in the area of database systems to solve these problems. In addition,
standalone IR systems have a very limited application range. Usually,
retrieval is only one of several tasks which an information system has to
perform. For example, in a lending library, a close integration of IR with
the processing of the lendings is required (giving the user the information
whether or not a book is currently available); for the latter, typical DBMS
functions are required.

On the other hand, there are more and more database applications which
have to cope with text, too. However, even if a DBMS provides some specific
functions for text retrieval, these functions do not take into account the
intrinsic uncertainty and vagueness of text retrieval. In the field of IR,
several types of models have been developed for coping with this problem,
and extensive evaluations have demonstrated the feasability of these
approaches. Among them, probabilistic IR models offer the advantage of
both solid theoretical foundation [Fuhr 1992b] and good retrieval perfor-
mance [Harman 1995]. For this reason, a combination of probabilistic IR
with a data model like the relational model seems to be a promising goal.
But a simple coupling of a standard DBMS with a probabilistic IR system
(e.g., such as in Gu et al. [1993]) suffers from the fact that the probabilistic
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Index B DocNo Term
0.8 1 IR
0.7 1 DB DBB | DocNo
05 5 DB 07 1
' 0.5 3
0.8 3 OOP 0.8 5
0.9 4 IR ’
0.4 4 Al
0.8 5 DB
0.3 5 OOP

Fig. 1. Relations representing document indexing and retrieval.

weights produced by the IR component cannot be exploited by a DBMS
which is based on Boolean logic.

The basic idea of our model is to extend the relational model in such a
way that it can handle probabilistic weights required for performing IR. In
document indexing, terms are assigned weights with respect to the docu-
ments in which they occur (see relation INDEX in Figure 1). There are a
number of very effective methods for computing these indexing weights
automatically (e.g., Salton and Buckley [1988] and Fuhr and Buckley
[1991]). The weights are taken into account in retrieval, where the proba-
bility of relevance of a document with respect to the current query is
estimated as a function of the indexing weights of the terms involved. As a
simple example, consider a query for documents about databases expressed
as lpoeno(orerM-—pp(INDEX)), where o denotes selection and where I1
stands for projection. The result is shown as relation DB in Figure 1. It is
typical for IR queries that the answer is not just a set of objects: due to the
intrinsic uncertainty of IR, the answer should be at least a ranked list of
objects. In addition, probabilistic IR models offer an interpretation of the
weights that leads to the ranking, namely as estimates of the probability
that the object implies the query (which, in turn, can be related to the
probability of relevance [Fuhr 1992b]).

Here we have modeled both the indexing weights and the weights of the
documents for the query as tuple weights in a relation. Whereas one could
imagine other methods of storing indexing weights in a relation (e.g., as an
additional attribute), this would not be adequate for modeling the weights
of answers to a query. As in the standard relational model, where the
answer to a query is always again a relation, we would like to have the
same property for our new model. For this reason, we generalize the
concept of a relation to probabilistic relations, where each tuple is assigned
a weight indicating the probability that the tuple belongs to the relation
(ordinary relations can be regarded as a special case where only binary
weights may be assigned). So any expression in our probabilistic relational
algebra yields a probabilistic relation. This approach contrasts with earlier
work on probabilistic data models (e.g., Barbara et al. [1992]) or data
models for the integration of IR and database systems (e.g., Schek and
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Pistor [1982]), where weights cannot be assigned to a tuple as a whole,
since these models are still based on Boolean logic.

Fuhr [1993] describes a probabilistic relational model which is based on
extensional semantics. This means that probabilistic weights are attached
to tuples; when applying an operator of the relational algebra, the weights
of the result tuples are computed as a function of the tuple weights in the
argument relation(s). A similar model based on Dempster-Shafer theory
with extensional semantics is proposed by Lee [1992]. Both approaches
suffer from the fact that the result coincides with the underlying theory for
simple relational expressions only. As a simple example, consider a query
asking for documents either about DB or IR, but not about both. If we
would first compute a relation IR similar to DB from above, the query could
be expressed as (DB — IR) U (IR — DB). However, given no additional
information, one would have to assume that the two arguments of the
union operator are stochastically independent of each other, i.e., for all
tuples u we have

P((n,eDB-IR)\N(pn€IR -DB)) =P(ne DB —-1IR) - P(n€ IR — DB).

This is not the case here, since the probability on the left-hand side of this
equation equals O (the arguments represent disjoint events). In a similar
way, the intersection DB N IR cannot be computed as DB — (DB — IR). For
some special cases, one might think of a simple solution, e.g., an additional
parameter indicating the dependence of the two arguments as described by
Lee [1992]. However, it is easy to construct examples where the (in)depen-
dence of the relational arguments varies from tuple to tuple (e.g., see
Figure 8), so we need a different approach to solve more general cases
properly.

Probabilistic reasoning based on intensional semantics overcomes the
difficulties described before. Here the inference process keeps track of the
basic events and their dependencies. In PRA, tuple weights are computed
from probabilities of the underlying basic events, i.e., tuples of the base
relations. For example, assume that db; and ir; represent the events that
document 1 is about DB and IR, respectively. When processing the expres-
sion (DB — IR) U (IR — DB), the system would form the corresponding
Boolean combination of the underlying basic events, which yields (db; /\
iry) \/ (iry /\ db;). Given this relationship to the basic events, the correct
probability of the result can be computed.

Pearl [1988, pp. 1-14] compares intensional and extensional semantics
for models dealing with uncertainty and identifies several flaws of exten-
sional semantics. For the application described here, the problems are due
to “improper treatment of correlated sources of evidence” (as shown in the
examples above). As further pointed out by Pearl, extensional semantics
yields results that are consistent with probability theory for tree-like
structures of inference only. Relational algebra expressions often violate
the tree structure, so extensional semantics is not appropriate (but see the
discussion about simplifying the computation of the probabilities in Section
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4). With intensional semantics, however, we can develop a probabilistic
relational algebra which always yields correct results (according to proba-
bility theory).

3. DESCRIPTION OF THE ALGEBRA

In the following, we first describe the concepts of a probabilistic relation
and a probabilistic database, and then we define the operators of the
probabilistic relational algebra.

3.1 Basic Definitions

The elementary concepts of domains, attributes, and tuples are the same as
in relational algebra. Our formal definitions are similar to the definitions
for RA as presented by Vossen [1991], interpreting an attribute value as
being a mapping from a tuple into the domain of the corresponding
attribute.’

Definition 3.1.1. A domain D is a finite set of atomic values, for which
the predicates = and # are defined. For an ordered domain, in addition
the predicates <, =, =, and > are defined. Let 9 denote the set of all
domains.

Definition 3.1.2. Let « denote the set of all attributes. The attribute
domain is a mapping dom : sl — %. For a set A of attributes, let dom(A) =
Uxeadom(X).

Definition 3.1.3. For a set A of attributes, a tuple over A is a total and
injective mapping p : A — dom(A), for which the following holds:

( X €A wX) € dom(X).

Let Tup(A) denote the set of all tuples over A, and let Tup(@) := {o}.

The injectivity assumption assures that Tup(A) is indeed a set (without
duplicate elements). Tup(@) is defined only in order to simplify the defini-
tions for imprecise attributes (see Section 5), where o denotes a specific,
unique tuple that is the only element of Tup(0).

Since a tuple is an injective mapping, we can use its inverse for mapping
between different sets of tuples:

Definition 3.1.4. Let A denote a set of attributes and ?(A) its powerset.
Then we define a (nameless) mapping Tup(A) X P(A) = Ugca Tup(B)
denoted as w[B], for which the following holds:

wBl=vou€ Tup(A)NveTup(B)NBCAN( Xe€BuX) =rvX)).

IThe alternate interpretation is to identify attributes with specific positions in a tuple of
values. However, this approach would lead to certain difficulties in subsequent definitions.
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The schema of a probabilistic relation is the same as that of an ordinary
relation. We do not consider keys of relations or other types of integrity
constraints here. However, constructs for defining semantic integrity can
simply be added to the model presented in this article.

Definition 3.1.5. A probabilistic relation schema R is a set of at-
tributes A.

Now we introduce probabilistic concepts. The basic idea of our approach
is to associate each tuple of a probabilistic relation with a probabilistic
event. A probabilistic relation corresponds to an ordinary relation where
the membership of a single tuple in this relation is affected by a probabilis-
tic event. If the event is true, the tuple belongs to the relation; otherwise it
does not belong to the relation. For each event, the probability of being true
must be given. Special events are T which always has the value true and L
always being false.

In terms of the PRA, deterministic relational algebra is a special case
where only the events T and 1 may be assigned to tuples from Tup(A);
thus, in RA a relation comprises the set of tuples being assigned T.

We distinguish between basic and complex events. Tuples of the base
relations in the database are associated with basic events, which are
identified by means of an event key. When new relations are derived from
the base relations by means of PRA operators, each tuple in a derived
relation depends on certain base tuples from which it was derived. For
example, when we form the intersection A N B of two base relations A and
B, then each result tuple depends on exactly one tuple from A and one tuple
from B. In order to express this relationship, we use complex events
denoted by event expressions, which are Boolean combinations of basic
event keys. Thus, in the last example, each result tuple would be assigned
a conjunction of two event keys, one from A and one from B—expressing
the fact that the event of the result tuple can be true only if both
underlying basic events are true. Generally, the operations of the PRA
generate Boolean combinations of event keys. In order to distinguish these
combinations from ordinary Boolean expressions, we use the special sym-
bols A, vV, and = for the former. Event keys and event expressions form the
basis for the computation of the probabilistic tuple weights, as we will show
later. In principle, for a probabilistic database only the probabilities for the
basic events are given explicitly; from these, all probabilities of complex
events can be computed.

Definition 3.1.6. A set of event keys E is a set of identifiers, which also
contains the special elements | (impossible event) and T (certain event).
Furthermore, let € denote the set of all possible event keys. The elements
in € — {L, T} are called probabilistic event keys, and 1 and T are
deterministic event keys.

For a given set E, the set of event expressions ee(E) is the set of all
Boolean expressions that can be formed with the elements of E and the
dyadic operators A, ¥ and the monadic operator —.
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In contrast to the relational model, we do not define a probabilistic
relation as a set of tuples. Rather, we view a probabilistic relation as a
mapping from all possible tuples into a set of event expressions.

Definition 3.1.7. Let R = A denote a probabilistic relation schema.
Then a probabilistic relation p of type R is a mapping p : Tup(A) — ee(é).
A probabilistic base relation p of type R with respect to a set of event
keys E is a mapping p : Tup(A) — E. Furthermore, let Rel(A) denote the set
of all relations of type R with R = A.

With regard to an implementation of the PRA and the presentation of
probabilistic relations, it is of course sufficient to consider only the “inter-
esting” tuples of a relation p, namely those tuples u € Tup(A) for which
p(n) # L. For all tuples not considered, it is implicitly assumed that p(w) =
1. However, including this condition into the definitions of the operators of
the PRA would make some of these definitions rather complex. Therefore,
we have chosen the more elegant form of viewing probabilistic relations as
mappings.

For specifying the probability of events, we assume that there is a global
mapping of all event keys occurring in a database onto probabilities. This
approach allows for specifying identical event keys for different tuples,
either in the same or in different relations. This way, it is possible to model
the probabilistic aspects even of complex objects which cannot be repre-
sented by a single tuple.

Definition 3.1.8. A basic probability assignment for a set of event
keys E is a total mapping B : E — [0, 1], for which the following holds:

(1) (L) =0.
(2) B(T) = 1.
B)( e€(E—-{L, THO0< Bl <1.

The restriction that event keys different from | and T cannot be assigned
probabilities of 0 or 1 simplifies the manipulation of ordinary relations in
PRA (see Section 3.3).

With the definitions given so far, we can now specify the concept of a
probabilistic database as a set of base relations and the corresponding basic
probability assignment.

Definition 3.1.9. Let R = {R4, ..., R} denote a finite set of probabilistic
relation schemas, where R, = A;, 1 =i = k and A; # A; for i # j.
Furthermore, let £ denote a set of event keys. Then a probabilistic
relational database over % is a tuple d = (P, E, B), for which the
following holds:

(1) P ={p4, ..., ps} is a set of probabilistic relations such that, for 1 =
i =k, p, is a probabilistic base relation of type R; with respect to E.

(2) B is a basic probability assignment for E.
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DocTerm ‘ B | DocNo Term
DT(1, IR) 0.9 1 IR
DT(2, DB) 0.7 2 DB
DT(3, IR) 0.8 3 IR
DT(3, DB) 0.5 3 DB
DT(4, AD 0.8 4 Al
DocAu B DocNo AName
DA(1, Bauer) 0.9 1 Bauer
DA(2, Bauer) 0.3 2 Bauer
DA(2, Meier) 0.9 2 Meier
DA(2, Schmidt) 0.8 2 Schmidt
DA(3, Schmidt) 0.7 3 Schmidt
DA(4, Koch) 0.9 4 Koch
DA(4, Bauer) 0.6 4 Bauer

Fig. 2. Example probabilistic relations.

Figure 2 shows an example of a probabilistic database with two relations,
where DocTerm gives the weighted index terms for some documents, and
DocAu gives the probability that an author is competent in the subjects
described in a paper (e.g., in order to distinguish between primary and
other authors). As event keys, we use a combination of the relation name
and the attribute values here; this eases the understanding of the examples
given for the PRA operations below. Of course, in an implementation, an
internal ID would be more appropriate for this purpose.

Theoretically, a probabilistic relational database represents a set of
ordinary relational databases (with identical schemas) and an additional
probability distribution given on these databases. An event expression
assigned to a tuple represents the set of ordinary databases containing this
tuple. Furthermore, 1 stands for the empty set and T for the whole set of
databases. The probability of an event expression equals the sum of the
probabilities of the corresponding ordinary databases.

3.2 Operations

In RA, there are five basic operations: projection, selection, union, differ-
ence, and natural join (or, alternatively, cartesian product). Below, we give
the corresponding definitions in PRA and illustrate them by means of some
examples.

In the relational model, selection extracts all tuples from the argument
relation fulfilling a certain condition. In PRA, the same effect can be
achieved by assigning the event | to all tuples not fulfilling this condition.
For all other tuples, the event expressions remain unchanged.

Definition 3.2.1. Let R = A be a probabilistic relation schema, r a
probabilistic relation of type R, X € A. Furthermore, let © € {<, =, >, =,
=, #}, if dom(X) is an ordered domain, and ® € {=, #}, otherwise. Then
selection is a mapping Rel(A) — Rel(A) which can take one of two forms:
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IRDN | DocNo Term
DT, IR) H

DT(3, IR)
Fig. 3. Selection: IRDN = 0pepm—qr (DocTerm).

(1) If x € dom(X), then the selection ¢ = oxe,(r) of r with respect to X ©
x is defined as

r(p) ,if p(X)Ox

( mw€Tup(A)) t(p) := { 1 otherwise.

(2) If Y € A and X and Y have compatible domains, then the selection ¢ =
oxey (r) is defined as

r(p) , if p(X)Ou(Y)

( wE€Tup(A)) t(p) := { 1 otherwise.

Figure 3 shows the result of searching for documents about IR by means
of the selection oy, —qr(DocTerm). (The column headed with  gives the
tuple probability in nonbase relations. The computation of these probabili-
ties is described in detail in the following section. In our examples, we
compute the values by assuming that all events are independent.)

Projection is used in RA in order to remove some attributes of the
original relation (by means of specifying the remaining attributes as
arguments of the projection operator). Two simple examples of this opera-
tion in PRA are shown in Figure 4. In the general case, projection may lead
to the effect that several tuples of the argument relation are mapped onto a
single tuple of the result relation. As an example, consider the projection
Merm(DocTerm) shown in Figure 5, which reduces the relation DocTerm of
Figure 2 to the attribute Term only.

In RA, all tuples from DocTerm having the same value for the attribute
Term are mapped onto a single tuple, and thus the result consists of the set
of index terms occurring in DocTerm. In PRA, we have to specify how the
event expression of a result tuple should be computed in this case. From a
probabilistic point of view, a tuple should belong to the result relation if at
least one of its origin tuples belongs to the argument relation. Thus, we
form the disjunction of the corresponding event expressions in this case.

Definition 3.2.2. Let R = A be a probabilistic relation schema, r a
probabilistic relation of type R, and Y C A. The projection ¢t = Il (r) of
r onto Y is a mapping Rel(A) — Rel(Y) defined as

( wE€Tup(Y)) t(n) :=\/ rv).
Vem(A)/\
v[Y]=p
Now we turn to the set operations union and difference. In PRA, we
form the corresponding Boolean combination of the event expressions. As
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IR | | DocNo DB | | DoeNo
DT(1,IR) | 0.9 1 DT, DB) | 0.7 9
DTG, IR) | 0.8 3 DT, DB) | 0.5 3

Fig. 4. Projection: IR = Il cno (Operm—ar (DocTerm)), DB = Il .no (Operm—pr (DocTerm)).

perm(DocTerm) ‘ ‘ Term
DT(1, IR) ¥ DT(3, IR) 0.98 IR
DT(2, DB) ¥ DT(3, DB) 0.85 DB
DT(4, AD 0.80 Al

Fig. 5. Projection with merging of duplicate tuples.

an example, the expression IR U DB returns the DocNo of the documents
dealing with IR or DB (see Figure 6). The difference IR — DB would return
documents dealing with IR, but not with DB.

Definition 3.2.3. Let R = A be a probabilistic relation schema and r, s
be probabilistic relations of type R.

(1) The union ¢t = r U s of r and s is a mapping Rel(A) X Rel(A) —
Rel(A) defined as

( wE€Tup(A)) t(w) :=r(p) ¥ s(p).

(2) The difference t = r — s of r and s is a mapping Rel(A) X Rel(A) —
Rel(A) defined as

( w€Tup(A)) t(p) :=r(pn)A = s(p).

The operation natural join takes two relations (usually with different
schemas) as arguments and yields a new relation, where each tuple is
formed from a pair of matching tuples of the argument relations; two tuples
are matching if they have the same attribute values for the common
attributes. This way, data belonging to the same objects, but spread across
different relations due to the normalization process, can be “joined” to-
gether again. As an example, the expression DocAu > DB as shown in
Figure 7 gives documents about DB together with their authors. If the
argument relations have no common attributes, then natural join yields
the cartesian product of the argument relations. In PRA, we form the
conjunction of the corresponding event expressions. This reflects the inter-
pretation that a tuple is an element of the result relation only if both of its
originating tuples belong to their corresponding argument relation.

Definition 3.2.4. Let R = A and S = B be probabilistic relation
schemas and r, s be probabilistic relations of type R and S, respectively.
Then the natural join ¢ = r > s of r and s is a mapping Rel(A) X Rel(B)
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IR U DB | DocNo
(DT(1, TR) v 1) 0.9 1
(DT(2, DB) v 1) 0.7 2
(DT(3, IR) v DT(3, DB)) 0.9 3

Fig. 6. Union: IR U DB.

AuDB B |  DocNo | Term | AName
(DT(2, DB) A DA, B)) | 021 2 DB Bauer
(DT(2, DB) A DA, M)) | 0.63 2 DB Meier
(DT(2, DB) A DA2,S)) | 0.56 3 DB | Schmidt
(DT(3, DB) A DA3,S) | 0.35 3 DB | Schmidt

Fig. 7. AuDB = DocAu ™ (Orerm—np (DocTerm)).

— Rel(A U B) defined as

( w€&Tup(AUB)) t(p) :=r(u[A])2s(u[B]).

The second example for the join operation gives an expression which
cannot be evaluated correctly with extensional semantics: we search for
authors writing about both IR and DB, but possibly in different papers (see
Figure 8). Here the event expression for author Schmidt contains two
occurrences of the event DA(3,S); this phenomenon violates the implicit
independence assumptions underlying approaches based on extensional
semantics.

3.3 PRA as a Generalization of Relational Algebra

In contrast to other probabilistic data models (see Section 8) which are only
loosely related to the relational data model, PRA is a generalization of
relational algebra. More precisely,

(a) PRA contains relational algebra as a special case and
(b) all equivalences from relational algebra also hold for PRA expressions.

With respect to the first point, we can show that relational algebra
corresponds to PRA where all relations are deterministic. For that, let the
symbol = denote the equivalence of event expressions (according to the
laws of Boolean algebra). First, we define the equivalence of ordinary and
probabilistic relations: an ordinary relation r and a probabilistic relation r
are equivalent to each other (denoted by r = r), if and only if

(1) they have identical schemas A and
2 ( w€&€TupAhp erornw) =T.

Then we can show that the following theorem holds:

THEOREM 3.3.1. For any set {ry, ..., 1} of ordinary relations and any
relational algebra expression w(rq, ..., '), probabilistic relational algebra
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AuIRDB AName

((DT(1, IR) A DA(1, B)) 2 0.1701 Bauer
(DT(2, DB) A DA(2, B)))

((DT(3, IR) A DA, S)) A
((DT(2, DB) A DA(2, S)) v 0.4368 Schmidt
(DT(3, DB) 2 DA, 9))))

Fig. 8. AulRDB = IT,\ume (DocAu = IR) N Myame (DocAu = DB).

yields the equivalent result, i.e.,if 71 =ry /\ ... Ty =1y, then oF,, ..., ) =
(J)(rl, P ,rk)

The proof of this theorem is given in the appendix.

Concerning the second aspect of generalization (item (b) from above), it
should be emphasized that in the case of nondeterministic relations, the
event expressions formed for each operator yield a probabilistic interpreta-
tion of the operator. In Rolleke [1994], it is shown that all equivalences
from relational algebra also hold for PRA. This is due to the fact that these
equivalences generate equivalent event expressions.

Since PRA is a generalization of standard relational algebra, we can also
exploit the connection between relational algebra and relational calculus:
we use the same transformation process from calculus to algebra, but apply
the algebraic expression to probabilistic relations. So we have a probabilis-
tic relational calculus which yields probabilistic relations as answers. Thus,
PRA forms an implementation of Rijsbergen’s view of IR as uncertain
inference, since the relational calculus expression for a query can be
transformed into an algebra expression, and then the answer can be
computed.

4. COMPUTATION OF EVENT PROBABILITIES

The examples from the previous section have shown how the operators from
PRA generate new event expressions. So far, we have only defined the
probabilities for single event keys. For event expressions, we first need
some basic definitions.

Definition 4.1. Let E denote a set of event keys. The disjunctive
normal form of an event expression e € ee(E) is its equivalent expression
e’ of the forme’ =¢; ¥ ... ¥ ¢,, where the ¢; are event atoms or conjuncts
of event atoms, and an event atom is either an event key or a negated
event key.

For a conjunct ¢ of event atoms, let at(c) denote the set of its event atoms.

A minimum conjunct is a conjunct of event atoms in which each event
key occurs at most once.

A complete conjunct is a minimum conjunct in which each event key
from E occurs exactly once. Let CC(E) denote the set of all complete
conjuncts for E.

ACM Transactions on Information Systems, Vol. 15, No. 1, January 1997.



The Integration of Information Retrieval and Database Systems . 45

For example, let E = {T, 1, e, €5, e3}. Then ¢ = e; A ey A neyis a
nonminimum conjunct, with at(c) = {e;, e5, 7 e5}. Examples of minimum
conjuncts aree; A ey ande; A mey A eg, whereas T A o 1L Aey Aey A eg
and T A =1 Ae; A ney A eg are complete conjuncts.

For the underlying probabilistic model, CC(E) forms the set of elemen-
tary events with respect to the set of basic events E. A single basic event is
a set of elementary events, namely all the conjuncts containing this event
in unnegated form.

In our view of a probabilistic database as a probability distribution on
ordinary databases, each ordinary database is associated with an elemen-
tary event. In order to describe the probability distribution, we define a
probability measure over P(CC(E)); we have the basic probability assign-
ments given for E, as restriction:

Definition 4.2. Let d = (P, E, B) denote a probabilistic relational
database. Then a general probability assignment is a probability mea-
sure over P(CC(E)) such that e € E (e) = Ble).

Due to the isomorphism of set algebra over P(CC(E)) and Boolean
expressions over ee(E), the Boolean expressions also form a Boolean algebra
(ee(E), L, T,{A, ¥, =}). For this reason, we can apply the laws from Boolean
algebra in order to transform event expressions.

The last definition only sets the frame for the computation of probabili-
ties of event expressions. If we do not want to make any simplifying
assumptions, then we have to specify the probability measure by giving
probabilities for all complete conjuncts. We call this a complete probability
assignment.

For most practical applications, a complete probability assignment will
not be feasible. In a database with % different event keys, 2* probabilities
would have to be specified. This is clearly unrealistic for any application of
reasonable size. In contrast to that, a rather simple model results if we
assume independence of all basic events represented by event keys. Given
this independence assumption, the probability of a conjunct can be com-
puted as follows:

Definition 4.3. An independence probability assignment is a gen-
eral probability assignment where the probability of a conjunct ¢ is com-
puted by first transforming c into its equivalent minimum conjunct ¢’ and
then evaluating the expression

(c¢):= ] (a) where

a€Eat(c’)

_ | B(a) ,ifa€E
@=11_8p) ,ifa=b.

For general Boolean expressions, we do not have to form the correspond-
ing set of complete conjuncts before we compute the probabilities according
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to this definition. Instead, we can also apply the inclusion-exclusion for-
mula [Billingsley 1979, p. 20] by first transforming the Boolean expression
e into its equivalent disjunctive normal form e’ = ¢; ¥ ... ¥ ¢, and then
computing

>

€)= (g ¥ -+ ¥ ¢)=2 (-1 > A ney). (D)

i=1 1=j1<- - -<ji=n

The complexity of this evaluation formula is O(2"). The factor n is
determined by the structure of the PRA expression, with the exception of
projection, where n also depends on the number of argument tuples being
mapped onto the same result tuple.

Complete probability assignment and independence probability assign-
ment only represent the two extremes in a large spectrum of possible
(in)dependence assumptions. However, for most applications (like IR),
independent events will be sufficient. Furthermore, even when dependence
models seem to be more appropriate, often the additional parameters
required for these models will hardly be available. It should be emphasized
that we are considering information systems for vast amounts of data here.
In contrast, most probabilistic inference methods are more suitable for
applications like expert systems, where the number of different events is
rather limited, and thus it is easier to gather the necessary dependence
information. For these reasons, we will only discuss the independence case
in the remainder of this section.

For a disjunctive normal form with n conjuncts, the computation of
takes O(2") time in the general case. So we should look for possibilities of
reducing this computational effort. For this purpose, we consider probabi-
listic databases with certain restrictions.

Definition 4.4. Let d = (P, E, B) with P = {p4, ..., p,} denoting a
probabilistic relational database over % = {Rq, ..., R,}. d is a database
with unique events if the following holds:

( 5,71=i,j=k)( n€&Tup(A))

( vETup(A))u#v=>pw) #pi(v) \V p(w) =L V pi(pw) =T

So in a database with unique events, probabilistic event keys are as-
signed to exactly one tuple in a base relation. Thus, operations combining
different base relations will also combine disjoint sets of event keys.

Now let us consider the process of probability computation for this type of
database. Besides the possibility of considering dependent events, we have
introduced the concept of event expressions mainly in order to cope with
possible dependencies of event expressions (caused by identical basic
events occurring in these expressions). If no such dependencies exist, then
we can compute the event probabilities for the result of an operation
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directly from the event probabilities of the relational argument(s), without
considering the underlying basic events. This is identical to the computa-
tion of probabilities in the case of extensional semantics. Let us call this
method simple evaluation in the following. So, for PRA expressions where
the intensional and extensional semantics approaches would yield the same
result, we can eliminate the overhead introduced by event expressions. As
an example—like most of the examples from the previous section—the
expression Il y,me(DocAu > (IR N DB)) can be evaluated by means of
simple evaluation, whereas the expression

Maname(DocAu 5 IR) N T ynamo(DocAu = DB)

requires the more expensive independence probability assignment.
In general, we can formulate the following theorem:

THEOREM 4.5. For databases with unique events, the result of a PRA
expression can be computed by simple evaluation if and only if for every
possible tuple of the result relation, any probabilistic event key occurs at
most once in the event expression of the tuple.

PrOOF. Since deterministic events and their Boolean combinations are
independent of any other event, their presence does not affect the correct-
ness of simple evaluation. So we only have to consider the probabilistic
events here.

Now let us show that simple evaluation yields the correct result in the
specified case. If no probabilistic event key occurs more than once in an
event expression, then the corresponding probability can be computed
iteratively, since the arguments of each Boolean operator are independent
of each other (Boolean combinations of different (independent) basic events
are also independent). This is exactly what simple evaluation does.

Conversely, suppose that simple evaluation yields correct results, but a
probabilistic event key occurs more than once in the event expression.
Since we start with basic events, there must be a PRA operation where for
some result tuple, two or more of the argument tuples forming this result
tuple are derived from the same basic event. Thus, the corresponding
events are dependent of each other, and simple evaluation yields an
incorrect result. [J

So the complexity of our approach is the same as that of one based on
extensional semantics as long as both approaches yield the same result.
Only for queries where extensional semantics produces wrong results, our
approach has a higher complexity. However, since the laws of relational
algebra hold for our approach, there also may be an equivalent expression
for which simple evaluation is applicable. This has to be determined by the
query optimizer.

Further simplifications are possible when we know which relations are
deterministic. For example, the last PRA expression from above can be
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computed by means of simple evaluation if relation DocAu is deterministic.
We are currently investigating the whole area of possible optimizations for
the computation of PRA expressions.

5. IMPRECISE ATTRIBUTE VALUES

Our basic model of probabilistic relations also can be extended for coping
with imprecise attribute values. For that, we model imprecise attribute
values as probability distributions over the corresponding domain. As an
example, assume that for some documents the publication year is not
known precisely. This fact could be represented by the probabilistic relation
DY depicted in Figure 9, showing that document 1 was published either in
1980 or 1981, document 2 certainly in 1990, and document 3 in 1985, 1986,
or 1987. Here the events DY(1,1980) and DY(1,1981) are disjoint to each
other, in the same way as the three events DY(3,1985), DY(3,1986), and
DY(3,1987). On the other hand, it is reasonable to assume that tuples
belonging to different document numbers represent independent events.

This example shows that imprecise attribute values are in conflict with
the independence assumption underlying the independence probability
assignment. For this reason, we modify the independence assumption by
treating imprecise attribute values as disjoint events which form excep-
tions to this assumption. In order to describe the disjointness of this type of
event, we introduce the concept of a disjointness key. A disjointness key K
is a subset of the attributes A of a probabilistic relation, and the attributes
in A — K are called imprecise. In the example from above, Year is an
imprecise attribute, and tuples with identical values for DocNo represent
disjoint events. Thus, we would call DocNo the disjointness key for this
probabilistic relation. In general two tuples of a relation represent disjoint
events if they have the same values for all attributes of the disjointness
key. If the disjointness key is empty, then all tuples of the base relation
represent disjoint events.

For the probabilistic relations discussed in the previous sections, there is
always K = A, i.e., no disjoint tuples. In our examples, the imprecise
attributes (belonging to A — K) are printed in italics.

For integrating the concept of a disjointness key in our basic model, we
consider disjointness keys as a kind of integrity constraint. For a relation
with a disjointness key different from the relation scheme, this key induces
certain Boolean equations stating the disjointness of events of tuples with
identical values of the key attributes.?

Definition 5.1. Let R = A denote a probabilistic relation schema. For a
disjointness key K C A, a probabilistic base relation r of type R yields the
following set of Boolean disjointness equations bde(r):

20One could also consider a disjointness key as being part of the schema of a probabilistic
relation. However, this would require the rewriting of most of the definitions given so far. For
the sake of clarity of presentation, we choose the solution described here.
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DY B DocNo Year
DY(1,1980) 0.8 1 1980
DY(1,1981) 0.2 1 1981

T 1.0 2 1990
DY(3,1985) 0.4 3 1985
DY(3,1986) 0.4 3 1986
DY(3,1987) 0.2 3 1987

Fig. 9. A probabilistic relation for the imprecise attribute Year.

—If K = A, then bde(r) := 0.
—If K # A, then

bde(r) := {(r(n) Ar(v) = L)|p, vE€ Tup(A) /N p#v N p[K]=v[K]}.

At the level of the whole database, we form the union of the Boolean
equations from the different relations. Furthermore, the basic probability
assignment $ has to be defined such that it is not in conflict with disjoint
events.

Definition 5.2. Let ® = (R4, ..., R,} denote a finite set of probabilistic
relation schemas, where R; = A;, 1 =i = k and A; # A; for i # j.
Furthermore, let ¥ = {K;, . . ., K,} denote a set of disjointness keys with K;

C A;,, 1 =i = k. Then an extended probabilistic relational database
over (R, X) is a tuple d = (P, B, B, E), for which the following holds:

(1) P={py, ..., px is a set of probabilistic base relations such that, for 1 =
i = k, p; is a probabilistic base relation of type R; with respect to E.

(2) B = Uy, bde(p,).

(3) B is a basic probability assignment for E, such that, for 1 =i < &, the
following holds:

k€ Tup(K) 2 ) B(p(n)) = 1.

nETup(A;
wlK]=x

For computing the probability of event expressions, we also have to
modify the independence probability assignment. The general idea is to use
the Boolean equations in order to simplify event expressions. Thus, if a
conjunct contains two disjoint event keys, it yields L. However, we need a
special procedure for a conjunct which contains two or more negated event
keys which are disjoint. In this case, we have to sum up the probabilities
for the unnegated disjoint keys and treat the result as the opposite
probability. For example, assume that d,, ds, and d5 are disjoint event
keys, and a is an independent event key. Then the probability of the

conjunct @ A d; A dy, would be computed as

@adiAdy)= (@) (1-( (dy L d))= (@) QA—( d)+ (d)).
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Definition 5.3. An extended independence probability assignment
for an extended probabilistic database d = (P, B, B, E) is a general
probability assignment where the probability of conjuncts containing event
atoms only is computed in the following way. Let ¢ = ¢; A ... A ¢; denote
such a conjunct, where ¢4, . .. ¢; are the event atoms occurring in c¢. Then
the subsequent steps are performed:

(1) c is transformed into its equivalent minimum conjunct ¢’ = AT, s; by
using the equations in B such that it does not contain any two positive
event keys which are disjoint, thatis, i,j1=i<j=m(s; As; # L).

(2) ¢’ is further transformed into a conjunct ¢" = Al ¢;, with ¢, = Aﬁl e,
iff j,Je 1 =jy <Jjs =k (¢ L e, = 1) and ¢ is an event atom
otherwise. So each ¢; is either a conjunction of negative disjoint event
keys or an event atom for which there is no disjoint event key in ¢”".
Then we define

()= (aryt):=1] () with

i=1

B(t) , if t; is a positive event key
(t) =1 1 - Bley) , if t; = e, is a negated event key
1-2%, Ble) ,ift,=rk e,

For example, the PRA expression Ilp,.no(Oyear=1985(DY)) searches for
documents published after 1985; as result, we get the event expression
(DY(3,1986) v DY(3,1987)) for DocNo = 3, with a probability of 0.4 + 0.2 =
0.6.

In comparison with ordinary relations, there is a close relationship
between a (nonempty) disjointness key and the key of an ordinary relation.
For example, the relation DY from above can be thought of being derived
from an ordinary relation BOOK (DocNo, Year, Price, Title) with DocNo as
key attribute. When Year is to become an attribute with imprecise values,
then Year has to be removed from BOOK, and the new relation DY has to
be formed in order to keep relations in third normal form. Since the value
of the key attribute(s) determines the values of all other attributes (i.e., the
functional dependency DocNo — Year in this example), multiple values of a
nonkey attribute for a single value of a key attribute correspond to disjoint
events.

In our view of a probabilistic database as a probability distribution on a
set of ordinary databases, disjoint events represent disjoint subsets of
databases. Thus, two tuples with disjoint event keys never cooccur in the
same ordinary database. This implies that for each ordinary database, the
disjointness key is a key of the relation, since the values of the remaining
attributes are determined by the value of the disjointness key. However, in
another ordinary database, for the same disjointness key value, the values
for the remaining attributes may be different.
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DYP B DocNo Year Price
DYP(1,1980,20) 0.8 1 1980 20
DYP(1,1981,22) 0.2 1 1981 22

T 1.0 2 1990 19
DYP(3,1985,15) 0.4 3 1985 15
DYP(3,1986,16) 0.3 3 1986 16
DYP(3,1986,17) 0.1 3 1986 17
DYP(3,1987,17) 0.2 3 1987 17

Fig. 10. Imprecise attributes Year and Price.

In principle, due to the first-normal-form condition, a separate probabi-
listic relation has to be formed for each imprecise attribute from the
original relation, e.g., DP (DocNo, Price) if Price has also imprecise values.
However, this is true only if the values of Price and Year are stochastically
independent. Otherwise, both imprecise attributes have to be included in
the same relation, as shown in Figure 10. Here again the disjointness key is
{DocNo}, but now we have several pairs of (Year,Price) values for a single
value of DocNo, and these pairs correspond to disjoint events. Obviously,
this probabilistic relation cannot be decomposed into two separate relations
(even if we ignore the probabilities, there is no lossless join decomposition,
i.e., a decomposition into two relations R1(DocNo, Year) and R2(DocNo,
Price) where the original relation can be reconstructed by means of a join).

With relation DYP, the query for documents published after 1985 would
yield the probability 0.6 for DocNo = 3 (as before). Searching for books with
a price of at least 17 would give us the probability 0.3 for the same book
(and probability 1 for DocNo = 1). A selection with the conjunction of the
two conditions by means of the expression Il .no(Ovear=1985 Price=17(DYP))
would yield the event expression (DYP(3,1986,17) ¥ DYP(3,1987,18)) with
a probability of 0.1 + 0.2 = 0.3, since the outcomes of the two selection
conditions are not independent of each other. In contrast to models with
extensional semantics, the (algebraically equivalent) expression
Mpoeno(Ovear=1985(0price=17(DYP))) would give us the same result.

Another important application of disjoint events is for query term
weighting in text retrieval. So far, we only have considered Boolean
combinations of query terms. If we represent the set of query terms as a
relation of disjoint events, then we achieve a specific form of query term
weighting. For example, a query with the terms DB and IR could be
represented as a relation Q1(Term) with the disjointness key {Term] (see
Figure 11). Then the expression Ilp,.n,(Q1 > DocTerm) would yield the
result shown in Figure 12. Since in Q1 the terms represent disjoint events,
but in DocTerm they stand for independent events, the probabilities in the
result relation are computed as the scalar product of the corresponding
weights.

6. VAGUE PREDICATES

In interactive information systems, queries often may be vague. For exam-
ple, a customer looking for PCs with a price less than U.S. $1000 may be
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Q1 ‘ B H Term
Q1(DB) 0.7 DB
Q1(IR) 0.3 IR

Fig. 11. Query term weighting.

Mpeeno(Q1 P< DocTerm) ‘ ” DocNo
Q1(IR) A DT(1, IR) 0.3-0.9 1
Q1(DB) A DT(2, DB) 0.7-0.7 2
Q1(IR) A DT(3, IR) ¥ Q1(DB) A DT(3, DB) | 0.3-0.8 + 0.7- 0.5 3

Fig. 12. Result of query term weighting.

willing to pay a little more in certain circumstances. In literature data-
bases, a person searching for relevant publications from the past three
years may also be interested in a highly relevant paper published four
years ago. Different approaches have been proposed for this problem (e.g.,
Motro [1988], Prade and Testemale [1984], and Zemankova and Kandel
[1985].

In Fuhr [1990], we have developed a probabilistic interpretation of vague
predicates. In the first example from above, for example, there is a certain
probability that the customer will pay a specific price higher than U.S.
$1000. This phenomenon can be modeled by means of (1) a probabilistic
relation with two attributes containing the values to be compared and (2)
the associated probability that a user formulating a query with this vague
predicate will accept a specific pair of values. Figure 13 shows some tuples
of the relation for the example from above. Given this relation, it is obvious
that we could express a vague selection condition like “Price = 1000” on a
relation R by means of the following PRA expression:

R >4 [T price(0a=1000(LT)).

It is obvious that the relation corresponding to a vague predicate need
not be given explicitly—in many cases, the tuple probability could also be
specified as a function of the two values to be compared. In Fuhr [1990], it
is shown how this type of function can be derived from empirical data.

Following these considerations, we model vague predicates as built-in
predicates. In comparison to the standard built-in predicates =, #, <, >, =,
and =, vague predicates generate probabilistic events, whereas the stan-
dard predicates only yield the values true and false, i.e., T and L. In RA,
any predicate can be viewed as a (built-in) relation. So vague predicates are
a generalization of standard predicates analogously to probabilistic rela-
tions as generalizations of ordinary relations.

Definition 6.1. Let D denote a domain. Then a predicate for domain D is
a mapping ® : D X D — €.

Given this interpretation of predicates, we can reformulate the selection
operation to support both standard and vague predicates.
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LT
n B H A Price
E 1.0 1000 900
E 1.0 1000 950
LT(1000, 1000) 0.99 1000 1000
LT(1000, 1050) 0.90 1000 1050
LT(1000, 1100) 0.60 1000 1100

Fig. 13. A probabilistic relation for the vague predicate <.

Definition 6.2. Let R = A be a probabilistic relation schema, r a
probabilistic relation of type R, and X € A. Furthermore, let ©® be a
predicate defined for dom(X). Then general selection is a mapping Rel(A) —
Rel(A) which can take one of two forms:

(a) If x € dom(X), then the selection ¢ = oxg,(r) is defined as

( p&Tup(A)) t(p) :=r(p) A O(nX), x).

(b) IfY € A, and X and Y have compatible domains, then the selection ¢ =
oxey(r) is defined as

( wETup(A)) t(p) :=r(w) A O(uX), n(Y)).

From these definitions, it can be seen that vague predicates are a natural
extension of PRA.

The application of vague predicates is not restricted to numeric at-
tributes. For example, in the case of searching for proper names, a
probabilistic interpretation of string similarity (e.g., based on phonetic
codes, number of overlapping trigrams, or editing distance) as described in
Pfeifer et al. [1995] can be applied as vague predicates. For text retrieval,
phrase search also can be interpreted as a vague predicate testing a given
phrase for occurrence in a document text (e.g., Croft et al. [1991]);
obviously, returning a binary weight as a result of the predicate would not
be appropriate for probabilistic retrieval. In multimedia retrieval, the
concept of vague predicates seems to be even more important, since many
approaches are based on some kind of similarity operation; for example, the
QBIC system [Flickner et al. 1995] supports similarity search of images
with respect to different features, e.g., texture, contour, or color.

Looking more carefully at the price example from above, we see that the
independence assumption does not hold for the events in relation LT (or the
events generated by the corresponding vague predicate, respectively), since
all these events are dependent on each other. However, this fact does not
make the whole approach useless. We only run into problems if we get an
event expression which contains two different events from this relation.
Below, we will show how to cope with this problem. First, however, we will

3Here we assume that the set of possible phrases is too big to allow for preprocessing of
phrases such that they could be stored in the same way as other index terms.
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take a closer look at the problem of dependence. In general, a PRA
expression might contain more than one vague predicate. So the question is
this: when are the corresponding events dependent on each other? This
problem can be illustrated by means of some examples. Assume that we
have a relation PUB(Author, Title, PYear, EYear, Price) about books where
PYear denotes the publication year of the first edition and EYear the year
of the latest edition. Now consider the following selection conditions for
relation PUB containing multiple vague conditions:*

(1) Author = ‘Smith’ /A PYear = 1985.
(2) PYear = 1990 /\ Price = 30

(3) PYear = 1992 \/ PYear = 1985.
(4) EYear = 1992 /\ PYear = 1985.
(5) PYear = 1990 /\ PYear = EYear.

It is reasonable to assume that, both in expressions (1) and (2), the events
for the two vague predicates are independent of each other. In expression
(3), we would claim that they are dependent, since we have two vague
conditions (although with different predicates) for the same attribute. The
same holds for expression (5). In (4), we have different predicates and
different attributes, but we would hesitate to say that the events are
independent. The reason for this is that the attributes EYear and PYear
have the same domain. Since vague predicates bear a lot of semantics, we
cannot state the dependence or independence of vague conditions from
purely syntactic criteria. Instead, we assume that vague predicates for the
same domain are dependent on each other. So certain vague predicates can
be applied only to attributes of a specific domain. This means that, for
example, in the conditions Price < 30 and PYear < 1985, < is not the same
vague predicate. In order to make this more explicit, we could use the
domain as index of the vague predicate, e.g., €y.,,- On the other hand, we
will assume that predicates for different domains are independent of each
other. However, we should also note that this general criterion for deciding
about the (in)dependence of events generated by vague predicates may not
always be appropriate. As a counterexample, in the case of phrase search,
any query containing more than one phrase would lead to event expressions
containing mutual dependent event keys for the different phrases; thus, it
would be more reasonable to assume independence of different events
generated by the vague predicate in this case.

In the following, let us assume that we can identify the sets of mutual
dependent events, but that there is no additional information (e.g., giving
the probabilities of combinations of dependent events). Thus, the indepen-
dence probability assignment does not allow for computing the probabilities
for event expressions containing dependent events. This raises the question
regarding which PRA expressions can be processed under this constraint.

4Like in RA, a selection with a Boolean combination of atomic criteria can be transformed into
an equivalent PRA expression with atomic selection criteria.
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For this purpose, we introduce the notion of safety: a PRA expression is
called safe if, for all possible values of its arguments, no event expression
contains more than one event from a set of dependent events. In this case,
independence probability assignment yields correct results.

For example, the search for documents with an author name similar to
“Maier” by means of the expression

H DocNo( O-ANameE‘Maier’(DOCAu))

is unsafe, since the projection may combine different tuples (e.g., a docu-
ment with the authors “Maier” and “Meier”), where each tuple refers to an
event from the relation representing the vague predicate. So the projection
operation has to be omitted in order to get a safe expression.

7. IMPLEMENTATION CONSIDERATIONS

PRA is a logical data model. Thus, it specifies only a framework for the
implementation of this model. With regard to the typical applications of our
model, the physical data model has to be chosen carefully. For example, it
would not be wise to store the index terms assigned to a document as a
sequence of tuples like for other relations. Having a set of (weighted) terms
attached to the document number would be more appropriate. Of course,
one would also have indexes or inverted lists as access paths like in typical
IR systems. So the logical data model only specifies the behavior of the
system at a certain interface.

A similar statement also holds for the handling of imprecise attributes as
described in Section 5. Conceptually, a separate relation has to be formed
for each imprecise attribute (or combination of stochastically dependent
attributes). At the physical level, however, these relations can be stored
together such that, for a certain value of the disjointness key, all the values
for the different imprecise attributes are stored in the same record.

The two issues addressed above may suggest a different logical model,
namely a nested relational model (or NF? model—see also Section 8.2). We
have described this approach in a separate paper (see Fuhr and Rolleke
[1996]). Besides its higher complexity (in comparison to PRA), the major
drawback of a probabilistic NF2 model is that it is no more value based like
the relational model: when checking two tuples with set-valued attributes
for equality, it is not sufficient to compare the attribute values, and the
event keys have to be compared. This situation is similar to object-oriented
models where two objects may be equal (having equal attribute values) or
identical (having the same object identifiers). Thus, event keys play the
role of object identifiers in the probabilistic NF2 model. This contrasts with
the deterministic NF? model which is still value based.

For efficient processing of PRA expressions, there are two possible
directions in query optimization. As stated before, all equivalences from
PRA also hold in RA. Thus, it is possible to apply the same optimization
strategies as in ordinary relational database management systems (for a
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survey, see Jarke and Koch [1984]). Since most of these methods focus on
minimizing the number of I/O operations required for computing the result,
the assumptions underlying these strategies also hold in the case of a
probabilistic relational database. A different approach is based on the
observation that users of IR systems hardly ever want to see a ranked
output list as a whole. Mostly, they are interested in a few top-ranking
documents. In PRA, this means that the user wants to see only those tuples
from the result relation which have the highest probabilities. Thus, it may
be inefficient to compute the whole result relation first and then pick those
tuples the user is interested in. A more efficient strategy is based on the
idea of focusing on the result tuples with high probabilities and doing the
processing only for these tuples.® This strategy can be supported by access
structures which retrieve tuples in the order of decreasing probabilities.
For example, inverted lists for index terms can be sorted this way; for
vague predicates on numeric attributes, a B-tree structure can deliver the
records according to decreasing probabilities. This strategy is described and
evaluated in Pfeifer and Fuhr [1995].

Specific access structures also should be used for the implementation of
vague predicates. For example, phrase search can be implemented by using
inverted lists (for single words) with additional position information. Pho-
netic search can be sped up by using a phonetic index (i.e., inverted lists for
phonetic codes).

Besides I/O complexity, the CPU time required for computing the tuple
probabilities also should be considered in query optimization. As mentioned
before, it is possible to determine for a given PRA expression whether or
not the probabilities can be computed correctly by means of simple evalua-
tion. Thus, a minimum extension of current relational DBMS technology
could implement only simple evaluation; if there is no PRA expression for
an SQL query for which simple evaluation works, the system could refuse
to process such a query (or give a warning to the user). Similar consider-
ations also hold for the handling of vague predicates. In a typical applica-
tion where the only form of imprecision supported is probabilistic document
indexing, there will be hardly any user query interfering with this restric-
tion.

In a system that is able to handle event expressions, processing of event
expressions should be restricted to PRA expressions where simple evalua-
tion fails. Even in these cases, it is often possible to handle subexpressions
by means of simple evaluation; thus, the full computational complexity of
the inclusion-exclusion formula is hardly ever encountered in processing of
PRA expressions.

For the problem of dependent events stemming from vague predicates,
additional dependence information will hardly ever be available. However,
a system based on event expressions will be able to identify tuples with
dependent events in their event expression and flag them as erroneous.

50f course, a certain number of other tuples also have to be considered, in order to ensure that
the tuples presented as the result are the top-ranking ones.
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Since vague predicates only aim at modeling a user’s intentions, it is finally
up to the user to decide about the quality of tuples marked as erroneous.

Comparing these efficiency issues with those of current experimental IR
systems, a reader may come to the conclusion that our approach based on
PRA represents a rather inefficient method for processing typical IR
queries. However, it is fairly easy to detect PRA expressions representing
these typical queries and to process them with the same strategies as in a
pure IR system—even with the same access structures. So, the goal of our
approach is the combination of efficiency of IR systems with the expressive-
ness of relational algebra.

As a standard interface to a database system implementing PRA, SQL
seems to be feasible. This offers the possibility of easy integration of IR
systems with other applications (e.g., word processors) in the same way as
today’s DBMS do. On the other hand, using an SQL interface does not
mean that end-users will have to formulate SQL queries. It is possible to
implement different user interfaces which allow for easier query formula-
tion. Then user queries have to be translated into the relational query
language offered by the underlying system. Vice versa, the relation com-
puted as the answer to the query may be presented to the user in a
different form (e.g., tuples representing documents should be displayed in
their typical document format). For example, the approach presented in
Desai et al. [1987] uses non-first-normal-form universal relations as the
interface to an IR database: here the user views the database schema as
one single (universal) relation, but attributes may be set valued. (This is
very similar to commercial IR systems, where a document consists of a
fixed number of fields, which in turn are set valued.) Queries are formu-
lated with respect to the universal relation, and then they are translated
into queries with the underlying database scheme. Query formulation can
be simplified further by using a forms-based interface where the user types
his or her conditions for the different attributes into the corresponding
fields (e.g., see Pfeifer et al. [1995]).

Currently, we are implementing two variants of the basic approach
presented in this article. In order to support an even more expressive query
language than PRA (or SQL), we are working on the implementation of a
probabilistic version of Datalog, which also allows for recursive queries (see
Fuhr [1995]). Here Datalog queries are transformed into sets of PRA
expressions which are processed iteratively. The second system under
development is based on the probabilistic NF? model mentioned earlier in
this article. First prototypes of both systems (although without any optimi-
zation yet) are already available.

8. RELATED WORK

8.1 Current IR systems

In comparison to the majority of today’s (experimental as well as commer-
cial) IR systems, PRA is able to express almost any function of these
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systems. As we have shown, Boolean queries (in combination with probabi-
listic indexing) as well as probabilistic query term weighting and even
phrase search can be formulated in PRA. Furthermore, PRA also can
support retrieval in hypertext structures. Assume that we have a relation
Link (Source, Dest) giving links from Source to Dest. Now we may assume
that a document also is about a term if it has a link pointing to another
document indexed with this term. Then a query for documents about IR can
be expressed by forming the union of documents with the index term ’IR’
and those having a link to another document indexed with 'IR’:

l__[ DocNo( UTerm:’IR’(DOCTerm) )

U nSource%DocNo(O-DocN():Dest(o-Term:‘IR’(DOCTerm) > Llnk))

(Here the projection parameter “Source — DocNo” denotes renaming of
attribute Source to DocNo.) With this functionality, PRA offers a similar
expressiveness as for example the INQUERY system (see Haines and Croft
[1993]). Like this system, PRA implements retrieval as uncertain inference
by computing the probability P(d — ¢) that document d implies query g. On
the other hand, PRA does not deal with the problem how the underlying
probabilities (of the basic events) are estimated, since this is outside of the
scope of the model. However, there are other approaches which can perform
this task, e.g., probabilistic text indexing presented in Fuhr and Buckley
[1991] or the probabilistic weighting of vague predicates proposed in Fuhr
[1990].

The major improvement of PRA over today’s IR systems is its signifi-
cantly higher expressiveness. As in RA, PRA allows a user to ask for any
item stored in the database (see the examples shown in Section 3.2). Most
experimental IR systems only support searching for documents. Some
commercial IR systems offer functions for browsing the dictionary or
extracting survey information (e.g., term statistics) from a set of documents
that was retrieved in response to another query.® If a user seeks other
types of objects, these systems offer very little help. For example, the query
about authors writing about both IR and DB cannot be processed by any of
these systems. As another example, the CORDIS database of the European
commission contains information about research groups in Europe, their
members, and their publications. This situation can be modeled by adding a
relation Affil (Institute, AName) to the relations DocTerm (DocNo, Term)
and DocAu (DocNo, AName) from Section 3.1. Then we can ask for
institutes doing research both in IR and DB by means of the expression

nlnstitute(Affil >4 DocAu >< 0'Term=‘IR’(Docrrernq))
N HInstitute(Affil >4 DocAu >< O-Term:‘DB’(DOCTerm))~

SHowever, due to a weak theoretical basis of the query language, these additional features are
introduced as additional query language constructs, thus leading to a rather complex query
language (which makes it unsuitable for many potential users).
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Survey information for sets of documents (e.g., the sets of terms or authors
occurring in these documents) can be derived in PRA by means of the
projection operator. (However, it would be useful to extend the basic
algebra with some aggregate functions like SUM or COUNT in SQL—which
would yield expectations as attribute values.)

Besides a higher expressiveness, PRA is also able to support data
security by means of views. As a simple example, assume that we have a
security classification of documents stored as a relation DocSec(DocNo,Sec-
Lev), where SecLev is an integer giving the security level for the document
with the number DocNo. If certain users are allowed to view only docu-
ments with a security level =2, then two specific views can be defined for
them by means of the expressions

DocTerm2 = HDocNo,Term(USecLevS2(Docsec)) >4 DocTerm
and
DOCAU2 = nDocNo,AName(USecLevS2(DocseC)) B DOCAU.

Now this user is allowed to issue queries with respect to the two relations
DocTerm2 and DocAu2 only. Thus, he or she cannot get any information
about the documents he or she is not allowed to see. Of course, no global
dictionary can be supported in this setting; however, the set of terms
occurring in all visible documents can be derived by means of the projection
e m(DocTerm?2).

On the other hand, we do not claim that the relational model is good at
modeling the internal structure of documents. A survey over text data
models of this kind is given in Loeffen [1994].

8.2 Integration of IR and Database Systems

The integration of IR and database systems has been a research topic for
several years now. A number of authors have discussed the application of
standard relational algebra in IR systems (see Desai et al. [1987] and
Macleod [1991]). These papers stress the capability to search for all kinds
of objects in the database and the advantages of using a standard database
approach, but the approaches lack any ranking facility. Blair [1988] pre-
sents a model for overcoming this weakness; weights are treated like
ordinary attributes here, and ranking is achieved via the ORDER BY
clause of SQL. However, the combination formulas for weights have to be
stated explicitly in the query formulation. In contrast, our approach uses
weights implicitly, and the combination formulas are determined by the
relational operator. Furthermore, we assume that probabilistic relations
are implicitly ranked according to descending probabilities, so no explicit
ordering operator is necessary for most queries.

It has been recognized already in Schek and Pistor [1982] that non-first-
normal-form (NF?) relations are suited much better to IR problems than
the standard relational model. Its major advantages are easier query
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formulation for most problems and more efficient processing. On the other
hand, there are only minor differences in terms of expressiveness. For this
reason, we want to study the general problems with a PRA by using
first-normal-form relations before we switch to the NF2 model.

There are also some approaches for extending text retrieval methods in
order to cope with facts, too. If we concentrate on approaches that apply
ranking methods at least for texts, then three different methods for the
combination of text and fact retrieval can be distinguished:

—Boolean retrieval for facts: Raghavan et al. [1986] describe the combina-
tion of probabilistic text retrieval methods with Boolean fact retrieval.
Here the fact conditions select a set of objects from the database, followed
by a ranking of objects according to the text conditions.

—Non-Boolean retrieval for facts with binary weighting for fact condi-
tions: A simple approach for applying ranking methods to fact condi-
tions as well as to text conditions is to treat fact conditions like index
terms in combination with binary indexing. In the SMART system
[Buckley 1985], different so-called “concept types” can be distinguished,;
besides text terms, for example, dates or names of persons or institutions
can be used for retrieval. However, for these attributes, only tests on
equality can be performed. In the approach presented by Saxton and
Raghavan [1990], an (IR-type) query is a disjunction of conditions, where
a single condition can be a Boolean combination of subconditions. For fact
conditions, the standard predicates and comparison operators can be
applied. Each condition in the query is given a weight, and then objects
are ranked according to the weighted sum of the conditions they are
fulfilling. Rabitti and Savino [1990] describe an advanced system for
retrieval of multimedia data (including facts). Their system uses proba-
bilistic retrieval for text as well as for facts. Both kinds of conditions can
be assigned weights with respect to the query, and text terms also can be
given probabilistic index terms weights with respect to an object.

—Non-Boolean retrieval for facts with nonbinary weighting for fact condi-
tions: Fuhr [1992a] presents a model for combining probabilistic text
retrieval, vague fact conditions, and imprecise data. However, this ap-
proach is based on a linear data model only.

To sum up the different efforts for the integration of IR and database
systems developed in the past, it can be concluded that approaches based
on standard data models do not pay attention to the intrinsic uncertainty
and vagueness of IR; on the other hand, approaches aiming to extend IR
models for coping with facts, too, offer only a very poor data model and/or a
query language with limited expressiveness.

8.3 Imprecision in Databases

A number of approaches for coping with imprecision in databases have been
developed in the past; for a survey, see Kim [1989] and Motro [1990]. A
probabilistic relational model with extensional semantics is described by
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Cavallo and Pittarelli [1987]. In this model, too, probabilistic weights are
assigned to tuples, but tuples in the same relation always represent
disjoint events. So this model can be regarded as a special case of our
approach, and thus the application range is rather limited.

In a certain sense, the PDM model described by Barbara et al. [1992] can
be regarded as a further development of the Cavallo and Pittarelli model,
in order to overcome some of its disadvantages. This model is similar to a
nested relational model, where tuples of inner relations represent impre-
cise attribute values. On the other hand, no weights can be assigned to
outermost tuples, so this approach lacks a ranking facility. For queries
with selection conditions relating to attributes with imprecise values, one
can specify a minimum probability with which an atomic condition should
be true. However, it is not possible to combine probabilities relating to
different conditions. By restricting the set of possible operations, the PDM
guarantees that only correct results can be produced; thus, many opera-
tions possible in PRA cannot be performed within the PDM. The represen-
tation of imprecise attribute values in PDM is more intuitive; however,
PRA is more expressive by allowing also relations with independent tuples.

Whereas both of these models are based on Bayesian probability theory,
the approach presented by Lee [1992] uses Dempster-Shafer theory. Here
weights can be assigned to attribute values as well as to tuples as a whole.
Imprecise attribute values are represented as sets of values with associated
probabilities; thus, relations are not in first-normal form. However, since
no real nesting of relations is allowed (as in the PDM model), it is not
possible to represent imprecise attribute values which are dependent.
Furthermore, since this model is based on extensional semantics, it is not a
generalization of relational algebra; most equivalences of relational algebra
do not hold within this model.

There is also a number of data models based on fuzzy theory (e.g., Prade
and Testemale [1984], Takahashi [1993], and Lee and Kim [1993]). In
principle, probabilistic and fuzzy theory approaches are orthogonal to each
other, and the choice of the appropriate theory depends on the actual
application. Furthermore, since fuzzy theory is based on extensional se-
mantics, equivalences from relational algebra do not hold for fuzzy rela-
tional algebra in general.

The problem of imprecise attribute values in the form of null values or
disjunctive information has been discussed extensively in the database
literature (e.g., see Lipski [1979], Vassiliou [1979], Reiter [1984], and
Imielinski and Lipski [1984]); Imielinski [1989] gives a brief survey over
this work. As all these approaches are based on two-valued logic, the
correct treatment of imprecise values is obvious (e.g., in the proof-theoretic
approach [Reiter 1984], it follows from the axioms of first-order logic). In
Codd [1986], a three-valued logic is used instead, in order to retrieve
“maybe” answers in addition to the correct answers of a query. This model
can be regarded as a very simple ranking mechanism. Modifications of this
approach are discussed in Gessert [1990] and Yue [1991].
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9. CONCLUSIONS

In this article, we have described a probabilistic relational algebra which is
a generalization of standard relational algebra. It allows modeling of
different kinds of imprecision in databases. Following the concept of
intensional semantics, our approach keeps track of the basic events that
contribute to a certain tuple of a relation, and thus all probabilities are
computed correctly. In comparison to other approaches with extensional
semantics, there is no loss in efficiency for relational expressions where
both approaches yield the same result, and there is only an overhead
introduced by means of the event expressions when extensional semantics
yields incorrect results (according to probability theory).

In contrast to other probabilistic data models, PRA is a generalization of
relational algebra. Thus, descriptive query languages based on relational
calculus can be used as an interface to a system based on PRA. Further-
more, the algebra offers the possibility of query optimizations.

From a theoretical point of view, the independence assumptions used
throughout this article may look rather restrictive. Of course, it is no
problem to apply PRA in conjunction with more general assumptions about
the dependence of events. However, we think that our choice of indepen-
dence assumptions is realistic for a broad range of applications. On the
other hand, the limitations of our approach (especially for vague predi-
cates) are not a theoretical construct only; they relate directly to practical
problems in estimating the stochastical dependence information.

PRA allows a close integration of IR and database systems, since it
includes basic IR methods such as probabilistic document indexing and
search term weighting. Through the combination of textual and factual
data, PRA supports queries which are not possible in current IR or
database systems. For factual data alone, there are powerful mechanisms
for modeling imprecise data and vague queries.

It should be emphasized that PRA represents a logical data model. Thus,
it makes no assumptions about the underlying physical data model. For
example, in an integrated IR and database system, it may be appropriate to
store textual and factual data in a different way along with different access
paths. The strength of our approach, however, is that it offers the user a
unified view of the integrated system, namely a generalization of the
relational model.

Finally, using the relational model as a standard interface to an inte-
grated IR and database system does not mean that end-users will have to
use SQL to query such a system. Rather, such a standard interface offers
the possibility of easy implementation of different user-friendly interfaces
on top of this system interface.

APPENDIX

ProOOF OF THEOREM 3.3.1. In Section 3.3, we have defined a PRA relation
t and an RA relation ¢ with identical schemas to be equivalent iff t = ¢ &
pwlpw €tot(n) = T).
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Now we show that for the five basic operations of RA that PRA always
yields equivalent results. Instead of the natural join, we only consider the
cartesian product here, since any join can be expressed as a combination of
cartesian product and selection.

In the following we assume 7 = r and s = s.

Union
t=rUSAt=rUs>it=t¢t

In RA, uw € rUs is defined as w € 7 \/ u € s. Applying the definition of
equivalence for ordinary and probabilistic relations gives r(n) = T \/ s(n) =
T. Since the event expressions form a Boolean algebra, we get #(u) = r(un) ¥
s(w) = T,if uw € FUs.

In PRA, (rUs)(w) is defined as r(un) ¥ s(uw). Since the event expressions
form a Boolean algebra and since r(n) € {T, L} and s(n) € {T, L} hold, we
get r(un) ¥ s(u) = T for all tuples w € rUs and r(w) ¥ s(u) = L for all tuples
n & rus.

Thus ¢ = ¢ holds.

Difference

t=F—5N\t=r—s>t=t¢

In RA, w €7 — 5 is defined as u & 7 /\ =u € 5. Applying the definition of
equivalence for ordinary and probabilistic relations gives r(uw) = T A\ s(w) =
1. Since the event expressions form a Boolean algebra, we get ¢(u) = r(n) A
as(p) =T,ifpner —s.

In PRA, (r — s)(u) is defined as r(uw) A = s(w). Since the event expressions
form a Boolean algebra and since r(w) € {T, L} and s(n) € {T, L} hold, we
get r(u) A = s(u) = T for all tuples w € 7 — s and r(w) A = s(u) = L for all
tuples w &€ r — s.

Thus ¢ = t holds.

Cartesian Product

t=FX3N\t=rXxs=>t=t¢

In RA, w € 7 X § is defined as w[A] € 7 /A w[B] € 5. Applying the
definition of equivalence for ordinary and probabilistic relations gives
r(wlA]l) = T A s(u[B]) = T. Since the event expressions form a Boolean
algebra, we get ¢(u) = r(ulAl) A s(u[B]) = T,if u €r X s.

In PRA, (r X s)(u) is defined as r(w) A s(w). Since the event expressions
form a Boolean algebra and since r(w) € {T, L} and s(n) € {T, L} hold, we
get r(u) A s(u) = T for all tuples w € ¥ X 5§ and r(w) A s(n) = L for all
tuples w & 7 X s.

Thus ¢ = ¢ holds.
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Selection
t = 0xelT) Nt = Oxeu(r) > t =t

In RA, p € oxe,(P) is defined as p € 7 /\ wW(X)Ox. Applying the definition of
equivalence for ordinary and probabilistic relations gives r(w) = T N
wX)Ox. We get t(pn) = r(pw) = T, if u € oxe, ().

In PRA, 0xe.(r) is defined as r(w), if w(X)®x is true and L otherwise.
Since r(n) € {T, 1}, we get t(u) = r(w) = T for all tuples p € oxe,(r) and
t(n) = L for all tuples w ¢ oxe.(7).

Thus ¢ = ¢ holds.

Projection
t=11yr) Nt=]lyr)>t=t

In RA, n € IlIy(r) is defined as v € (v = p [Y]). Applying the definition of
equivalence for ordinary and probabilistic relations gives v(r(v) =T Av =
rlYD. We get t(n) = Y crupmrv—py @) = T, if u € Iy (7).

In PRA, IIy(r)(n) is defined as Y peTup@arro—piy) TW). Since r(v) € {T, L},
we get () = T,if v(r(w) = T Av = pul[YD),ie., if u € II(7F). Otherwise we
get t(n) = L.

Thus ¢ = ¢ holds. [
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