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Chapter 1

1.1 Introduction

During the last three decades a considerable effort has been made to develop algorithms that
compare sequences of biological macromolecules (proteins, DNA). The purpose of such algorithms
is to detect evolutionary, and thus structural and functional relations among sequences. Successful
sequence comparison would allow to infer the biological properties of new sequences from data
accumulated on related genes. For example, a similarity between a translated nucleotide sequence
and a known protein sequence suggests a homologous coding region in the corresponding nucleotide
sequence. Significant sequence similarity among proteins may imply that the proteins share the
same secondary and tertiary structure, and have close biological functions. The prediction of
unknown protein structures is often based on the study of known structures of homologous proteins.

Today, the routine procedure for analysis of a new protein sequence almost always starts with
a comparison of the sequence at hand with the sequences in one or more of the main sequence
databases. A new sequence is analyzed by extrapolating the properties of its “neighbors” in a
database search. Such methods were applied during the last three decades with much success and
helped to identify the biological function of many protein sequences, as well as to reveal many
distant and interesting relationships between protein families. Actually, more sequences have been
putatively characterized by database searches, than by any other single technology.

Detecting homology may often help in determining the function of new proteins. By definition,
homologous proteins have evolved from the same ancestor protein. The degree of sequence con-
servation varies among protein families. Yet, homologous proteins almost always have the same
fold [?, 7, ?]. Although the common evolutionary origin of two proteins is almost never directly
observed, we can deduce homology, with a high statistical confidence, given that the sequence
similarity is significant.

In principle, similarity does not necessarily imply homology (similarity may be quantified
whereas homology is a relation that either holds or does not hold). Therefore, similarity should
be used carefully in attempting to deduce homology. The deduction of biological function out of
sequence similarity is not straight forward, and sequence comparison procedures may lead to false
conclusions when applied simple-mindedly. Today sequence comparison algorithms are accompa-
nied with statistical estimates which provide a measure of statistical significance of the observed
sequence similarities. These estimates can further help in assessing the significance of the similar-
ity, and in many cases can lead to deduction of homology. The confidence in the deduction clearly
depends on the level of statistical significance. In this view, database searches should be treated as
experiments analogous to wet-lab characterization. Their use deserves the same care both in the
design of the experiment and in the interpretation of results.

Planning a good experiment requires understanding of the methods being applied. Funda-
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mentally, database searches are a simple operation: a query sequence is aligned with each of
the sequences (called targets) in a database. A score is computed from each alignment, and the
query/target pairs with the best scores are then reported to the user. Statistics is used to help im-
prove the ability to interpret these scores and distinguish true relations among proteins from chance
similarities. A more detailed description of this process, the sequence comparison algorithms, the
scoring schemes, and the statistics of sequence alignments is given next.

1.2 Alignment of sequences

During evolution sequences have changed by insertions, deletions and mutations. These evolution-
ary events may be traced today by applying algorithms for sequence alignment. Suppose that a
DNA sequence a has evolved to the sequence b through substitutions, insertions and deletions. This
transformation can be represented by an alignment where a is written above b with the common
(conserved) bases aligned appropriately. For example, say that a = ACTTGA and b is obtained
by substituting the second base from C to G, inserting an A between the second and the third
bases, and by deleting the fifth base (G). The corresponding alignment will be:

a = A C - T T G A
b = A G A T T - A
score 1 0 -1 1 1 -1 1

We usually do not actually know which sequence evolved from the other. Therefore the events are
not directional and insertion of A in b might have been a deletion of A in a.

In a typical application we are given two related sequences and we wish to recover the evolu-
tionary events that transformed one to the other. The goal of sequence alignment is to find the
correct alignment that encodes the true series of evolutionary events which have occurred. The
alignment can be assigned a score which accounts for the number of identities (a match of two
identical letters), the number of substitutions (a match of two different letters), and the number
of gaps (insertions/deletions). For example, in the alignment above a score of 1 was given for
each identity, a score of 0 was given for each substitution, and a negative score of -1 was given for
each gap. Overall, the alignment scored 2, which is the sum of all pair scores and gap scores. In
general, the scores for identities and substitutions which are used to score the alignment are called
the scoring matrix, and the scores for gaps are called gap penalties. Altogether they are called
the scoring scheme (see section 1.4.5 for details) . With high (positive) scores for identities, and
low (or negative) scores for substitutions and gaps, the basic strategy towards tracing the correct
alignment seeks the alignment which scores best. In the following sections we describe in detail the
common algorithms for sequence comparison. The discussion focuses on the comparison of protein
sequences, but it holds for DNA sequences as well.

1.2.1 Rigorous alignment algorithms

There are several different alignment algorithms which have become a standard tool for biologists.
The rigorous algorithms use dynamic programming to find the optimal alignment.

Global alignment: The first to propose a dynamic programming algorithm for comparison of
macromolecules, were Needleman and Wunsch [?]. Their algorithm performs a global alignment
of the sequences; i.e., an alignment where all letters of a and b are accounted for. This type of
alignment is appropriate when similarity is expected along the whole or most of the sequence.
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Formally, let s(a;, b;) be the similarity score of a;,b; (the scoring matrix) and let o > 0 be the
penalty for deleting/inserting of one amino acid. The score of an alignment with N;; matches of a;
and b; and Ngyqp, insertions/deletions is defined as

ZNij . S(G'ia bj) - Ngap s

In sequence evolution, an insertion or deletion of a segment (several adjacent amino acids) usually
occurs as a single event. That is, the opening of the gap is the significant event. Therefore, most
computational models assign a penalty for a gap of length k£ that is smaller than the sum of &
independent gaps of length 1, by charging large penalty for opening a gap, and a smaller penalty
for each extension (affine or linear gap penalty). If the penalty for gap of length k is a(k), and
Ni_gap is the number of gaps of length k in a given alignment, then the score of this alignment is

defined in this case as
ZN’J s(a;, b; ZNk —gap * o

The global similarity of sequences a and b is defined as the largest score of any alignment of
sequences a and b, i.e.

S(aa b) maxalzgnments{z Nzg S a'Za Z Nk gap a }
%,J

In principle, the number of possible alignments is exponentially large, what makes it impossible
to perform a direct search. However, a dynamic programming algorithm makes it possible to find
the optimal alignment without checking all possible alignments, but only a very small portion of
the search space. In brief, the idea is that every subalignment in the optimal alignment should be
optimal as well (otherwise it would be possible to improve the overall alignment by improving the
subalignments, in contrast with its definition as optimal alignment). Since any optimal subalign-
ment (say, of the substring ajas..a; with the substring b1bs..b;) can end only in one of following
three ways:

A S
every possible subalignment is calculated only once, and in constant time!, out of its optimal
subalignments.

Formally speaking, denote by S; ; the score of the best alignment of the substring a;as..a; with
the substring b1bs..b;, i.e

Si,j = S(alag..ai ) ble..bj)

Assume that the gap penalty is constant and equals «. Then, after an initialization step
So,0 =10 Sio=—t-a fori=1.n Soj=—j-a forj=1.m
(where n and m are the lengths of the sequences a and b respectively) define S; ; recursively
Sij = maz{S;—1j-1+ s(ai,b;), Sij—1—a, Si—1j —a}

Therefore, the score S(a,b) can be calculated recursively. Since the subalignment for each 4
and j has to be calculated, the time complexity of this algorithm is proportional to the product of

!This is true with linear gap functions. With non-linear gap penalties, the calculation of this optimal subalignment
may need up to i + j + 1 operations.
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the lengths of the sequences compared (a quadratic time complexity). In practice, the scores are
stored in a two-dimensional array of size (n + 1) - (m + 1). The initialization set the values at row
zero and column zero and the computation proceeds row by row so that the value of each matrix
cell is calculated from entries which were already calculated (see figure Figure 1.1).

S(i-l,j-1)+s(ai,bj )

n

Figure 1.1: Calculating the global similarity score. The score of the (i,j) entry in the matrix is calculated
from three matrix cells: the one on the left, the one on the top and the one located at the top left corner of the
current cell. In case of a non-constant gap penalty we need also to check all the cells in the same row and all the
cells in the same column (along the dashed lines).

Local alignment: In many cases the similarity of two sequences is limited to a specific motif or
domain, the detection of which may yield valuable structural and functional insights, while outside
of this motif/domain the sequences may be essentially unrelated. In such cases global alignment
may not be the appropriate tool. In the search for an optimal global alignment, local similarities
may be masked by long unrelated regions. Consequently, the score of such an alignment can be
as low as for totally unrelated sequences. Moreover, the algorithm may even misalign the common
region. Therefore, usually it is better to compare sequences locally. A local alignment of a and
b is defined as an alignment between a substring of a and a substring of b. The local similarity
of sequences a and b is defined as the maximal score over all possible local alignments.

The algorithm which finds the best local alignment is based on a minor modification of the
dynamic programming algorithm for global alignment. Specifically, whenever the score of the
optimal subalignment of two subsequences becomes negative, the score is set to zero, meaning that
the corresponding subsequences should not be aligned. Following the notations of the previous
section, S; ; is now defined

Si; = maz{0, S;_1j_1 + s(as,b5), Sij—1—a, Si—1;—a}

In the literature, this algorithm is often called the Smith-Waterman (SW) algorithm, after those
who introduced this modification [?].

There is a lot of literature regarding dynamic programming algorithms in general [?], and for
sequence comparison specifically [?, 7, ?]. The interested reader is referred to these books for more
details on the algorithmic aspects of this method, as well as its computational aspects.
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1.2.2 Heuristic algorithms for sequence comparison

In a typical application new protein sequence is compared with all sequences in the database
(library sequences), in search of related proteins. Because of its quadratic time complexity,
the dynamic programming algorithms may not be suitable for this purpose. For example, the
comparison of a sequence, of average length of 350 amino acids, against a typical database (like
SWISSPROT [?], with more than 80,000 sequences), may take few CPU hours on a standard PC
of nowadays (pentium-II 400 MHz).

Several algorithms have been developed to speed up the alignment procedure. The two main
algorithms are FASTA [?] and BLAST [?]. These are heuristic algorithms which are not guaranteed
to find the optimal alignment. However, they proved to be very effective for sequence comparison,
and they are significantly faster than the rigorous dynamic programming algorithm?.

BLAST (Basic Local Alignment Search Tool)

BLAST compares two sequences and seeks all pairs of similar segments, whose similarity score
exceeds a certain threshold. These pairs of segments are called “high scoring segment pairs”
(HSPs). A segment is always a contiguous subsequence of one of the two sequences. Segment pair
is a pair of segments of the same length, one from each sequence. Hence the alignment of the
segments is without gaps. The score of the match is simply the sum of matches of the amino acids
(defined by a scoring matrix) along the segment pair. The segment pair with the highest score is
called the “maximum segment pair” (MSP).

To identify the HSPs (and particularly, the MSP), the algorithm starts by locating “seeds” of
similarity among the query sequence and the database sequence that score at least 7', and then
extends them in both direction until the maximum possible score for the extension is reached. The
changes in the threshold 7' permit a tradeoff between speed and sensitivity. A higher value of T
yields greater speed, but also an increased probability of missing weak similarities. Finally, multiple
MSP regions are combined. For each consistent combination, its probability is calculated using the
Poisson or sum statistics [?] and the most significant hits (lowest probability) are reported.

The algorithm is an outgrowth of the statistical theory for local alignments without gaps (see
section 1.3). This theory gives a framework for assessing the probability that a given similarity
between two protein sequences (i.e. the MSP) could have emerged by chance. If the probability
is very low, then the similarity is statistically significant and the algorithm reports the similarity
along with its statistical significance. Though the algorithm may miss complex similarities which
include gaps, the statistical theory of alignments without gaps provided a reliable and efficient way
of distinguishing true homologies from chance similarities, thus making this algorithm an important
tool for molecular biologists.

Current improvements of BLAST allow gapped alignments, by using dynamic programming to
extend a central seed in both directions [?]. This is complemented by PSI-BLAST, an iterative
version of BLAST, with a position-specific score matrix (see section 1.4.5) that is generated from
significant alignments found in round ¢ and used in round ¢+ 1. The latter may better detect weak
similarities that are missed in database searches with a simple sequence query.

In the last few years, biotechnology companies such as Compugen and Paracel, have developed special purpose
hardware that accelerates the dynamic programming algorithm [?]. This special-purpose hardware has again made
the dynamic programming algorithm competitive with FASTA and BLAST, both in speed and in simplicity of use.
However, meanwhile, FASTA and BLAST have become standard in this field and are being used extensively by
biologists all over the world. Both algorithms are fast, effective, and do not require the purchase of additional
hardware. BLAST has an additional advantage, as it may reveal similarities which are missed by the dynamic
programming algorithm, for example when two similar regions are separated by a long dissimilar region.
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FASTA

FASTA is another heuristic that performs a fast sequence comparison. The algorithm starts by
creating a hash table of all k-tuples in the query sequence (usually, k = 1 or 2 for protein sequences,
where k=1 gives higher sensitivity). This table stores the k-tuples in a way which enables fast
accession, and restoration of each k-tuple. Then, when scanning a library sequence, each k-tuple of
the library sequence is looked up in the hash table, and if it is found (this means k-tuple identity)
it is marked. At a second stage, the ten regions with the highest density of identities are rescanned.
Common k-tuples which are on the same diagonal (same offset in both sequences), and not very
far apart (the exact parameters are set heuristically), are joined to form a region (a gapless local
alignment, or HSP in BLAST terminology). The regions are scored to account for the matches
as well as the mismatches, and the best region is reported (its score is termed “initial score” or
“init1”). Then, the algorithm tries to join nearby high scoring regions, even if they are not on the
same diagonal (the corresponding score being termed “initn score”). Finally, a bounded dynamic
programming is run in a band around the best region, to obtain the “optimized score”. If the
sequences are related then the optimized score is usually much higher than the initial score.

1.3 Probability and statistics of sequence alignments

In the evolution of protein sequences, not all regions mutate at the same rate. Regions which
are essential for the structure and function of proteins, are more conserved. Therefore, significant
sequence similarity of two proteins may reflect a close biological function or a common evolutionary
origin. The algorithms that were described in the previous section can be used to identify such
similarities. However, on any two input protein sequences, even if totally unrelated, the algorithms
almost always find some similarity. For unrelated sequences this similarity is essentially random.
As the length of the sequences compared increase, this random similarity may increase as well.
Therefore, in order to assess the significance of a similarity score it is important to know what
score to expect simply by chance.

Naturally, we would like to identify those similarities which are genuine, and biologically mean-
ingful. In the view of the last paragraph, the raw similarity score may not be appropriate for this
purpose. However, when the sequence similarity is statistically significant we can deduce, with high
confidence level, that the sequences are related®. The reverse implication is not always true. We
encounter many examples of low sequence similarity despite functional and structural similarity
[?, 7, 7].

Though statistically significant similarity is neither necessary nor sufficient for a biological
relationship, it may give us a good indication of such relationship. When comparing a new sequence
against the database, in search of close relatives, this is extremely important, as we are interested
in reporting only significant hits, and sorting the results according to statistical significance seems
reasonable.

To estimate the statistical significance of similarity scores, a statistical theory should be devel-
oped. A great effort was made in the last two decades to establish such statistical theory. Currently,
there is no complete theory, though some important results were obtained. These results have very
practical implications and are very useful for estimating the statistical significance of similarity
scores. The statistical significance of similarity scores for “real” sequences is defined by the proba-
bility that the same score would have been obtained for random sequences. The statistical results

3Two exceptions are segments with unusual amino acid composition, and similarity that is due to convergent
evolution.
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concern the similarity scores of random sequences, when the similarity scores are defined by un-
gapped alignments. However, these results have created a framework for assessing the statistical
significance of various similarity scores, including gapped sequence alignments, and recently, even
structural alignments [?].

1.3.1 Statistics of global alignment

Though the distribution of global similarity scores of random sequences has not been characterized
yet, some important properties of this distribution were partly determined. The main characteristic
of this distribution is the linear growth (or decline, depends on the mean of the scoring matrix) with
the sequence length. Le., the expected global similarity score grows linearly with the sequences
length. However, the growth rate has not been determined.

The statistical significance of a similarity score obtained for “real” sequences, which exceeds
the expected score by a certain amount, is estimated by the probability that the similarity score
of random sequences would exceed the expected mean by the same amount. However, since
the distribution of scores is unknown, the available estimates give only a rough bound on that
probability. The variance of the global similarity score has not been determined either, and the
best results give only an upper bound.

In practice, it is possible to empirically approximate the distribution by shuffling the sequences
and comparing the shuffled sequences. By repeating this procedure many times it is possible to
estimate the mean and the variance of the distribution, and a reasonable measure of statistical
significance (e.g. by means of the z-score) can be obtained. Formally, denote by S the global
similarity score. Let x4 and o2 be the mean and the variance of the distribution of scores. Then,
the z-score associated with the score S is defined as % This score measures how many units of
standard deviation apart the score S is from the mean of the distribution. The larger it is, the
more significant is the score S.

1.3.2 Statistics of local alignment without gaps

The statistics of ungapped similarity scores has been studied extensively since the early 90’s. The
exclusion of gaps allowed a rigorous mathematical treatment, and several important results were
obtained. Karlin and Altschul [?] have shown that for two random sequences of length n and
m, the score of the best ungapped local alignment (the MSP score in BLAST jargon) is centered
around M, where A is a parameter that depends on the overall background distribution
of amino acids in the database, and the scoring matrix. That is, the local similarity score grows
logarithmically with the length of the sequences, and with the size of the search space n - m.

This result in itself is still not enough to obtain a measure of statistical significance for local
similarity scores. This can be done only once a concentration of measure result is obtained or the
distribution of similarity scores is defined. Indeed, one of the most important results in this field
is the characterization of the distribution of local similarity scores without gaps. This distribution
was shown to follow the extreme value distribution [?, ?, ?].

Formally, as the sum of many i.i.d random variables is distributed normally, then the maxi-
mum of many i.i.d random variables is distributed as an extreme value distribution [?]. This
distribution is characterized by two parameters: the index value u and the decay constant A (for
u = 0 and A = 1, the distribution is plotted in Figure 1.2). The distribution is not symmetric.
It is positive definite and unimodal with one peak at w. Practically, the score of the best local
alignment (the MSP score) is the maximum of the scores of many independent alignments, which
explains the observed distribution.
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Figure 1.2: Probability density function for the extreme value distribution with « =0 and )\ = 1.

Specifically, S, the local similarity score of two random sequences of length n and m, is dis-
tributed as an extreme value distribution and

Prob(S > z) ~ 1 — exp(—e M@ ) (1.1)

where u = M%, and K is a constant that can be estimated from the background distribution

and the scoring matrix [?].
For a large = we can use the approximation 1 — exp(—e %) ~ e *. Therefore, for a large z,

Prob(8 > z) ~ e M7 = AT AU — gippemAT (1.2)

This result helps to calculate the probability that a given MSP score could have been obtained by
chance. The score will be statistically significant at the 1% level if S > x¢ where zg is determined
by the equation Kmne **0 = (.01. In general, a pairwise alignment with score S has a p-value
of p where p = Kmne *S. le., there is a probability p that this score could have happened by
chance.

The probability p, that a similarity score S could have been obtained simply by chance from the
comparison of two random sequences, should be adjusted when multiple comparisons are performed.
One example of this is when a sequence is compared with each of the sequences in a database with
D sequences. Denote by p-match a match between two sequences that has a p-value < p (i.e., its
score > §). The probability P of observing at least one p-match (i.e., at least one “success”), in a
database search follows the Poisson distribution

P = Prob(at least one p—match) =1 — ¢ D7 (1.3)
and for Dp < 0.1 is well approximated by
P~Dp

Since not all library sequences have the same probability of sharing a similar region with the
query sequence, D should be replaced with the effective size of the database. If the query sequence
is of length n, and the (pairwise) alignment of interest involves a library segment of length m, and
the database has a total of N amino acids, then D should be replaced with N/m. Thus,

N
P~ —p=KNne (1.4)
m
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so the effective size of the search space is Nn (intuitively, this is the number of possible starting
positions of a match).

It is very common to use the expectation value (e-value) as a measure of statistical signifi-
cance. The expectation value of the the Poisson distribution is given by

E = E(number of p—matches) = Dp (1.5)
and as discussed above, D should be replaced with N/m. Hence
E = KNne ™% (1.6)

This is the expected number of distinct matches (segment pairs) that would obtain a score > S
by chance in a database search, with a database of size N (amino acids) and composition P (the
background distribution of amino acids). The higher it is, the match is less significant. For example,
if £ = 0.01, then the expected number of random hits with a score > S is 0.01. In other words, we
may expect a random hit with that score only once in 100 independent searches. If £ = 10, then
we should expect 10 hits with a score > S by chance, in a single database search. This means that
such a hit is not significant. (Note that £ ~ P for P < 0.1).

Finally, by setting a value for E and solving the equation above for S, it is possible to define a
threshold score, above which hits are reported. This is the score above which the number of hits
that are expected to occur at random is < FE. Therefore, we can deduce that a match with this
score or above reflects true biological relationship, but we should expect up to E errors per search.
The specific value of E affects both the sensitivity of a search (the number of true relationships
detected) and its selectivity (the number of errors). A lower value of E would decrease the error
rate. However, it would decrease the sensitivity as well. A reasonable choice for F is between 0.1
and 0.001.

1.3.3 Statistics of local alignment with gaps

Though local alignments without gaps may detect most similarities between related proteins, and
give a good estimation of the similarity of the two sequences, it is clear that gaps in local alignments
are crucial in order to obtain the correct alignment, and for a more accurate measure of similarity.
However, no precise model has been proposed yet to explain gaps in alignments. Moreover, in-
troducing gaps in alignments greatly complicates their mathematical tractability. Rigorous results
have been obtained only for local alignments without gaps.

Recent studies suggest that the score of local gapped alignments can be characterized in the same
manner as the score of local ungapped alignments: As was mentioned in the previous section, the
local ungapped similarity score grows logarithmically with the sequence’s length and the size of the
search space. Arratia & Waterman [1994] have shown that for a range of substitution matrices and
gap penalties, local gapped similarity scores have the same asymptotic characteristic. Furthermore,
empirical studies [?, 7] strongly suggest that local gapped similarity scores are distributed according
to the extreme value distribution, though some correction factors may apply [?].

Based on empirical observations, Pearson [1998] has derived statistical estimates for local align-
ment with gaps, using the extreme value distribution for scores obtained from a database search.
A database search provides tens of thousands of scores from sequences which are unrelated to the
query sequence, and therefore are effectively random. As discussed above, these scores are thus
expected to follow the extreme-value distribution. This is true as long as the gap penalties are not
too low. Otherwise the alignments shift from local to global and the extreme value distribution no
longer apply.
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Since the logarithmic growth in the sequence length holds in this case, scores are corrected first
for the expected effect of sequence length. The correction is done by calculating the regression
line S = a+ b-Inn for the scores obtained in a database search, after removing very high scoring
sequences (probably related sequences). The process is repeated as many as five times. The
regression line and the average variance of the normalized scores are used to define the z-score:

S—(a+b-Inn)
var

Z—Sscore =

and the distribution of z-scores is approximated by the extreme value distribution

p = Prob(z—score > z) = 1 — exp(—e“'*™?)
where ¢; and ¢y are constants, and the expectation value is defined as before by E(z—score > ) =
N - p where N is the number of sequences in the database (the number of tests).

This empirical approach has the advantage of internal calibration of the accuracy of the es-
timates, and has proved to be very accurate in estimating the statistical significance of gapped
similarity scores [?] (see also [?, ?]).

1.4 Practical database searching

1.4.1 Types of comparison

To formulate the database search “experiment”, it is first necessary to decide what types of se-
quences will be compared: DNA, Protein, or DNA as Protein. The algorithms described above
may be applied to the comparison of protein sequences as well as to DNA sequences (coding or
non-coding regions). However, the comparison of protein sequences has proven to be a much more
effective tool [?]. Though the evolutionary events occur at the DNA level, the main genetic pressure
is on the protein sequence. Moreover, mutations at the DNA level do not necessarily change the
encoded amino acid due to the redundancy of the genetic code. Mutations often result in conser-
vative substitutions at the protein level, namely, replacement of an amino acid by another amino
acid with similar biochemical properties. Such changes tend to have only a minor effect on the
protein’s functionality. Therefore, if the sequence under consideration either is a protein or codes
for a protein, then it is almost always the case that the search should take place at the protein level,
as proteins allow one to detect far more distant homologies than DNA. Another aspect is that in
DNA comparisons, there is noise from comparisons of non-coding frames (though this latter issue
still arises in DNA as Protein searches). DNA versus DNA comparison is typically only used to
find identical regions of sequence in a database. One would do such a search to discover whether
another group has sequenced or studied a gene, and to learn where it is expressed or where splice
junctions occur. In short, protein-level searches are valuable for detecting evolutionarily related
genes, while DNA searches are best for locating nearly identical regions of sequence (see table 1.1
for available comparison programs and the corresponding types of comparison).

1.4.2 Databases

Next, it is necessary to select a database to search against. There are several commonly used
databases (e.g., GenBank, SwissProt, ESTs, etc.). For homology searches, it is best to use a compre-
hensive collection of all known proteins. Two such databases are available. One is the nr database
at the NCBI website (http://www.ncbi.nlm.nih.gov/). The nr (which stands for non-redundant)
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Programs Query DB Comparison Common Use
blastn, fasta, ssearch | DNA DNA DNA-level Seek identical DNA sequences, and splicing patterns
blastp, fasta, ssearch | Protein | Protein | Protein-level | Seek homologous proteins

blastx, fastx DNA Protein | Protein-level | Query new DNA to find genes and seek homologous proteins
tblastn, tfasta, tfastx | Protein | DNA Protein-level | Search for genes in un-annotated DNA
tblastx DNA DNA Protein-level | Discover gene structure

Table 1.1: Comparison programs and types of comparison.

protein database combines data from several sources (GenPept, SwissProt, PIR, RPF and PDB)
removes the redundant identical sequences, and yields a collection with nearly all known proteins.
The second nr database is available at the ExPASy website in Switzerland (http://www.expasy.ch/).
Both databases are frequently updated, to incorporate as many sequences as possible. Obviously, a
search will not identify a sequence that has not been included in the database, and since databases
are growing so rapidly, it is essential to use a current database.

The main sources of these non-redundant databases are the SwissProt database and the TrEMBL
database [?], the PIR database [?], and the GenPept database [?]. The SwissProt database is main-
tained at the ExPASy center in Switzerland. This is a non-redundant highly annotated database
which offers a lot of valuable biological information on almost all of its entries (more than 80,000 in
the latest release, August 1999). Such information may include for example the description of the
function of a protein, its domain structure, post-translational modifications, etc. This database is
supplemented by TrTEMBL, which is a collection of all the translations of EMBL nucleotide sequence
entries not yet integrated in SwissProt. For most of these entries some biological information is
available, usually based on sequence analysis carried by the ExPASy team. PIR is another database
that offers a lot of biological information on entries through an extensive annotation as well as clas-
sification to families and superfamilies and links to alignments with other family members. GenPept
is a database that contains all translations of DNA sequences in the GenBank database.

Several specialized databases are also available, all of which overlap with the composite non-
redundant databases. For example, if one is interested in searching for proteins of known structure,
it is best to just search the smaller PDB database. Other specialized databases are available for
each of the fully sequenced genomes, as well as for subsets of protein families (such as protein
kinases or immunoglobulins), etc. See table 1.2 for a list of the main databases.

Protein Number | Availability Description

Database Entries

nr (ExPasy) ftp://www.expasy.ch/databases/sp_tr_nrdb/ consist of SwissProt, TTEMBL

nr (NCBI) ftp://ncbi.nlm.nih.gov/blast/db/ consist of GenPept, SwissProt, PIR, RPF, PDB
SwissProt 81,581 http://www.expasy.ch/sprot/sprot-top.html non-redundant, high level of annotation
TrEmbl 197,766 http://www.expasy.ch/sprot/sprot-top.html non-redundant, computer annotated

PIR 157,586 http://www-nbrf.georgetown.edu/pirwww/pirhome.shtml | non-redundant, annotated, family classification
GenPept http://www.ncbi.nlm.nih.gov/Entrez/protein.html translation of DNA sequences in GenBank
PDB 10,963 http://www.rcsb.org/pdb/index.html repository of all known 3D structures
Genomes http://www.ncbi.nlm.nih.gov/Entrez/Genome/org.html protein sequences sorted by organism

DNA Number | Availability Description

Database Entries

GenBank 4,865,000 | http://www.ncbi.nlm.nih.gov/Entrez/protein.html annotated

Table 1.2: Sequence databases. Number of entries is updated to October 1999.

One may also wish to search DNA databases at the protein level. Programs can do so au-
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tomatically by first translating the DNA in all six reading frames and then making comparisons
with each of these conceptual translations. The nr DNA database (containing most known DNA
sequence except GSS, EST, STS, or HTGS sequences) is useful to search when hunting new genes;
the identified genes in this database would already be in the protein nr database. Searches against
the GSS, EST, STS, and HTGS databases can find new homologous genes, and are especially useful
to learn about expression data or genome map location.

1.4.3 Algorithms

The choice of the comparison algorithm should be based on the desired comparison type, the
available computational resources, and the goals of the search. All standard comparison algorithms
can be run over the Web and can be downloaded from the FTP site to run locally (see table 1.3).
The rigorous smith-waterman algorithm is available, as well as the FASTA program, within the
FASTA package. This algorithm is more sensitive than the others, but it is also much slower.
The FASTA program is faster, and with the parameter ktup set to 1, is almost as sensitive as the
smith-waterman algorithm [?, ?]. The fastest algorithm is BLAST, the newest versions of which
support gapped alignments [?] and provide a reliable, sensitive and fast option (the older versions
are slower, detect fewer homologs, and have problems with some statistics). Iterative programs like
PSI-BLAST require extreme care in their operation, as they can provide very misleading results;
however, they have the potential to find more homologs than purely pairwise methods.

Program | FTP site Run over the Web

ssearch ftp://ftp.virginia.edu/pub/fasta/ | http://www2.ebi.ac.uk/bic_sw/
http://genome.dkfz-heidelberg.de/genweb/
http://sgbcd.weizmann.ac.il/genweb/
http://www.ch.embnet.org/software/FDF _form.html

fasta ftp://ftp.virginia.edu/pub/fasta/ | http://www2.ebi.ac.uk/fasta3/

blastp ftp://ncbi.nlm.nih.gov/blast/ http://www.ncbi.nlm.nih.gov/BLAST/
http://www2.ebi.ac.uk/blastall/
http://www.ch.embnet.org/software/BottomBLAST .html?

Table 1.3: Availability of sequence comparison programs.

1.4.4 Filtering

The statistics for database searches assumes that unrelated sequences look essentially random with
respect to each other. Specifically, the theoretical results that were obtained for the statistics of
local alignments without gaps (see section 1.3.2) are subject to the restriction that the amino acid
composition of the two sequences that are compared are not too dissimilar [?]. Assuming that
both sequences are drawn from the background distribution, the amino acid composition of both
should resemble the background distribution. Without this restriction the statistical estimates
overestimates the probability of similarity scores, and indeed, this is observed in protein sequences
with unusual compositions [?, ?]. The most common exceptions are long runs of a small number
of different residues (such as a poly-alanine tract). Such regions of a sequence may spuriously
obtain extremely high match scores. For this reason, it is recommended to filter out these regions
using programs such as SEG [?]. The NCBI BLAST server will automatically remove such sections
in proteins, replacing them with X, if default filtering is selected. DNA sequences will be simi-
larly masked by DUST. Though these programs automatically remove the majority of problematic
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matches, some problems invariably slip through; moreover, valid hits may be missed due to masking
of part of the sequence. Therefore, it may be helpful to try using different masking parameters.

Other sorts of filtering are also often desirable; for example, iterative searches are prone to
contamination by regions of proteins that resemble coiled-coils or transmembrane helices. Here,
one protein that is similar only because it has the general characteristics may match initially. The
profile then emphasizes these inappropriate characteristics, eventually causing many spurious hits.
Heavily cysteine rich proteins can also obtain anomalous high scores. If these characteristics are
not filtered, then it is necessary to carefully review the alignment results to ensure that they have
not led to incorrect matches.

1.4.5 Scoring matrices and gap penalties

The next step is to choose the set of parameters for the sequence comparison algorithm. Namely,
the scoring matrix and the gap parameters. The default matrices offered with the comparison
algorithm (e.g. BLOSUM62 with BLAST, BLOSUMS50 with FASTA) are a safe choice. However,
it may be fruitful to check other matrices as well. Several different approaches were taken to
derive reliable and effective scoring matrices. The most effective matrices are those that are based
on actual frequencies of mutations that are observed in closely related proteins. These matrices
reflect the biochemical properties of the amino acids, which influence the probability of mutual
substitution (exchange occur more frequently among amino acids that share certain properties),
and amino acids with similar properties have high pairwise score. Matrices which are based on
sequence alignments include the family of PAM matrices [?] (and their improvement by [?]), the
BLOSUM matrices [?], and Gonnet matrix [?]. Other matrices, which proved to be very effective
for protein sequence comparison, are those that are based on structural principles and aligned
structures [?, ?].

The two most extensively used families of scoring matrices are the PAM matrices and the
BLOSUM matrices. A detailed description of these matrices is given in the next two sections.

The PAM family of scoring matrices

PAM matrices were proposed by Dayhoff et al in 1978 based on observations of hundreds of align-
ments of closely related proteins. The frequencies of substitution of each pair of amino acids were
extracted from alignments of proteins of small evolutionary distance, below 1% divergence, i.e. at
most one mutation per 100 amino acids, on average. These frequencies, normalized to account for
the frequencies of random occurrences of single amino acids, resulted in the PAM-1 probability
transition matrix. The PAM-1 matrix reflects an amount of evolutionary change that yields on
average one mutation per 100 amino acids. Accordingly, it is suitable for comparison of proteins
which have diverged by 1% or less. The acronym PAM stands for Percent of Accepted Mutations
(and hence the distance is in percentages) or for Point Accepted Mutations (and hence the distance
in number of mutations per 100 amino acids).

The PAM-1 matrix is then extrapolated to yield the family of PAM-k matrices. Each PAM-k
matrix is obtained from PAM-1 by k consecutive multiplication, and is suitable for comparison
of sequences which have diverged k%, or are k evolutionary units apart. For example, PAM-250
= (PAM-1)? reflects the frequencies of mutations for proteins which have diverged 250% (250
mutations per 100 amino acids?). The actual scoring matrices that are used by search programs
are derived from the transition probability matrices and the background probabilities. The score

4Though the definition of PAM-250 seems odd, it still make sense, as is subsequently explained.
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of each pair s(a,b) is defined as the logarithm of the likelihood ratio of the transition probability
M, (mutation) versus the probability of a random occurrence of the amino acid b in the second
sequence, i.e., s(a,b) = log AZ‘;”.

The PAM matrices were later refined by [?] based on much larger data set. The significant
differences were detected for substitutions that were hardly observed in the original data set of [?].

The PAM-250 matrix. The PAM-250 matrix is one of the most extensively used matrices
in this field. This matrix corresponds to a divergence of 250 mutations per 100 amino acids.
Naturally one may ask whether it makes sense to compare sequences which have diverged this much.
Surprising as it may seem, when calculating the probability that a sequence remains unchanged
after 250 PAMs (this is given by the sum ), paM,, where p, is the probability of a random
occurrence of amino acid s and M, is the diagonal entry in the PAM-250 matrix that corresponds
to the amino acid a) the outcome is that such sequences are expected to share about 20% of their
amino acids. For reference, note that the expected percentage of identity in a random match is
100-Y", p2, and for a typical distribution of amino acids (in a large ensemble of protein sequences),
we should expect less than 6% identities.

The BLOSUM family of scoring matrices

Unlike PAM matrices, which are extrapolated from a single matrix PAM-1, the BLOSUM series
of matrices was constructed by direct observation of sequence alignments of related proteins, at
different levels of sequence divergence. The matrices are based on “blocks” - a collection of multiple
alignments of similar segments without gaps [?], each block representing a conserved region of a
protein family. These blocks provide a list of (accepted) substitutions, and a log-odds scoring
matrix can be defined based on the observed relative frequency of aligned pairs of amino acids ggp,
and the expected probability of pairs e, estimated from the population of all observed pairs
Sqp = log dab
€ab
To reduce the bias in the amino acid pair frequencies caused by multiple counts from closely
related sequences, segments in a block with at least % identity are clustered and pairs are counted
between clusters, i.e., pairs are counted only between segments less than 2% identical. When
counting pairs frequencies between clusters, the contributions of all segments within a cluster are
averaged, so that each cluster is weighted as a single sequence. Varying the percentage of identity
z within clusters results in a family of matrices BLOSUM-z, where z ranges from 30 to 100. For
example, BLOSUM-62 is based on pairs that were counted only between segments less than 62%
identical.

Choosing the scoring matrix

When comparing two sequences, the most effective matrix to use is the one which corresponds
to the evolutionary distance between them [?]. However, we usually do not know this distance.
Therefore, it is recommended to use several scoring matrices which cover a range of evolutionary
distances, for example PAM-40, PAM-120 and PAM-250. In general, low PAM matrices are well
suited to finding short but strong similarities, while high PAM matrices are best for finding long
regions of weak similarity.

Exhaustive evaluations have been carried out to compare the performance of different scoring
matrices [?, ?]. These studies show that log-odds matrices derived directly from alignments of
highly conserved regions of proteins (such as BLOSUM matrices or the Overington matrix, which
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is based on structural alignment [?]) outperform extrapolated log-odds matrices based on an evolu-
tionary model, such as PAM matrices. Moreover, the accuracy of alignments based on extrapolated
matrices decreases as the evolutionary distance increases. This suggests that extrapolation can-
not accurately model distant relationships, and that the PAM evolutionary model is inadequate.
BLOSUM matrices were shown to be more effective in detecting homologous proteins. Specifically,
BLOSUM-62 and BLOSUM-50 gave superior performance in detecting weak homologies. These
matrices offer good overall performance in searching the databases. The best hybrid of matrices
for searching in different evolutionary ranges is either BLOSUM 45/62/100 or BLOSUM 45/100
plus the Overington matrix.

Gap penalties

There is no mathematical model to explain the evolution of gaps. Practical considerations (the
need for a simple mathematical model, time complexity) have led to the broad use of linear gap
functions, where the penalty for a gap of length k is given by a(k) = ag + k - a1. Usually a large
penalty is charged for opening a gap (ag), and a smaller penalty is charged for each extension (o).

Gonnet et al. [?] have proposed a model for gaps that is based on gaps occurring in pairwise
alignments of related proteins. The model suggests an exponentially decreasing gap penalty func-
tion. However, a linear penalty function has the advantage of better time complexity, and in most
cases the results are satisfactory. Therefore the use of linear gap functions is very common.

The gap parameters that are used as default in the standard comparison programs are usually
optimized based on extensive evaluations [?], and it is rarely beneficial to change these from their
defaults.

Position dependent scores

In many proteins, mutations are not equally probable along the sequence. Some regions are func-
tionally /structurally important and consequently, the effect of mutation in these regions can be
drastic. They may create a nonfunctional protein or even prevent the molecule from folding into
its native structure. Such mutations are unlikely to survive, and therefore these regions tend to be
more evolutionary conserved than other, less constrained regions (e.g. loops) which can significantly
diverge.

Accordingly, it may be appropriate to use position-dependent scores for mismatches and gaps.
The incorporation of information about structural preferences can lead to alignments that are more
accurate biologically. If a protein’s structure is known, the secondary structure should be taken into
account. In the absence of such data, general structural criteria, such as the propeunsities of amino
acid for occurring in secondary structures versus loops can be taken into account. For example, the
probability of opening a gap in existing secondary structure can be decreased, while the probability
for opening/inserting a gap in loop regions can be increased.

Usually position-specific scoring matrices, or profiles, are not tailored to a specific sequence.
Rather, they are built to utilize the information in a group of related sequences, and provide rep-
resentations of protein families and domains. These representations are capable of detecting subtle
similarities between distantly related proteins. Without going into detail, profiles are usually ob-
tained by applying algorithms for multiple alignment (i.e., a combined alignment of several proteins)
to align a group of related sequences. The frequency of each amino acid at each position along the
multiple alignment is then calculated. These counts are normalized and transformed to probabili-
ties, so that a probability distribution over amino acids is associated with each position. Finally,
the scoring matrix is defined based on these probability distributions as well as on the similarities
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of pairs of amino acids (taken from a standard scoring matrix). For example, the score for aligning
the amino acid a at position i of the profile is given by s;(a) = >, prob(b at position 7)s(a, b) where
s(a, b) is the similarity of amino acids a and b according to some scoring matrix. For a review on
algorithms for multiple alignment and profile techniques see [?, 7, 7, ?].

1.4.6 Command line parameters

The command line parameters of the search programs are generally divided into three groups. The
first group is the set of parameters which specify the input and output filenames, and the database
name. These are the only mandatory parameters. All other parameters are optional and are set
default values otherwise. For example, the basic command line for SSEARCH, FASTA, BLAST
and gapped BLAST are:

ssearch -Q query-file -O out-file database
fasta -QQ query-file -O out-file database
blastp database query-file

blastpgp -i query-file -o out-file -d database

The second set of parameters affects the comparison algorithm. This set includes the scoring
matrix and the gap penalties and the parameters used to control the sensitivity of the search. By
altering the later, it is possible to make the program run slower and be more sensitive, or to run
faster at the cost of missing more homologs. BLAST has few such parameters. Currently, it is
very rare for users to alter these options from the defaults. The FASTA program has one such
parameter that a user will often want to set, called ktup. Searches with ktup=1 are slower, but are

more sensitive than BLAST; ktup =2 is faster but less effective.

Program | Parameter Use
ssearch -Q filename query file
-0 filename output file
-E evalue evalue threshold (only hits with evalue below this threshold are reported)
-d number maximal number of alignments displayed
-H supresses histogram of scores
fasta -Q filename query file
-O filename output file
-E evalue evalue threshold (only hits with evalue below this threshold are reported)
-d number maximal number of alignments displayed
-H suppresses histogram of scores
ktup number | controls sensitivity (can be either 1 or 2 for proteins and up to 4 for DNA)
blastp E=evalue evalue threshold (only hits with evalue below this threshold are reported)
V=number maximal number of hits reported
B=number maximal number of alignments displayed
H=1 display histogram of scores
blastpgp | -d database the database searched
-i filename query file
-o filename out file
-e evalue evalue threshold (only hits with evalue below this threshold are reported)
-v number maximal number of hits reported
-b number maximal number of alignments displayed
-j number maximal number of iterations (PSI-BLAST)
-C filename saves a checkpoint profile in a file after each iteration (PSI-BLAST)
-R filename reads the initial profile from a file (PSI-BLAST)
-h evalue evalue threshold for inclusion in a profile (PSI-BLAST)

Table 1.4: Parameters for sequence comparison programs. PSI-BLAST and gapped BLAST are executed
by the same program (blastpgp). The default mode is a simple gapped BLAST (i.e., the parameter j is set to 1).
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Finally, there is a third set of parameters which controls the output of the program, e.g. how
many results are reported, and how many alignments are displayed. The number of hits reported
is often controlled by the e-value parameter (see section 1.3.2). For example, by default, the
BLAST programs will report only matches with an e-value up to 10 (this parameter also affects the
sensitivity of the method, in an indirect manner). The total number of matches is limited to the
best 500, and detailed information with the alignment is provided for up to 100 pairs. To retrieve
more matches, these numbers can be altered (see table 1.4).

1.5 Interpretation of results

Interpretation of the results of a sequence database search involves first evaluating the matches, to
determine whether they are significant and therefore imply homology. The most effective way of
doing so is through use of the statistical scores (the e-values). The e-values are more useful than the
raw or bit scores, and they are far more powerful than percentage identity (which is best not even
considered unless the identity is very high [?]). Fortunately, the e-values from FASTA, SSEARCH,
and gapped BLAST seem to be accurate and are therefore easy to interpret [?, ?].

The e-value (or expectation-value) of a match should measure the expected number of sequences
in the database which would achieve a given score. Therefore, in the average database search, one
expects to find ten random matches with e-value score of 10; obviously, such matches are not
significant. However, lacking better matches, sequences with these scores may provide hints of
function or suggest new experiments. Scores below 0.01 would occur by chance only very rarely,
and are therefore likely to indicate homology, unless biased in some way. Scores of near le-50 are now
seen frequently, and these offer extremely high confidence that the query protein is evolutionarily
related to the matched target in the database.

Inferring function from the homologous matched sequences is a process still fraught with dif-
ficulty. If the score is extremely good and the alignment covers the whole of both proteins, then
there is a good chance that they will share the same or a related function. However, is dangerous to
place too much trust in the query having the same function as the matched protein: functions do
diverge, and organismal or cellular roles may alter even when biochemical function is unchanged.
Moreover, a significant fraction of functional annotations in databases are wrong [?], so one needs
to be suspicious. There are other complexities; for example, if only a portion of the proteins align,
they may share a domain which only contributes an aspect of the overall function. It is often the
case that all of the highest-scoring hits align to one region of the query, and matches to other regions
need to be sought much lower in the score ranking. For this reason, it is necessary to carefully
consider the overlap between the query and each of the targets.

Database search methods are also limited because most homologous sequences have diverged
too far to be detected by pairwise sequence comparison methods [?, ?, ?]. Thus, failure to find a
significant match does not necessarily indicate that no homologs exists in the database. In such cases
more sophisticated methods must be applied. For example, iterative search programs such as the
profile based PSI-BLAST program [?] or the HMM based SAM-T98 [?] are advanced and sensitive
search tools. However, these programs should be carefully used as they can lead to false positives
by diverging from the original query sequence, and creating a profile (HMM) which represents
unrelated sequences. The most powerful tools today are those that incorporate information from a
group of related sequences. This strategy have led to the compilation of databases of protein families
and domains. These databases have become an important tool in the analysis of newly discovered
protein sequences. They usually offer a lot of biologically valuable information about domains and
the domain structure of proteins, through multiple alignments and schematic representations of
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proteins, and can help to detect weak relationships between remote homologs. Such methods are
described in the next chapters.

1.6 Conclusion

One should neither have excessive faith in the results of a database search, nor should they
be blithely disregarded. The standard search programs such as FASTA, gapped BLAST and
SSEARCH are well-tested and reliable indicators of sequence similarity, and their underlying prin-
ciples are straightforward. These programs and their parameters have been optimized for the
hundreds of thousands of runs every day. If one is careful about posing the database search exper-
iment and interprets the results with care, sequence comparison methods can be trusted to rapidly
and easily provide an incomparable wealth of biological information.



