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The complexity of biological systems provides for a great diversity of
relationships between genes. The current analysis of whole-genome
expression data focuses on relationships based on global correlation over
a whole time-course, identifying clusters of genes whose expression levels
simultaneously rise and fall. There are, of course, other potential relation-
ships between genes, which are missed by such global clustering. These
include activation, where one expects a time-delay between related
expression pro®les, and inhibition, where one expects an inverted
relationship. Here, we propose a new method, which we call local clus-
tering, for identifying these time-delayed and inverted relationships. It is
related to conventional gene-expression clustering in a fashion analogous
to the way local sequence alignment (the Smith-Waterman algorithm) is
derived from global alignment (Needleman-Wunsch). An integral part of
our method is the use of random score distributions to assess the statisti-
cal signi®cance of each cluster. We applied our method to the yeast cell-
cycle expression dataset and were able to detect a considerable number
of additional biological relationships between genes, beyond those result-
ing from conventional correlation. We related these new relationships
between genes to their similarity in function (as determined from the
MIPS scheme) or their having known protein-protein interactions (as
determined from the large-scale two-hybrid experiment); we found that
genes strongly related by local clustering were considerably more likely
than random to have a known interaction or a similar cellular role. This
suggests that local clustering may be useful in functional annotation of
uncharacterized genes. We examined many of the new relationships in
detail. Some of them were already well-documented examples of inhi-
bition or activation, which provide corroboration for our results. For
instance, we found an inverted expression pro®le relationship between
genes YME1 and YNT20, where the latter has been experimentally docu-
mented as a bypass suppressor of the former. We also found new
relationships involving uncharacterized yeast genes and were able to
suggest functions for many of them. In particular, we found a time-
delayed expression relationship between J0544 (which has not yet been
functionally characterized) and four genes associated with the mitochon-
dria. This suggests that J0544 may be involved in the control or activation
of mitochondrial genes. We have also looked at other, less extensive data-
sets than the yeast cell-cycle and found further interesting relationships.
Our clustering program and a detailed website of clustering results
is available at http://www.bioinfo.mbb.yale.edu/expression/cluster (or
http://www.genecensus.org/expression/cluster).
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Introduction

The massive datasets generated by microarray
experiments present a challenge to those interested
in studying the regulatory relationship between
genes.1 ± 5 Up to now, one of the main challenges
has been to devise methods for grouping together
genes that have similar expression pro®les; this is
done to determine clusters of genes that are tran-
scribed together as cellular conditions vary. The
most obvious use of such clusters is an improved
understanding of transcription regulatory net-
works within genomes. Genes with similar
expression pro®les are likely to be subject to identi-
cal, or related, transcriptional control. This fact has
been used to search for binding site motifs com-
mon to coregulated genes.6 ± 8

There are further applications for expression
clustering, especially in combination with other
information about genes such as their subcellular
localizations, metabolic functions, and intermolecu-
lar interactions.9 ± 13,58,59 In particular, microarray
technology allows for studying the entire genome,
while other types of gene annotation (e.g. bio-
chemical functions) are often available only for a
fraction of the genes. Therefore, researchers have
attempted to predict protein function and inter-
action by expression clustering. This is based on
``guilt by association'',14 the premise that proteins
with similar expression pro®les (i.e. synexpression
relationship) have similar functions.15 ± 18

Given the central importance of gene clusters in
the studies just described, computational methods
have been devised to (i) assess the similarity
between pairs of expression pro®les from different
genes, and then (ii) group together those genes
with similar pro®les. Effectively, the two aims are
analogous to approaches in protein sequence anal-
ysis, where there are methods for assessing
sequence similarity between pairs of sequences
(e.g. BLAST 19) and then grouping them into hom-
ologous families (e.g. Pfam20 or Protomap21).

The most common algorithms for grouping
genes with related pro®les are hierarchical
clustering,17,22 self-organizing maps,23,24 and K-
means clustering.25 Hierarchical methods were
originally derived from algorithms used to con-
struct phylogenetic trees, and group genes in a
``bottom-up'' fashion; genes with the most similar
expression pro®les are clustered ®rst, and those
with more diverse pro®les are included iteratively.
In contrast, the self-organizing maps and K-means
methods employ a ``top-down'' approach in which
the user prede®nes the number of clusters for the
dataset. The clusters are initially assigned ran-
domly, and the genes are regrouped iteratively
until they are optimally clustered. Bayesian and
neural networks provide additional approaches
toward clustering.26

Prior to clustering, users must de®ne all the pair-
wise similarities between the individual expression
pro®les. Up to now, the most popular measure
that has been employed is the Pearson correlation
coef®cient; given a pair of genes, this method com-
pares the expression levels at each time-point and
measures the variation across the whole pro®le.
The score, the coef®cient r, ranges from ÿ1 to 1,
where ÿ1 signi®es perfect negative correlation, 0
indicates no correlation and 1 a perfect positive
correlation. Gene pairs with scores approaching 1
are considered to have similar expression pro®les,
as shown in Figure 1(a). Other measures include
the squared Pearson correlation coef®cient, Spear-
man rank correlation, the jackknife correlation
coef®cient, and Euclidean distance.22,27,28

A major drawback of these measures is that they
ignore many additional relationships implicit in
expression time-courses. For instance, a gene may
control or activate another gene downstream in a
pathway; in this case, their expression pro®les may
be staggered, indicating a time-delayed response in
the transcription of the second gene. Other genes
may have an inhibitory relationship, i.e. as one
rises the other falls in response, and we can expect
their expression pro®les to be inverted with respect
to each other (or inverted with a time-delay). The
current methods using correlation coef®cients fail
to detect these important relationships. First, they
only assess global similarities between expression
pro®les, thereby missing staggered relationships.
Second, negative correlations have not previously
been considered, thus ignoring inhibition. Here, we
propose a new algorithm; it is based on the dyna-
mical programming method for local sequence
alignment29 and hence we call it local clustering.
Its development from the traditional gene
expression clustering method17 is strongly
suggested by the way local sequence alignment29

followed on the original global approach.30

Using local clustering, we can identify
expression pro®les that have one of the following
relationships.

(1) Simultaneous correlation (Figure 1(a)). The
expression pro®les of the two genes are synchro-
nous and coincident. Genes with such pro®les are
expected to be subject to identical transcriptional
regulation, which are sometimes called
synexpression.16 This is the only type of relation-
ship currently detected using the traditional corre-
lation coef®cient.



Figure 1. Three examples show-
ing (a) simultaneous, (b) time-
delayed, and (c) inverted relation-
ships in the expression pro®les.
Note there are only eight time
points for each pro®le, while in the
real yeast cell-cycle data there are
17 time points. Also, the expression
ratio is not normalized, whereas in
the real data each pro®le is normal-
ized so that the averaged
expression ratio is 0 and the stan-
dard deviation is 1. The thick seg-
ments of the expression pro®les are
the matched part. (d) The corre-
sponding matrix E for the
expression pro®le shown in (a).
The corresponding matrix D is not
shown because in this case the
match score (the maximal score) is
from E and not D. The numbers
outside the border of the matrix are
the expression ratio shown in (a).
The black cell contains the overall
match score S for these two
expression pro®les, and the light
gray cells indicate the path of the
optimal alignment between the
expression pro®les. The path starts
from the match score and ends at
the ®rst encountered 0. (e) The cor-
responding matrix E for the
expression pro®le shown in (b).
Note the time-shifted relationship
and how the length of the overall
alignment can be shorter than eight
positions. (f) The corresponding
matrix D for the expression pro®les
shown in (c). The matrix E is not
shown because the best match
score is not from this matrix in this
case.
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(2) Time-delayed correlation (Figure 1(b)). The
pro®les of the two genes are similar, but one is
time-shifted, or out of phase with respect to the
other. The expression of some genes may be
delayed compared to others due to a time-lag in
their transcription control.

(3) Inverted correlation (Figure 1(c)). The pro®les
of the two genes are inverted (i.e. one of the pro-
®les is ¯ipped on the time axis relative to the
other). These pro®les may exist where the
expression of one gene inhibits or suppresses the
expression of the other. These relationships have
not been previously analyzed. However, they can
be detected by the traditional correlation coef®-
cient, if one looks at the correlation coef®cients
near ÿ1.

(4) Inverted and time-delayed correlation. This
combines time-shifted and inverted correlations, so
in addition to being inverted, the pro®le of one
gene is staggered with respect to the other.
As a test of the effectiveness and accuracy of our
algorithm, we applied it to a yeast cell-cycle
dataset31 and a less extensive worm development
dataset.32 Af®rmatively, our algorithm detected
simultaneous correlations, as well as time-shifted,
inverted and inverted-time-shifted relationships.
Many of our predicted interactions were con®rmed
with published gene pair relationships. Further-
more, the algorithm proposes highly correlated
gene pairs representing novel pairs of gene
relationships.

To make this comparison clear, we refer to the
results from our method as derived from ``local
clustering'' and contrast these with results from
``traditional, global clustering''. The latter
approach, which is, for instance, used by Eisen
et al.17 and Tamayo et al.,23 is based on computing
a distance matrix only from simultaneous corre-
lations between expression pro®les (i.e. the tra-
ditional correlation coef®cient).
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Algorithms and Datasets

Local alignment between pairs of
expression profiles

We use a degenerate dynamic programming
algorithm to ®nd time-shifted and inverted corre-
lations between expression pro®les. The algorithm
does not allow gaps between consecutive time
points in the current version. However, there are
some obvious extensions, which we explore later
in the discussion section.

Suppose there are n (1,2, . . . n) time-point
measurements in the pro®le. First, the expression
ratio is normalized in ``Z-score'' fashion, so that for
each gene the average expression ratio is zero and
standard deviation is 1. The normalized expression
level at time point i for gene x is denoted as xi.
Consider a matrix of all possible similarities
between the expression ratio for gene x and gene y.
This matrix can also be called a ``score matrix''. In
our algorithm, it is de®ned as M(xi,yi) � xiyj. For
simpli®cation, it will be referred as Mi,j for com-
parison of any two genes.

Then, two sum matrices E and D are calculated
as

Ei;j � max�Eiÿ1; jÿ1 �Mi;j; 0�
and

Di;j � max�Diÿ1; jÿ1 ÿMi;j; 0�
The initial conditions are E0,j � 0 and Ei,0 � 0, and
the same initial conditions are also applied to the
matrix of D. The central idea is to ®nd a local seg-
ment that has the maximal aggregated score, i.e.
the sum of Mi,j in this segment. This can be accom-
plished by standard dynamic programming as in
local sequence alignment29 and results in an align-
ment of l aligned time points, where l 4 n.

Finally, an overall maximal value S is found by
comparing the maximums for matrices E and D.
This is the match score S for the two expression
pro®les. If the maximum is off-diagonal in its cor-
responding matrix, the two expression pro®les
have a time-shifted relationship. This involves an
alignment over a smaller number of time points l
than the total number n. A maximal value from
matrix D indicates these two pro®les have an
inverted relationship.

At the end of this procedure, one obtains a
match score and a relationship, i.e. ``simul-
taneous,`` ``time-delayed,`` ``inverted,`` or ``inverted
time-delayed''. Obviously, for the gene pairs with
a very low match score, even though they are also
assigned a relationship, we can classify them as
``unmatched''.

Figure 1(e) is the corresponding matrix E for the
expression pro®les shown in Figure 1(b). The
matrix D for these expression pro®les is not shown
here because the maximal value is not in this
matrix. The match score for these expression pro-
®les, a score of S � 19, is highlighted in the black
cell. There is a time delay (time shift) in their
relationship because the match score of 19 is not
on the main diagonal of the matrix. Figure 1(f) is
the corresponding matrix D for the pro®les shown
in Figure 1(c). The match score is S � 20; and
because the maximum value is from matrix D
rather than E (not shown), these expression pro®les
are correlated in an inverted fashion.

Cell-cycle dataset and generation of
similarity matrix

We tested our algorithm extensively on the yeast
whole genome oligonucleotide expression array
data generated by Cho et al.,31 which included over
6000 open reading frames (ORFs) and 17 time
points. The data set consists of yeast cultures that
were synchronized and sampled at intervals cover-
ing nearly two full cell-cycles. This experiment was
done using an Affymetrix oligonucleotide array33

containing oligos complementary to each of the
yeast ORFs. The raw data were then scaled to
account for the experimental differences between
the four arrays used, and the scaled intensities are
reported in the Cho data. (Of course, our algorithm
can also be applied to a cDNA microarray,1 which
measures changes relative to a reference state creat-
ing an expression ratio, rather than the measure-
ment of mRNA expression levels as detected in
oligonucleotide arrays.) After eliminating the nega-
tive expression levels in the Cho scaled measure-
ments, 5911 genes were included in our
calculation.

We applied our local alignment procedure to all
possible pairs of gene expression pro®les. The
match score and type of relationship (simul-
taneous, time-delayed or inverted) were calculated
and assigned for each expression pro®le pair. This
gave a matrix of all pairwise similarities that can
be used as raw input of clustering algorithm.

Significance statistics

If we divide the maximal match score by the
number of time points (S/n), the resulting ratios are
comparable with traditional correlation coef®cients.
This is strictly true for a global alignment resulting
from a full-length simultaneous or inverted
relationship. It is only approximately true, how-
ever, for local alignments, since these extend over a
smaller number of matched positions l than n. This
suggests that we could alternatively normalize the
match by dividing by the total number aligned
positions (S/l). Doing so will tend to emphasize
scores of the local time-shifted relationships in con-
trast to the global simultaneous relationships.
Because of this normalization ambiguity we decide
to simply report the unnormalized match score S
and the number of aligned and total time points (l
and n, where n is always 17 from the cell-cycle
data). Then, for further clari®cation of the signi®-
cance of each match, we thought it better to calcu-
late proper P-values from the distribution of scores
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(as is conventionally done in sequence and
structural alignment34 ± 38).

In order to estimate a P-value for a given match
score, a set of random expression pro®les was gen-
erated by shuf¯ing the normalized expression
levels at different time points (e.g. interchanging
the expression level at time points 3 and 7, x3 and
x7). The resulting pro®les still satis®ed our earlier
normalization conditions with an average ratio of 0
and a standard deviation of 1. Using the local
alignment procedure, we calculated optimal match
scores S for each random expression pro®les pair
and then tabulated their distribution. This distri-
bution is meant to approximate that of true nega-
tives; through integration, we could calculate a
conventional P-value, P(s > S). This is de®ned as
the probability of obtaining a match score s larger
than S from the random pro®les. The smaller the
P-value is, the more signi®cant the match score.
Since we did not explicitly take into account length
dependence, our P-value statistics are quite conser-
vative, tending to de-emphasize local alignments
in favor of global ones.

The distributions of random match scores in
comparison to the actual observed P(S) values for
the cell-cycle are shown in Figure 2(a), and the
Figure 2. Relationship between the match score S and
P-value. The top panel shows the distribution of match
score for the cell-cycle expression dataset and a random
dataset. Each random pro®le also has 17 time points
and average 0 and standard deviation 1. The bottom
panel shows how the P-value can be calculated by inte-
grating the random distribution.
relationship between the match score and P-value
is shown in Figure 2(b).

Single-linkage clustering

To de®ne a network from the distance matrix,
we used single-linkage, neighbor-joining clustering,
with appropriate thresholds based on the signi®-
cance statistics. Of course, based on the distance
matrix, we could use other clustering methods, e.g.
multiple linkage or K-means. However, as the
focus of this work is the determination of the dis-
tance matrix between genes rather than the cluster-
ing algorithm, we just choose a simple clustering
method.

We have developed a distributed software pack-
age for clustering gene expression data sets with
our local alignment algorithm. The package also
incorporates global clustering and spectral analysis
for comparison and is available from our website,
http://www.bioinfo.mbb.yale.edu/expression/cluster
or http://www.genecensus.org/expression/cluster

Overall Network Topology

To provide a global view of the relationships
detected by local clustering, we show in Figure 3(a)
the network resulting from clustering the yeast
cell-cycle data. In the diagram, the threshold used
to de®ne connected genes is a match score of 16,
which corresponds to a P-value of 10ÿ6 and corre-
lation coef®cient (S/n) of 0.94. The network consists
of 673 nodes (genes) and several large clusters.
Dynamic navigation of the network can be
obtained from our website. Figure 3(b) is a close-
up view of part of a large cluster in the rectangle
outlined in Figure 3(a). Different types of relation-
ships can be seen in this plot. A gray continuous
line signi®es the conventional simultaneous corre-
lation relationship between two genes, an arrow
denotes a time-delayed relationship with the arrow
pointing to the delayed gene, and a broken line
denotes an inverted pro®le relationship. It is clear
that by using our algorithm, new relationships are
found. For instance, additional nodes such as
YMR320W and YKL177W are joined to a large
central cluster, making it even larger than if it were
formed from simultaneous correlations alone. On
the other hand, our method also generates many
new clusters such as SCH9-YFL067W, as shown in
the Figure, which are very small. These two com-
peting factors, growing a big clustering and form-
ing new small clusters, can affect the overall
connectivity and number of clusters in the net-
work.

To quantitatively compare the network de®ned
by local clustering to one based on the traditional
correlation coef®cient, it is useful to compute some
global statistics. We calculated the average number
of connections per node C (the average number of
genes related to any particular gene). It is obvious
that this quantity depends on the size of the net-
work size N (number of nodes in the network),

http://www.bioinfo.mbb.yale.edu/expression/cluster
http://www.genecensus.org/expression/cluster


Figure 3. Network view of relationships de®ned by the algorithm. This Figure was prepared using a software
program based on the graph-drawing library ``AGD'' (http://www.mpi-sb.mpg.de/AGD). (a) A global view of the
network formed by relationships detected by the algorithm. The threshold used for this network is a match score of
16 (P-value of 10ÿ6). (b) A close-up view of the rectangle outlined in Figure 2(a). A continuous line signi®es a simul-
taneous pro®le relationship, an arrow denotes a time delay in the relationship with the arrow pointing to the delayed
gene, and a broken line denotes an inverted pro®le relationship.
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which in turn is controlled by the P-value
threshold used to de®ne the correlation. The top
panel of Figure 4 shows how C varies as a function
of N (and P-value cutoff), for networks generated
both by local clustering and the traditional corre-
lation coef®cient. In both networks, the average

http://www.mpi-sb.mpg.de/AGD


Figure 4. Quantitative comparisons between networks
generated by the local clustering algorithm and the tra-
ditional correlation coef®cient. The top panel shows the
graph of the average connections per node C as a func-
tion of the number of nodes in the network N. The bot-
tom panel shows the graph of the number of clusters as
a function of the size of the network N. In both panels
the indicated black and red dots highlight the thresholds
used for different sizes of network. The numbers in par-
entheses are the effective correlation coef®cient for the
match score.
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number of connections per node C increases with
network size N and has approximately the same
value, for small networks (N < 200). This suggests
that the highest ranked correlations detected by
two algorithms are the same. However, for large
networks, the average connections per node C
diverges, which suggests that the con®gurations of
these two networks are topologically different.
Overall, nodes have fewer connections in the local-
clustering network. One way of understanding this
difference is through plotting the number of clus-
ters versus network size N, as shown in the bottom
panel of Figure 4. For a given network size, there
are slightly more clusters in the local-clustering
network than the global-clustering one.

Examples of Relationships Found by
Local Clustering

Here, we present some speci®c examples of pro-
®le relationships detected by our algorithm that
have been classi®ed as simultaneous, time-delayed
or inverted. In addition to looking at how our pro-
cedure ®nds already known and well-documented
relationships, we also explore some novel relation-
ships, showing how they can shed light on the
function of uncharacterized genes.

Simultaneous relationships

Well-documented relationships

The majority of the correlated expression pro®les
have a simultaneous pro®le relationship, which is
the same type of relationship detected by methods
based on the simple correlation coef®cient.17

Figure 5(a) and (b) show two examples. The
expression pro®les of RPS11A and RPS11B are
shown in Figure 5(a). Both of the genes code for
the ribosomal protein S11 and are 100 % identical
in sequence.39 RPS11A is located on yeast chromo-
some IV, and RPS11B is located on yeast chromo-
some II. Figure 5(b) contains the expression
pro®les of HXT6 and HXT7, which are high-
af®nity hexose transporters nearly 100 % identical
in sequence and have nearly identical functions.40

Inverted relationships

Well-documented relationship

Figure 5(c) shows the pro®les of YME1 and
YNT20, which display an inverted relationship.
Yme1p (yeast mitochondrial escape) is a metal and
ATP-dependent protease. It is associated with the
inner mitochondrial membrane as part of a larger
complex of proteins, which is thought to control
the assembly and degradation of multi-subunit
protein complexes.41 YNT20 has been identi®ed as
a bypass suppressor of Yme1p; it is believed to be
a part of the Yme1-mediated mitochondrial DNA
escape pathway by metabolizing RNA or mito-
chondrial DNA due to its 30-50 exonuclease
activity.41 This is a classic example of an inhibitor
with an inverted relationship to what it inhibits,
and it demonstrates the ability of our algorithm to
®nd a known inverted relationship.

New, suggested relationship

Local clustering also detects a previously
unknown but highly plausible relationship.
Figure 5(d) displays the inverted gene expression
pro®le relationship of PUT2 and SER3, which are
both enzymes of amino acid metabolism. Put2p is
a P5C dehydrogenase that carries out the second
step in proline degradation to glutamate, allowing
proline to be used as a nitrogen source.42 Ser3p is a
3-phosphoglycerate dehydrogenase that is
involved in the synthesis of serine from glycolytic
intermediates.43 It has already been found that
Put2p could be inhibited by serine (and other
amino acids).44 Therefore, even though it has not
been directly shown that Ser3p inhibits Put2p,
based on the related evidence between serine inhi-
bition of Put2p, it is highly likely that this speci®c
enzyme in serine synthesis could also inhibit
Put2p, as shown by our algorithm.



Figure 5. Examples of different
pro®le relationships found by
the algorithm. (a) Simultaneous
expression pro®le relationship of
RPS11A and RPS11B. (b) Simul-
taneous expression pro®le relation-
ship of HXT6 and HXT7.
(c) Inverted expression pro®le
relationship of YME1 and YNT20.
(d) Inverted gene expression pro®le
relationship of PUT2 and SER3.
(e) Time-delayed pro®le relation-
ship between ARC35 and ARP3.
The arrow indicates the time shift
between two pro®les. (f) Time-
delayed relationship between J0544
and ATP11, MRPL17, MRPL19 and
YDR116C. The arrow indicates the
time shift between two pro®les.
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Time-delayed relationships

Strongly documented suggested relationship

The expression pro®les of ARC35 and ARP3 are
shown in Figure 5(e). Both these genes are part of
the Arp2/3 complex in yeast and are thus clearly
related. This complex, which comprises a total of
six proteins, is involved in endocytosis and actin
cytoskeleton organization.45 The expression pro®les
of ARC35 and ARP3 show a time-delayed relation-
ship, with the expression of ARC35 being one time
point (20 minutes) delayed compared to ARP3.
This ®ts in well with Arc35p being required late in
G1 for the cytoskeleton-organization
functionality.46

New suggested relationship

In addition to shedding light on known inter-
actions, local clustering can also suggest possible
interactions or roles of proteins with unknown
functions. J0544 is a yeast protein of unknown
function, based on the documentation in the MIPS,
YPD, and SGD databases.39,47,48 Analysis of the
mRNA expression of this ORF with our algorithm
showed that it has a time-delayed pro®le relation-
ship with four ORFs associated with the mitochon-
dria: ATP11, MRPL17, MRPL19 and YDR116C.
They are all time-delayed by approximately the
same phase as compared to J0544. The expression
pro®le relationships between J0544 and these genes
are shown in Figure 5(f). Atp11p has been found in
mitochondria, and is an F1-ATP synthase assembly
protein.49 Mrpl17p and Mrpl19p are mitochondrial
ribosomal proteins of the large ribosomal sub-
unit.50 YDR116C has similarity to prokaryotic ribo-
somal protein L1 and is a probable component of
mitochondrial ribosomes, as its mRNA abundance
in DNA microarray analysis shows the same
change patterns to a variety of drug treatments
and mutations, as do many mitochondrial
proteins.51 The pro®le relationship between J0544
and these four mitochondrial ORFs suggests that
J0544 may be involved in mitochondrial processes,
perhaps as an activator or some other type of com-
ponent.

Additional relationships

Our procedure can obviously uncover many
more relationships than we have space to discuss
in detail here. Additional time-delayed and
inverted relationships, with discussion of relevant
publications, for the cell-cycle dataset can be
obtained from our web site.

Overall Relationship of Local
Clustering to Protein Function

Early work has surveyed the ability of
expression data to predict functions, interaction, or
localization;6,10,12 ± 14,16,18 similar expression pro®les
may indicate similar cellular roles or physical inter-
actions. In particular, it is quite plausible that
tightly interacting proteins should have correlated
patterns of gene expression. However, it is



Figure 6. Odds ratio of having the same function or
interaction between two genes. (a) A hypothetical
example illustrating the logic behind the odds ratio cal-
culation. To check whether a biological interaction is
related to expression pro®le relationships, we calculate
the probability for ®nding the interaction between the
gene pairs given a particular expression pro®le match
score, say 16. A dot or a cross indicates the gene pairs,
and the crosses indicate pairs with known biological
association. The conditional probability P(kjS) for ®nd-
ing an interaction for a given match score is the ``den-
sity of crosses'' in the different subgroup, e.g. the
subgroup of match score 16. The odds ratio is the ``den-
sity of crosses'' in different subgroups normalized by
the density for whole genome (big outer circle). Imagine
an experiment where 2000 known interactions were
detected among 6000 yeast genes. There are theoretically
�18 million ((60002-6000)/2), possible interactions
among these 6000 genes. Therefore, the expected prob-
ability of ®nding an interaction if one randomly selects
pairs from the 6000 genes is about 10ÿ4 (�2000/
18,000,000). To check whether this is related to
expression pro®le relationships, we calculated the prob-
ability for the gene pairs with different expression pro-
®le match scores. Suppose 1000 gene pairs have a match
score of 16, and 10 of these were found to have known
interactions. Therefore, the probability of ®nding an
interaction with match score 16 is 10/1000 � 0.01, which
corresponds to an odds ratio R 100 times higher (0.01/
10ÿ4) than expected purely by chance. If the odds ratio
is equal to 1, then the probability of ®nding an inter-
action is just as expected. (b) Graph of the odds ratio
that two genes interact genetically or physically for a
given match score of their expression pro®les. The
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obviously the case (and demonstrated above) that
genes with quite different (i.e. inverted or time-
delayed) expression pro®les may interact or have
related cellular roles. It is interesting to evaluate
how many additional new, functionally relevant
relationships can be uncovered by local clustering
as compared to traditional, global clustering.
Above, we have looked at speci®c examples ident-
i®ed by our method that were inverted or time-
delayed, but it is also important to look at the per-
centage of newly detected relationships on a global
level.

General formalism

In general terms, we want to assess here whether
there is a ``global'' relationship between expression
pro®les and a known biological association (e.g.
similar functions or protein-protein interactions).
A simple quantitative way to address this issue is
to look at the conditional probability P(kjS), the
probability that a pair of genes has a known
biological association (k) given their expression
pro®le match score (S). As diagrammed in
Figure 6(a), P(kjS) corresponds to the population
density of known biological associations in all
pairs with match score S. However, the number of
known biological associations varies considerably
depending on what type of associations one is
focusing on. For example, there are relatively few
associations based on the two-hybrid data and
other physical and genetic interactions 52,53 but
many based on the MIPS functional classi®cation
(5385 versus 826,000). Therefore, it is useful to nor-
malize P(kjS) so that it is more generally compar-
able between different types of associations. We
normalize P(kjS) by calculating the odds ratio:

R � P�kjS�=P�k� �1�
P(k) is the chance of having the known interaction,
regardless of match score. It is essentially the num-
ber of known interactions divided by the number
of all possible pairwise interactions, �18 million in
yeast. As shown in Figure 6(a), the odds ratio R is
essentially the ratio of population density of bio-
logical association between the subgroup (with a
given S) and whole genome (for any S).

To better understand the meaning of the odds
ratio, we can rewrite it applying Bayes' rule:
R � P(kjS)/P(k) � P(Sjk)/P(S). We can see that the
right-hand side of the equation represents the dis-
tribution of match scores of the pairs with known
biological interactions divided by the distribution
of match scores of all possible pairs of genes in this
inverted relationships and the inverted time-delayed
relationships are pooled into ``inverted'' in conditional
probability analysis. (c) Graph of the odds ratio that
two genes have the same function for a given match
score.
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genome (i.e. essentially the distribution shown in
Figure 2).

Likelihood of local clustering finding known
protein-protein interactions

Now we apply our formalism above explicitly to
protein-protein interactions. Figure 6(b) shows the
odds ratio that two genes interact genetically or
physically for a given match score. The interaction
data are based on the union of the yeast two-
hybrid data52,53 and genetic and physical inter-
action data from MIPS,39 a combination similar to
that used in other computational studies of pro-
tein-protein interactions.54 There are 5385 total
interactions in this dataset. One can observe that in
the high match score region (S > 14, P-value better
than 3.8E-4), the overall likelihood of having inter-
actions for two genes is much higher than expected
because their odds ratios are much larger than 1.
For instance, gene pairs with a match score of 16
are found to interact with each other about 20
times more often than random expectation. On the
other hand, in the low match score region (S < 8),
the likelihood of ®nding interactions is either close
to or lower than expected according to their odds
ratios. The likelihood of ®nding an interaction
increases monotonically with the expression-pro®le
match score.

One advantage of the odds ratio normalization
is that it is not that sensitive to the number of
associations currently known, a fact particularly
important for the interaction data. Specially, as
new known protein-protein interactions are uncov-
ered by various experimental techniques, the prob-
ability P(kjS) increases, but so does P(k), keeping R
relatively constant.

Likelihood of local clustering finding proteins
with the same cellular role

In Figure 6(c), we apply the odds ratio formalism
to protein function, i.e. we want to see whether
genes clustered together by expression have a simi-
lar cellular role. We calculate probabilities that a
pair of genes have the same cellular role based on
the MIPS functional classi®cation.39 We use the
second level of MIPS; for example, ``amino acid
metabolism'' is at this level whereas ``metabolism''
is at highest (most general) MIPS level. Figure 6(c)
shows the odds ratio for function versus match
score. Very similar observations can be made to
those described above concerning interactions; the
higher matched scores are de®nitely enriched in
pairs of genes that have the same cellular role.

Composition of different relationships

As shown in Table 1, in the high match score
region (P-value better than 0.01), there are a con-
siderable number of time-delayed and inverted
relationships found that would not be detected
with global clustering. Even though the raw num-
ber of time-delayed or inverted relationships is
smaller than that from simultaneous relationships,
we believe that each additional relationship is
important in thoroughly understanding biological
systems. Moreover, we would like to emphasize
that given our (conservative) statistical scoring
scheme, all these new relationships are by de®-
nition signi®cant.

Table 1 also shows that many of the signi®cant
time-delayed and inverted relationships uncovered
by our procedure correspond to known inter-
actions for similar cellular roles. Again, the number
is obviously less than that for simultaneously clus-
tering but one still uncovers many new statistically
signi®cant relationships.

Extension to Other Datasets Beyond
the Yeast Cell-cycle

Currently there are not that many long time-
course microarray experiments available in the
public databases for analysis (see our website for
the list of the available microarray time-courses).
The yeast cell-cycle is by far the best of existing
sets for local clustering, with the largest number of
time points (16�), high-quality data (including
Affymetrix), and multiple experimental repetitions.
There are no other experiments with more than
half this many time points; the next best set
contains less than seven points. Moreover, the time
intervals in many of the other datasets are not uni-
form, which is not suitable for the current method
without further extensions (see below).

However, it is anticipated that in the near future
there will be a large number of long time-courses
available and being able to successfully deal with
this type of data will be very important for
expression analysis. This is especially true for
development of multi-cellular organisms such as
the worm and the ¯y,55 and soon a ¯y develop-
mental time-course with more than 70 time points
should be available (K. White, personal communi-
cation).

For the present, to get some feel for how local
clustering handles deal with a different data set we
applied it in a preliminary fashion to a short time-
course from another organism: a seven-point
Caenorhabditis elegans developmental time-course.32

Overall, we found about 12,885 signi®cant inverted
relationships and 677 shifted ones (with a P-value
better than 0.001), corresponding to 0.5 % and
0.03 % of all the identi®ed signi®cant relationships,
respectively. The corresponding numbers for the
yeast cell-cycle are �72,000 inverted relationships
and �36,000 shifted ones, corresponding 32 %
and 16 % of the identi®ed relationships. While
we found many signi®cant non-simultaneous
relationships for the worm, it seems we found
proportionally fewer of them in this organism than
for yeast. This perhaps re¯ects the smaller size of
the time-course, which necessarily will give rise to
fewer potential shifted relationships.



Table 1. The actual number of new types of relationships found by local clustering (time-shifted and inverted) for a given match score

Number of non-simultaneous relationships with score S

Score of pair relationship Divided by expression relationship Divided by association

Score S
Approx.

correlation P-value

Number of
simultaneous
relationships
with score S Total Time-shifted only Inverted only

Time-shifted and
inverted

Same known
function

Known
interaction

New
relationships

13 0.76 2.7E-03 81,863 250,393 92,607 71,835 85,951 23,722 12 120,695
14 0.82 3.8E-04 37,408 74,253 24,854 27,373 22,026 5692 13 81,111
15 0.88 3.0E-05 11,580 12,997 3657 6244 3096 626 2 13,809
16 0.94 1.0E-06 1406 775 183 476 116 10 1 788
Total 132,257 338,418 121,301 105,928 111,189 30,050 28 216,403

The Table also gives a breakdown into the various types of non-simultaneous relationships by association. Note that the division of non-simultaneous relationships by associations does not
sum up to the total number of non-simultaneous relationships, since it is possible to have a relationship with both a known function and a known interaction.
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We also found that several of the time-shifted
and inverted relationships represented documen-
ted or plausible biological associations. These tend
to involve a transcription activator or repressor
and their regulated genes. The results are available
on our website, in terms of speci®c relationships
and detailed network navigation.

Summary and Discussion

Microarray technology presents a new type of
data for bioinformaticians to analyze, and given its
large and growing scale, such analysis will clearly
be centrally important in the near future. In order
to detect relationships other than simultaneous
ones, we developed an alternative similarity
measure distinct from the traditional correlation
coef®cient. Our approach, which we call local clus-
tering, can be used to identify new relationships
between genes that have time-delayed or inverted
expression pro®les, as well as to detect convention-
al simultaneous pro®le relationships. It improves
upon ``traditional'' gene-expression clustering in
an analogous fashion to how for protein sequences
local alignment29 is derived from global
alignment.30 We related our newly found gene
relationships to their similarity in function or
known protein-protein interactions; we ®nd that
genes strongly related by local clustering were con-
siderably more likely than random expectation to
have a known interaction or a similar cellular role.

On a reasonable level, one would not expect all
relationships in gene expression data to be simple
correlations, so there is an obvious justi®cation for
many of the new relationships turned up by our
procedure. While some of time-delayed and
inverted relationships found by our method are
justi®ed by published biological experiments, local
clustering was also able to identify many
additional pairs of genes whose functions and
relationships need to be further explored. We
described a number of examples in detail and pro-
vide others on our website.

In addition, in an overall comparison of the
global clustering to our method, it is clear that
different network con®gurations result. For the
gene pairs with the highest match score based on
our algorithm, the percentage of time-delayed and
inverted relationships are low because most gene
pairs with the same function also have very similar
simultaneous correlated expression pro®les. How-
ever, we believe that the new relationships are
important for the understanding of a whole bio-
logical system.

Possible extensions to algorithm

In analogy with local sequence alignment,29 we
could easily extend our local clustering method to
handle ``gaps'' in the aligned expression pro®les.
These would be useful if time points are not uni-
formly sampled, as often happens in the long time
series such as during the development of Drosophi-
la or other organisms.55 The inclusion of gaps into
the alignment effectively adds some pseudo-time
points to the real expression pro®le, making the
time points uniformly sampled.

As for score schema, similarity functions other
than direct multiplication could be de®ned; these
might include Mi,j � (xiyj)

2 or rank correlation coef-
®cient, both of which might be a useful way to
handle particularly noisy expression data.

Finally, the similarity of two expression pro®les
could be measured in frequency space. In other
words, we would compare the spectra of the
expression pro®les generated by Fourier transform-
ation. We implemented this extension and present
some results on our website. However, we found
that for the cell-cycle dataset spectral comparisons
did not reveal as many new but well documented
relationships as local clustering, i.e. the odds ratio
plots as in Figure 6 showed fewer known relation-
ships at high match scores. Hence, we decided not
to emphasize them here. However, the spectral
methods may have suffered comparatively from
the relatively few time points in the cell-cycle data-
set (which gives rise to poor Fourier transform-
ations) and may be more successful on longer time
series that will be available in the future.

Limitations and future directions

Local clustering can be applied most usefully to
time series. It may not apply under other con-
ditions, especially for the detection of time-delay
relationships that would only be meaningful in a
time-dependent array study. It would be better to
use normal clustering methods for non-time series
data, e.g. for the yeast knockout study.51

In addition, while the analysis of the highly
scored pairs found by local clustering can shed
light on novel biological relationships, it is limited
by the quality of the information available on pro-
tein function and protein-protein interactions.
There are many ambiguities in the current func-
tional classi®cations56,57 and there is a problem
with false positives in many of the protein-protein
interaction studies, particularly the two-hybrid.52,53

Thus, the novel relationships we uncovered should
be viewed as potential hypotheses until they are
validated by appropriate biological experiments. In
order to more accurately predict gene interactions
and relationships, it is important to combine the
clustering results with other experimental infor-
mation. As a future direction, this type of hybrid
computational and experimental analysis may
allow the investigation of gene networks or regu-
latory pathways.
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