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Abstract 

In recent years, database research and product 
development activities have focused on support 
for non-traditional data types, such as text or 
multi-media documents. This paper describes 
an approach of coupling SQL databases and 
content-specific search engines, such as full- 
text retrieval engines, in an efficient manner. It 
is based on a query rewrite scheme that 
exploits so-called table functions, which are 
used to pass results from external search 
engines into the database engine. Using this 
approach the content-specific indexing mecha- 
nisms of search engines can be exploited with- 
out having to extend the database engine with 
new access methods, or having to break up the 
search engine to map its indexing scheme to 
database index structures. 

1 Introduction 

In recent years, database research and product develop- 
ment activities in the areas of object-orient&d, extensi- 
ble, and object-relational databases have focused on 
support for non-traditional data types, such as text or 
multi-media documents [Car86, CD96, Cha96, Kim95, 
Loh91, Schw86, Sto96, ZM90). These activities have 
resulted in systems that support extensibility in terms of 
their type systems and their query languages. Such 
extensibility features permit the creation of new data 
types and new functions (or methods) to accommodate 
new types of content in the database as well as well as to 
manipulate and search such content. 
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Existing object-relational database products, such as 
IBMs DB2 Universal Database [Cha96, Dav96a] or 
Informix Universal Server [Dav96b] provide an archi- 
tecture and APIs for integrating content management 
and search for new data types in the form of plug-ins.’ 
This is especially attractive for vendors of content-spe- 
cific search engines, giving them the opportunity to plug 
their existing search engine products into the database 
engine with minimal migration efforts, thereby provid- 
ing database users with their advanced content search 
capabilities inside SQL. 
This trend is also reflected in current standardization 
efforts, such as SQL3 [Me196], ODMG [Cat96], and 
SQL/MM [Cot96a]. The current version of the SQL3 
standard draft, which is expected to become an official 
standard in 1998, specifies language extensions for cre- 
ating complex, user-defined types (abstract data types, 
or ADTs) and user-defined fbnctions (UDFs). The SQL3 
standard specification is ‘supplemented’ by the SQL/ 
MM documents, which attempt to standardize the struc- 
ture and behavior of multi-media data types such as text 
or image, as well as other non-traditional data types 
such as geospatial data, in the context of the SQL lan- 
guage. 
In order to efficiently support the addition of such new 
data types, a database engine has to be truly extensible, 
meaning that the engine and the optimizer have to be 
able to recognize and execute user-defined types and 
functions in the same way as built-in ones. Moreover, 
indexing support has to be extended in such a way that it 
also covers user-defined data types. 
Various approaches for extending indexing support have 
been developed over the last years [Aok91, DDSS95, 
GFHR96, LS88, Sto86]. In the relational, or object-rela- 
tional context, some of these approaches permit the user 
or database administrator to create indices not only on 
table columns, but also on the results of function invoca- 
tions or expressions involving columns. While indexing 
on the results of function invocations is definitely an 
important concept, it does not help at all in the support 
of content search on data types such as text documents 
or images. Content search on such data types usually 
involves predicates for specifying that a certain value or 
document should match a (potentially very complex) 

1. IBM calls such plug-ins ‘relational extenders’ 
[IBM95], Informix calls them ‘DataBlade 8’ 
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search pattern. Neither storing the complete document nor 
storing the result of a simple function invocation on a doc- 
ument in an index helps to support such types of queries. 
other approaches have concentrated on developing new 
database access methods for non-traditional content, such 
as for text or spatial data [Gut84, Jag90]. While the incor- 
poration of new access methods into the database engine is 
probably the most effective way to enhance indexing capa- 
bilities, it is also the most expensive one. In general, this 
is hardly possible by just plugging in some code into the 
engine. Because of its interaction with central database 
components such as locking and recovery management, 
adding an access method is a complicated task that 
requires advanced database skills and intimate knowledge 
of the underlying database system. Especially for a vendor 
that is specialized in search technology for specific types 
of content and would like to implement a database ‘plug- 
in’ for existing object-relational DBMS, adding an access 
method to the DBS may not be feasible. In addition to the 
above described database aspects, such a vendor also has 
to map his content-specific index data structures and the 
processing model of the indexing engine to the indexing 
approach of the database system. Thus, it is likely that 
because it is exactly the (usually proprietary) indexing and 
search technology where vendors differ and compete, a 
single access method provided by the database vendor for 
a specific type of content, such as d-trees for text, does not 
meet the requirements of such a vendor. 
This paper describes an approach of coupling SQL data- 
bases and content-specific search engines, such as full-text 
retrieval engines, in an efficient manner. It is based on a 
query rewrite scheme that exploits so-called table t%nc- 
tions, which are used to pass results from external search 
engines into the database engine. Using this approach the 
content-specific indexing mechanisms of search engines 
can be exploited without having to extend the database 
engine with new access methods, or having to break up the 
search engine to map its indexing scheme to database 
index structures. 
The paper is organized as follows. In Section 2, we intro- 
duce a sample scenario from the area of text databases, 
which serves as a running example throughout the text, 
and illustrates the problem we are addressing with our pro- 
posed approach. In Section 3, we introduce the usage of 
table functions, which resembles a first step towards a 
solution. Section 4 describes the definition of index func- 
tions and the associated query rewrite approach. Addi- 
tional aspects related to the index function rewrite are 
discussed in Section 5. A discussion of related work is pre- 
sented in Section 6, and Section 7 resembles our final con- 
clusions. 

2 Text Search in SQL Databases - a Sample 
Scenario 

In order to prepare the grounds for the discussion of our 
approach, we describe a sample scenario in the area of text 
search in SQL databases. 

2.1 SQL3 and SQL/MM Full-Text 

SQL3 defines statements for adding so-called abstract data 
types (ADTs) to the database type system. ADTs have 
attributes, whose values can again be ADTs. Moreover, 
subtyping with inheritance as well as encapsulation are 
supported. ADTs ‘live’ inside columns of relational tables, 
and they can only be inspected and modified using their 
functional interface, i.e., the set of functions defined for 
the ADT. Using the SQL mechanisms for creating ADTs 
and user-defined functions, any database user having the 
required privileges can extend SQL to accomodate, mod- 
ify, and search over new types of content. 
The SQL/MM Full-Text document [Cot96b] attempts to 
standardize the integration of text retrieval in SQL based 
on the concepts introduced in SQL3 by providing defini- 
tions of text-related ADTs and their functional interfaces. 
For example, the ADT ‘FullText’ is delined, together with 
a number of functions operating on the ‘FullText’ ADT. 
Once this ADT is available in a database, a user can define 
a table with a full-text column in the following way to cre- 
ate a table with information about projects. 

CREATE TABLE projects ( 
proj-no integer, 
title varchar@O), 
budget integer, 
description FullText) 

In addition, SQL/MM defines a number of functions to 
work with values of type ‘FullText’, such as constructor 
functions and search functions. For example, the function 
‘contains’ can be used to perform text search on columns 
of type ‘FullText’ in the following way. 

SELECT proj_no, title 
FROM compschema.projects 
WHERE contains(description, 

‘ “database” IN SAME SENTENCE AS 
“object-relational” ‘) 

The above query would return all projects with a textual 
description that contains the word “database” in the same 
sentence as “object-relational”. The ‘contains’ function 
involved in this query has two arguments (a value of type 
FullText and a search pattern string), and it returns a bool- 
ean value. 
A vendor implementing the SQL/MM Full-Text specifica- 
tion can supply function libraries and DDL statements that 
can be executed to create the ADTs and additional mnc- 
tions in the scope of a database, so that a database user can 
use them in the above described manner. 

2.2 Problem Description 

It is obvious that the above SQL query involving text 
search cannot be efficiently executed without some sort of 
indexing scheme on FullText documents. Otherwise, the 
‘contains’ function would have to be performed on the 
description column for each tuple in the projects table. 
This would dramatically impact the overall execution cost 
of the statement not just because of the full table scan 
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involved in the evaluation, but also because of the costs of 
evaluating the ‘contains’ function itself. Without appropri- 
ate index support, ‘contains’ would have to fully analyze 
the given document to determine whether it matches the 
search expression. 
This type of search and indexing support is well-under- 
stood and commercially available in the area of informa- 
tion retrieval and full-text search engines. Such engines 
utilize index structures based on inverted word lists 
[Sa189], and they typically support APIs to 
l construct a (named) index for a collection of documents 

in a given scope somehow identified by the user, and 
l search for all identifiers of documents in a certain scope 

(given by the index name) that match a given text search 
pattern. 

This is exactly the functionality required for index support 
in database-oriented text search, where the scope of an 
index is usually the FullText column of a base table, and 
FullText documents can be identified in the context of this 
table either by a row or tuple identifier, or by a unique key 
value (e.g., the primary key). 
As discussed previously, there are various reasons why 
existing approaches, such as using indices on fUnctiona 
expressions, utilizing existing access methods, or adding a 
new access method to the database engine either do not 
apply, or are not desirable, essentially because they require 
to break up the existing text search engine and map its 
indexing and search scheme to the one of the database sys- 
tem. This forces the vendor to expose proprietary key 
technology by making it ‘public’ in the database index, 
which is any many cases not tolerable. We are therefore 
looking for a more light-weight approach that preserves 
the text search engine, and allows to utilize its index-based 
search technology inside of the database engine through 
its standard APIs. In such an approach, user-defined data- 
base functions (e.g., ‘contains’) would be realized in an 
external programming language (such as C), and would 
utilize the external search engine through its standard pro- 
gramming APIs. 

2.3 Implementing SQL/MM Full-Text: the DB2 Text 
Extender 

As an example of an implementation of the SQL/MM 
Full-Text specification, we introduce the DB2 Text 
Extender, a ‘plug-in’ developed for IBMs DB2 Universal 
Database product [Cha96, Dav96a]. DB2 Universal Data- 
base supports some of the object-relational features speci- 
fied in SQL3, such as user-defined distinct types and user- 
defined functions. These features serve as a basis for the 
implementation of the Text Extender, which integrates text 
search into SQL by utilizing an IBM stand-alone text 
search engine called SearchManager. 
Using Text Extender, the SQL statements introduced in 
Section 2.1 look slightly different. The projects table 
would now be defined in the following way. 

CREATE TABLE projects ( 
proj-no integer, 
title varchar(50), 

budget integer, 
description CHARACTER LARGE OBJECT, 
description-id db2texth) 

Text content is stored in the table using the traditional data 
types available for character data, such as variable length 
character data types, or character large objects. Each text 
colwnn is ‘accompanied’ by an additional column of type 
‘db2texth’, which is a user-defined distinct type intro- 
duced by Text Extender. The values of these columns (also 
called text handles) serve, among other things, to uniquely 
identify the text documents in the text column for the 
search engine. When issuing text search queries, the 
accompanying handle column has to be used instead of the 
text columns itself, as illustrated in the following query.’ 

SELECT proj-no, title 
FROM compschema.projects 
WHERE contains(description-id, 

‘ “database” IN SAME SENTENCE AS 
“object-relational” ‘) 

Figure 1 explains the basic architecture of the text 
extender in terms of the interaction of the database engine 
with the text search engine, and helps to illustrate how the 
above query would be evaluated. Please note that the 
architecture depicted in the figure is in so far incomplete 
as it illustrates only aspects related to text search UDFs. 
Additional hctionality and components of Text 
Extender, such as client components and administrative 
APIs are not described. The query would be submitted via 
a DB2 client to the DB2 server engine. For each row in the 
projects table, the engine calls the contains function with 
the contents of the description-id column and the search 
pattern as arguments. The contains tiction is a user- 
defined function written in a 3GL (C). It again calls the 
text search engine (realized as a set of C functions in a 
shared library), passing it the search pattern as well as the 
name of the index covering the text documents stored in 
the description column of the projects table.2 The text 
search engine returns the result of the text search to the 
contains UDF body in form of a list of document identifi- 
ers (i.e., values of type db2texth). The UDF checks 
whether the identifier that has been supplied by the data- 
base engine is actually contained in the result list returned 
by the text search engine, and returns the appropriate 
result (‘true’ or ‘false’) to the database engine. Based on 
the result of the contains function call, the database engine 
will construct the query result. It is possible for the con- 
tains UDF to keep the results returned by the text search 
engine across invocations inside of a query by using a spe- 
cial ‘scratchpad’ memory area supplied by the engine. 
Therefore, the actual text search using the external text 
search engine has to be performed only once, during the 

1. This approach was chosen to be able to perform text 
search over existing character data columns without 
breaking existing applications. The ADT support will 
be ad&d in a fnture release. 

2. This information is stored in text extender system cata- 
log tables in the database. 
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Figure 1: Interaction of database and 
text search engine in Text Extender. 

first invocation of the contains UDF inside of a query. 
There are several issues related to this type of coupling 
that we would like to address very briefly. 
l Text index creation is initiated using a separate text 

extender API implemented on top of DB2. It utilizes 
DB2 stored procedures to have the text engine build the 
index, which consists of a set of files stored outside of 
DB2 in an index directory on the server system. 

l Meta information relevant for text search, such as the 
names of database columns enabled for text search and 
the names of the external text indices covering a certain 
database column are stored in additional ‘catalog’ 
tables. The catalog table is a regular DB2 table, whose 
contents are manipulated by the text extender admin 
functions, but can be read by the end-user using stan- 
dard SQL. 

9 For constructing the external text index, a separate pro- 
cess is initiated that accesses the text catalog table and 
determines the text column containing the text data, as 
well as the associated handle column. It then reads the 
text data plus the handle on a per-document basis, and 
analyzes the text for constructing the index entries, stor- 
ing the text handle value as a unique identifier of the 
document inside the index. 

l DB2 triggers, which may also call UDFs in the condi- 
tions and trigger bodies, are used to reflect updates per- 
formed on text columns correctly in the corresponding 
text indices. 

l The contains UDF for text search runs in the same pro- 
cess and address space as the database engine. This 
extremely minimizes UDF overhead by eliminating 
expensive inter-process communication.’ 

For a detailed description, the reader is referred to 

1. Additionally, DB2 supports a ‘fenced’ execution mode 
for l mrusted’ UDFs, where the UDF runs in its own 
process, separate from the DB engine. 

[IBM95, IBM96]. 

Problem Description Rephrased 

Although the above described architecture permits the 
exploitation of an external text search engine through its 
native APIs, and even limits the interaction to a single call 
(performed during the first call of the contains UDF), there 
is no way to avoid a full table scan on the projects table. In 
other words, although the text search engine can provide 
the result in form of a set of identifiers in one call, the 
database engine will call the contains function for each 
row in the table. The main problem is therefore: How can 
the set of identifiers returned by a text index lookup 
(involving the API of the external text search engine) be 
fed back into the database query evaluation process in a 
way that is comparable to a ‘traditional’ database index 
lookup to avoid the table scan. Moreover, the mechanism 
to achieve this integration of results needs to be externally 
available through a database API, so that it can be utilized 
by anybody that wants to integrate support for new data 
types* 

3 Using Table Functions - a Fist Step 

Essentially, the problem described above lies in the mis- 
match of the text search engine access (one access per 
base table column or index, returning a set of identifiers) 
and the SQL text search function ‘contains’ (one call per 
given identifier, result is true/false). This can be overcome 
by replacing or supplementing the ‘contains’ function with 
a different type of userdetied function that matches the 
characteristics of the text engine access. Based on the con- 
cepts and syntax introduced in SQL3, we can define a new 
user-defined function that takes as its arguments a text 
search pattern and information about the scope of the 
search, and produces as a result a table of identifiers for 
the documents matching the search expression. The fol- 
lowing syntax could be used to create such a function in 
SQL, which is named ‘containstable’? 

CREATE FUNCTION containstable 
(schema VARCHAR( 8), 
table VARCHAR( 18), 
column VARCHAR( 18), 
searcharg LONG VARCHAR) 

RETURNS TABLE(resultid db2texth); 

The schema3, table, and column names are parameters 
supplied by the user to specify the scope of the text search. 
Internally, this information can be used by the ‘containsta- 
ble’ function to determine the information (such as the 
external text index name) that needs to be supplied to the 
text search engine for specifying the context of the search. 

2. The concept of table functions is available in IBM’s 
DB2 Universal Database product 

3. A schema in DB2 is simply a collection of named 
objects, The same table name can be used multiple 
tunes in different schemas, denoting different tables. 
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This information could be stored either in an additional 
database table serving as a system catalog for text indices, 
or in an external file. The result of the function call is a 
table, whose rows identify the matching documents. 
A query using this new UDF when written in standard 
SQL3 would look like the following: 

SELECT proj-no, title 
FROM compschema.projects 
WHERE description-id IN 

(SELECT resultid 
FROM TABLE(containstable( ‘ COMPSCHEMA’ , 

‘PROJECTS’, 
‘DESCRIPTION-ID’, 
‘ “database” IN SAME SENTENCE AS 
“object-relational” ‘)) 

AS restab (resultid)) 

This query produces the same results as the original query 
introduced in Section 2 using ‘contains’. The ‘containsta- 
ble’ function producing a table of ids can be used in the 
FROM clause of the SELECT statement, and referenced 
just like any other table, as can be seen in the subquery in 
the above query. 
An alternative usage of this table function is the following 
query, which uses a more efficient join instead of a sub- 
query. A good query optimizer would also be capable of 
internally producing this form of the query out of the pre- 
vious one. 

SELECT proj-no, title 
FROM compschema.projects, 

TABLE(containstable( ‘COMPSCHEMA’ , 
‘PROJECTS’, 
‘DESCRIPTION-ID’, 
‘ “database” IN SAME SENTENCE AS 
“object-relational” ‘)) 

AS restab (resultid) 
WHERE description-id = resultid 

As can be seen from the queries, in order to retrieve infor- 
mation about the matching projects, a join with the 
projects table using the id columns has to be performed. 
For performance reasons, an index on the identifier col- 
umn should be available, so that a more efficient join 
method can be chosen by the optimizer. 
The significant advantage of using the table function ‘con- 
tainstable’ is the performance gain. Since the resulting 
identifiers can be directly picked up by the database 
engine to locate the tuples in the projects table, the table 
scan that had to occur in the original ‘contains’ solution is 
avoided. In other words, the index of the text search 
engine is really utilized by the database engine to directly 
determine result tuples in the projects table. Note that a 
database index has to exist on the identifier column 
(description-id) so that the resulting indentifiers can be 
used for fast lookup. 
But still there are disadvantages in this approach: 
l The user has to decide to use the ‘containstable’ mnc- 

tion and the different form of query instead of the origi- 
nal one using ‘contains’ as introduced in Section 2. 

Moreover, existing query front-end tools that generate 
SQL queries currently cannot create the above syntax 
involving table functions. It would therefore be nicer if 
the DBMS (i.e., the optimizer) could automatically 
apply a rewrite, if the underlying base table is large 
enough. 

l The containstable UDF works very well for base tables. 
However, in the case that we have a view that, for 
instance, produces a union of two text tables, the usage 
of the ‘containstable’ function may cause problems. 
This is because the view itself is not associated with a 
text index at all, but the two text tables can be associated 
with different text indices. If the user supplies the 
schema, table and column name of the view, the con- 
tainstable function would need to break down the view 
definition to the columns of the base tables involved. 
This can be a very tedious tasks involving the lookup of 
view definitions in system catalogs and semantic analy- 
sis of the view definitions. 

Therefore, we propose an automatic rewrite approach 
involving the DB optimizer. 

4 The Automatic Rewrite Approach 

The above described containstable UDF exhibits exactly 
the ‘properties’ that one usually finds with standard DB 
indexing. For the evaluation of a certain predicate (or 
function returning a boolean value), a special function 
(index lookup) can be applied that yields an identification 
of the matching values. For locating the applicable index, 
one needs to know the schema, table, and column for the 
item involved in the predicate, plus a value for the actual 
lookup. These are exactly the input parameters for ‘con- 
tainstable’. 
If the optimizer knows about the existence of this function 
and about the fact that it can be exploited when evaluating 
the ‘contains’ function, then an automatic rewrite can be 
performed by the optimizer. This can happen after view 
expansion, which solves the second problem described 
above. 
Note that the user still has to supply the definition of the 
table function, such as ‘containstable’. The table function 
can hardly be generated automatically, because it follows a 
different processing model than a scalar function. 

4.1 Defining Index Functions 

Assume the following definition for the UDF ‘contains’: 

CREATE FUNCTION 
contains(text db2texth, searcharg VARCHAR) 

RETURNS BOOLEAN 

Then this information required for performing the rewrite 
can be communicated to the DBMS through the following 
extensions in the definition of the ‘containstable’ UDF: 

CREATE FUNCTION containstable( 
schema VARCHAR(8), 
table VARCHAR( 18), 
column VARCHAR( 18), 
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searcharg LONG VARCHAR) 
RETURNS TABLE(resultid db2texth) 
INDEX FUNCTION FOR 

contains (id db2texth, arg VARCI-IAR) 
INDEX CHECK index-exists ( 

VARCHAR(8), VARCHAR( 18), VARCHAR( 18)) 
COLUMNS id AS resultid 
VALUE arg 

Some comments on the above extensions: 
INDEX FUNCTION FOR contains (id db2texth, arg 
VARCHAR) 
This specifies that the ‘containstable’ function is a 
rewrite alternative (‘index function’) for the UDF ‘con- 
tains’ with the given parameter types. 
INDEX CHECK index-exists (VARCHAR(8), VAR- 
CHAR(l8), VARCHAR(l8)) 
For the case that the creation of the external text index is 
not communicated to the DBMS (e.g., using an exten- 
sion of the ‘CREATE INDEX’ statement), this clause 
specifies a boolean UDF that can be used to determine 
whether a user-defined index has actually been defined 
on a certain column. The function parameters are the 
schema name, table name, and column name. 
Such a function can be used at compile time to deter- 
mine whether an index exists (result value = true) and 
therefore the rewrite can be performed, or whether this 
is not the case (result = false). 
COLUMNS id AS resultid 
This specifies (1) a parameter position of the ‘original’ 
UDF (contains), and (2) a field name of the table 
returned by the ‘index UDF’. The parameter in (1) 
should hold the column item in the original query. In 
other words, this is the name of the parameter that is 
replaced by the name of the indexed column in the UDF 
call. The field name in (2) specifies the name of the cor- 
responding column/field in the result table produced by 
the ‘index UDF’. 
It is a default assumption, that the index UDF has three 
input parameters for the given column, which take the 
schemaname, tablename, and columnname. One may 
think of index UDFs that involve more than one table 
column. In this case, more than one parameters can be 
specified and the number of ‘default’ parameters for the 
index UDF would be 3 * # of columns. 

l VALUEarg 
This specifies the parameter position of the ‘original’ 
UDF (contains), which will hold the ‘value’ we are 
using for the index lookup. 

Given our sample query 

SELECT proj-no, title 
FROM projects 
WHERE contains(description-id, 

‘ “database” IN SAME SENTENCE AS 
“object-relational” ‘) 

and the above definition of the function ‘containstable’ as 
an index function, the rewrite process would be performed 

in the following steps. 
1. Based on the function signature (i.e., name and parame- 

ter types) of the ‘contains’ function, the ‘containstable’ 
function can be determined as a possible index function. 

2. In the query, the ‘description-id’ column is used as the 
first parameter of the ‘contains’ function. This matches 
the position of the formal parameter ‘id’ for the contains 
function, specified in the clause ‘COLUMNS id AS 
resultid’ of the ‘containstable’ function. 

3. In the query, the second argument of the ‘contains’ fhnc- 
tion call is a text literal (constant). This matches the 
position of the formal parameter ‘arg’, specified in the 
clause ‘VALUE arg’ of the ‘containstable’ function. 

4. Using the schema, table, and column names of the 
‘description-id’ column as parameters, the check func- 
tion ‘index-exists’ is called. The following rewrite steps 
are only performed if the function evaluates to true. 

5. Based on the correspondence of the formal parameter 
names specified in the index function definition, the 
‘contains’ function call can be replaced by an IN predi- 
cate. The first operand of the IN predicate is the 
‘description-id’ column, because its formal parameter 
‘id’ in the ‘contains’ function is associated with the 
result column name of the index function (resultid) in 
the clause ‘COLUMNS id AS resultid’. The second 
operand of the IN predicate is the subquery statement 
involving the call of the index function ‘containstable’ 
as a table function. The names of the schema, table, and 
column involved in the original function call, together 
with the search argument value are passed as arguments 
of the ‘containstable’ function. 

6. This results in the following rewritten query: 

SELECT projno, title 
FROM compschema.projects 
WHERE description-id IN 

(SELECT resultid 
FROM TABLE(containstable(‘COMPSCHEMA’, 

‘PROJECTS’, 
‘DESCRIPTION-ID’, 
‘ “database” IN SAME SENTENCE AS 
“object-relational” ‘)) 

AS restab (resultid)) 

4.2 Rewrite Process 
Based on the syntax given above for defining the index 
function, we can now define in a general form, how a 
query can be rewritten to replace the appearance of a (sca- 
lar) search function by an equivalent search condition 
involving the index function. 
Consider the following ‘template’ for an index function 
definition 

CREATE FUNCTION <index-function-name> 
(<schema> VARCHAR(8), 
<table> VARCHAR( 18), 
<columns VARCHAR(l8), 
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<value> <valuetype>) 
RETURNS TABLE (<resultcol> <columntype>) 
INDEX FUNCTION FOR <original-function> 

(<paraml> <columntype>, 
<param2> <valuetype>) 

JNDEX CHECK <index-check-fct> 
(<schema> VARCHAR(8), 
<table> VARCHAR( 18), 
<column> VARCHAR( 18)) 

COLUMNS <paraml> AS <resultcol> 
VALUE <paran-& 

Let’s assume that we have an occurrence of the original 
UDF with the following pattern. 

SELECT . . . FROM . . . WHERE <original-function> (<col- 
name>, <searcharg>) 

where the formal parameter name for <colname> in <orig- 
inal-function> is Cparaml>, and the formal parameter 
name for <searcharg> is <param2>. Assume that cschem- 
aname> and <tablename> are the schema and table names 
for the column <colname>, and that <restablename> is an 
arbitrary (temporary) table name generated by the opti- 
mizer for the rewrite. 
Then we can rewrite the query in the following way: 

if (<index-check-fct>(<schemaname>, <tablename>, 
<colname>) = ‘true’) 

replace ‘<original-function>(<colname>, <searcharg>)’ 
with ‘<colname> IN 

(SELECT <restablename>.<resultcol> 
FROM TABLE(<index-function-name>( 

<schemaname>, 
<tablename>, 
<colname>, 
<searcharg>) 

AS <restablename>)’ 

The rewrite replaces the occurrence of the original t%nc- 
tion with an IN predicate involving a subquery over the 
table produced as the result of the index function. As 
already pointed out earlier, an equivalent form of the query 
produced by the rewrite would avoid the subquery, but 
position the call of the index function in the FROM clause 
of the query and use a join predicate instead of the IN 
predicate. For our proposal, we assume that the transfor- 
mation of the subquery to the join can be left to the opti- 
mizer as a standard rewrite optimization, and therefore 
does not need to be incorporated explicitly into the index 
tunction rewrite. 

4.3 Queries Involving Views 

As one can see from the above description of the rewrite 
process, this rewrite is ‘local’ in the sense that it simply 
replaces the occurrence of one predicate with another one 
that involves a subquery. This can be seen as a local ‘pred- 
icate expansion’, which can be applied by a reasonably 
capable optimizer much in the same way as a view expan- 
sion. However, there is one constraint in terms of when 
this simple rewrite can be applied: In order to handle que- 

ries over views correctly, the rewrite can only be applied 
after the optimi=r has expanded the view defmitions and 
merged them with the original predicates of the query. 
Consider the following simple view definition: 

CREATE VIEW compschema.expensiveqrojects AS 
SELECT * 
FROM compschema.projects 
WHERE budget > 500 000 

and the following query 

SELECT proj-no, title 
FROM compschema.expensive_projects 
WHERE contains(description, 

‘ “database” IN SAME SENTENCE AS 
“object-relational” ‘) 

Applying the proposed index function rewrite before the 
view expansion would result in the following rewritten 
query: 

SELECT proj-no, title 
FROM compschema.expensive_projects 
WHERE descriptior+id IN 

(SELECT resulnd 
FROM TABLE(containstable(‘COMPSCHEMA’ , 

‘EXPENSIVE-PROJECTS’, 
‘DESCRIPTION’, 
‘ “database” IN SAME SENTENCE AS 
“object-relational” ‘)) 

AS restab (resultid)) 

However, the containstable function will fail to return the 
desired results in this case, because the table name sup- 
plied 
(‘EXPENS:E PR~CTS’)“fs not tz nameyfyg 
table, but the <ame of the view. Therefore, a lookup to 
determine the name of the index associated with the que- 
ried table will fail, since only base tables can be indexed. 
Consequently, the index function rewrite can only be 
applied after the optimizer has brought the query into the 
following form (or into an internal representation equiva- 
lent to this query) by expanding the view definition and 
merging the WHERE clauses. 

SELECT proj-no, title 
FROM compschema.projects 
WHERE budget > 500 000 

AND contains(description, 
‘ “database” IN SAME SENTENCE AS 
“object-relational” ‘) 

Then, the application of the index function rewrite yields 
the following, correct form. 

SELECT projno, title 
FROM compschema.projects 
WHERE budget > 500 000 

AND description-id IN 
(SELECT resultid 
FROM TABLE(containstable(‘COMPSCHEMA’, 

‘PROJECTS’, 
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‘DESCRIPTION’, 
‘ “database” IN SAME SENTENCE AS 
“object-relational” ‘)) 

AS restab (resultid)) 

5 Further Discussion 

Optimizer Considerations 

The rewrite mechanism for index function integrates very 
well with existing optimizer technology, mainly because 
of two reasons: 
l The required transformation affects only the scope of a 

single predicate in a query, and replaces the predicate 
entirely with another one. No complex transformations 
in the scope of the entire query are required. Therefore, 
the implementation of the rewrite in the scope of a rela- 
tional optimizer is inexpensive, and does not come in 
the way with existing rewrite optimization rules. 

l The rewrite utilizes existing language constructs (i.e., 
userdefined table functions), which, if supported by the 
database engine, are already known to the optimizer in 
terms of execution costs, statistics, etc. For example, 
DB2 Universal Database [Cha96, Dav96] allows the 
user to give information to the optimizer about the exe- 
cution costs of external, user-defined functions. Since 
index functions are nothing more than standard user- 
defined table functions, the optimizer can use cost infor- 
mation supplied for them in the further process of opti- 
mizing the query. In other words, no additional 
extensions to the optimizer are required for communi- 
cating information about costs and statistics. 

Generalization for arbitrary predicates 

The above approach supports the rewrite of user-defined 
functions that return a boolean value. What if a function 
returns other (numeric or non-numeric) values, and 
appears as an operand of an arbitrary SQL predicate? 
Assume the following definition for the UDF ‘rank’: 

CREATE FUNCTION rank (id db2texth, 
arg LONG VARCHAR) 

RETURNS DOUBLE PRECISION 

This function behaves like the contains function, but 
returns a rank value instead of a boolean value, describing 
how well a document meets the text search criteria. For 
example, the query 

SELECT proj-no, title 
FROM projects 
WHERE rank (description, 

‘ “database” IN SAME SENTENCE 
AS “object-relational” ‘) 

> 0.5 

would retrieve all text information for documents that 
match the given search argument with a rank value > 0.5 
(all rank values range between 0 and 1). 

Our approach can be generalized to allow index functions 
that can be applied in this case as well. For this type of 
support, the index function would need to take additional 
arguments for capturing the predicate and the additional 
operands in the predicate. The CREATE FUNCTION 
statement for the indexing function would then look like 
the following one: 

CREATE FUNCTION ranktable( 
schema VARCHAR(8), 
table VARCHAR( 18), 
column VARCHAR( 18), 
searcharg LONG VARCHAR, 
predicate VARCHAR(l8), 
rankval DOUBLE PRECISION) 

RETURNS TABLE(resultid db2textb) 
INDEX FUNCTION FOR 

rank(id db2texth, arg LONG VARCHAR) 
INDEX CHECK index-exists 

(VARCHAR(8), VARCHAR( 18), VARCHAR( 18), 
VARCHAR(18)) 

COLUMNS id AS resultid 
VALUE arg 

There are two significant changes (marked by putting 
them in bold face) when compared with the approach out- 
lined above for the boolean functions: 
l Additional parameters have been added for communi- 

cating the predicate (in textual form) and the 2nd oper- 
and involved in the predicate to the indexing finction. 
At run-time, these parameters will hold the predicate 
(e.g., ‘>‘) and the second parameter (e.g., 0.5) of the 
comparison in which the original function call appears. 

l The function for checking at compile-time, if an index 
exists, has been extended by an additional parameter 
that holds the predicate involved in the comparison 
(e.g., ‘>‘). This is used by the ‘index7exists’ function to 
determine, whether the user-defined index functionality 
can handle the predicate at all. If the predicate cannot be 
interpreted by the indexing function, then the 
‘index-exists’ function can return an appropriate error 
code at compile-time to prohibit the rewrite. 

The automatic rewrite for the above query would then 
result in the following query: 

SELECT proj-no, title 
FROM compschema.projects 
WHERE description-id IN 

(SELECT resultid 
FROM TABLE(ranlctable(‘COMPSCHEMA’, 

‘PROJECTS’, 
‘DESCRIPTION’, 
‘ “database” IN SAME SENTENCE AS 
“object-relational” ‘, 

‘>‘, 
0.5)) 

AS restab (resultid)) 

In other words, the predicate ‘>’ and the second operand 
‘0.5’ would be passed to the index function as additional 
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parameters. The lower bound of 0.5 for the rank value can 
then either be passed to the external search engine (pro- 
vided that the programming API of the text search engine 
supports this), or it can be applied on the results delivered 
by the text search engine in the table function itself, which 
would return only those documents whose rank value 
exceed the given threshold. 

6 Related Work 

The presented approach allows the efficient exploitation of 
content-specific indexing and search capabilities of exist- 
ing, stand-alone search engines in databases, without hav- 
ing to add new, content-specific access methods to the 
database or map content-specific indices onto the existing 
database access methods. 
[CS933 addresses the same problem, and presents a solu- 
tion based on user-defined, logical rewrite rules for speci- 
fying logical equivalences of subqueries. In contrast, our 
approach focuses on the easy and straightforward specifi- 
cation of a certain type of equivalences that can also be 
handled more efficiently by the query engine in the query 
rewrite phase, without introducing a logic-based rewrite 
rule notation. Moreover, we introduce capabilities to sup- 
ply the table functions in the rewritten part of the query 
with information available to the query processing engine, 
such as table name and column name of the columns 
involved in the query, and with the capability to register 
index check functions (such as ‘index-exists’) that allow 
the query engine to check on prerequisites to be met 
before the rewrite takes place. 
The approaches presented in [DDSS95] and [GFHR96] 
for integrating text search and databases have been devel- 
oped on the basis mapping the text index itself into rela- 
tional tables. In other words, an (enhanced) inverted word 
list of text documents is stored in a relational table, which 
can be indexed using the standard indexing techniques of 
the DBMS. [DDSS95] uses an enhancement of the data- 
base engine for this purpose, which is essentially a capa- 
bility to store a table as ‘index only’ or as an inverted table 
structure. In both approaches, the user or application 
assumes responsibility for updating index information, if 
the original text documents change. Moreover, the appli- 
cation has to be aware of the index model and the correla- 
tion of text tables and index tables in formulating text 
search queries. Essentially, this approach completely 
exposes the structure of the content-specific index and 
requires to reimplement content-specific search within the 
database system. Using this mapping scheme, the support 
that can be provided by the database system is limited to a 
text search involving a single keyword. Complex search 
patterns need to be mapped to a combination of indepen- 
dent relational operations on the underlying base tables, 
making additional optimizations usually performed by 
search engines not applicable. 
The approach described in [LS88], also in the realm of 
textual databases, which is based on extensions of index- 
ing support in the POSTGRES system [Sto86], essentially 
suffers the same drawbacks. An extended indexing sup- 

port is provided that permits a user-defined function to 
produce a list of values for given column value, which are 
then stored in the index entries instead of the original col- 
umn value. This is used to produce a list of keywords 
found in a text document, resulting in an index structure 
similar to an inverted word list, The same limitation in 
terms of the complexity of search and the required reim- 
plementation of additional search capabilities within of the 
DBMS as described above apply here as well. 
A number of database access methods have been devel- 
oped for content-specific search, such as the R-tree 
[Gut841 and the P-tree [Jag901 for spatial data, or D-trees 
[Dav96b] for textual data. In the (rare) case that a database 
system supports such access methods, they are ‘hard- 
wired’ into the database engine, leaving no room for 
adjustments to the specific requirement and advantages of 
the indexing technology ‘owned’ by a search engine ven- 
dor. 
Adding new access methods to a database engine is a very 
complicated and expensive task. [HNP95] and [KMH97] 
present an access method ‘template’ called generalized 
search trees, which can easily be ‘instantiated’ by plug- 
ging in various ‘operations’ into the generic template. 
While this approach seems to be very promising, it is pro- 
posing a framework for a tight integration of user-defined 
access methods into the DB system, whereas our approach 
concentrates on making existing access structures of exter- 
nal search engines efficiently exploitable in SQL queries. 
[HS93] addresses the optimization of queries involving 
expensive predicates, such as external function invoca- 
tions. By exploiting cost information about the predicate 
invocations, the query processor will evaluate such expen- 
sive predicates as late in the plan as possible. Such tech- 
niques rely only on the availability of cost information for 
the execution of UDFs, and do not attempt to replace a 
query predicate by another predicate or subquery. They 
therefore complement our approach in that they can be 
used to further optimize both the original query plan, as 
well as the one resulting from our proposed rewrite, and 
chose the best one in the end. 

7 Summary 

Object-relational database systems have started to leave 
the research labs and become a reality in the marketplace. 
These systems are capable of language extension that per- 
mit suppliers of content-specific search technology, such 
as fulltext retrieval engines, to ‘plug’ into the database 
engine in order to extend the content management and 
search capabilities of SQL. 
In this paper, we have presented an approach that supports 
this type of plug-in extensibility in an easy and efficient 
manner. Based on the concept of user-defined table fttnc- 
tions, which can be registered in the database engine as so- 
called index functions, a search technology provider can 
integrate search as well as indexing support into the data- 
base engine without significant impact to the original, con- 
tent-specific search engine, and without sacrificing 
integration at the query language (SQL) and query execu- 
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