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From last week

• Shared features of a Protein family (at the sequence level) can
be described as a pattern.

• Sequence Pattern and be represented as:

• Regular Expression (deterministic -> yes/no)

• Weight Matrix         (probabilistic)

• Profile                      (probabilistic)

• HMM                       (probabilistic)

• Example of a Prosite pattern:

• [DNSTAGC]-G-D-x(3)-{LIVMF}-G-A

• Example of a profile or a weight matrix:

a b a
a b -
- b a
c a -

Col1 Col2 Col3
a 50% 25% 50%
b 0% 75% 0%
c 25% 0% 0%
- 25% 0% 50%



Markov Chains
• Def:  A stochastic model for a series of random events (such as a time series)

whose probabilities at a time interval depend only on the previous Kth event.
The series can be  a "sequence" of observations over time or space, and the
controlling factor is a transition probability.

• Transition probability is a conditional probability for the system to go to a
particular new state, given the Kth previous state of the system.

• Simplest ones are the first order Markov Chains:  K  = 1 (model assumption).

•                                                         ...

• In the context of biological sequences, can be used to store primary structure
(raw sequence) and/or higher level structures such as secondary – quaternary
structure of DNA/RNA/Proteins

• Simple example from Durbin et al:

• CpG islands in genomic sequence of H.sapiens and other mammals:
• In human genome, a 'CpG' pair typically finds it's cytosine has been

methylated (chemical modification)
• Over time, there is high chance that this 'metCpG' will mutate to a

'TG'
The result is a lower than expected frequency of CpG pairs in the
genome        ( Obs 'CG'   <  P('C') . P('G')  )

• Evolution has constrained this behaviour to certain areas of genome
only.  For example, this behaviour is not observed around gene
promoter regions or inside coding regions.

• THESE ARE THE  CpG  ISLANDS !!
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CpG island example:   M.C

• continues …

• BIOLOGICAL QUESTIONS:

• 1.  Given a sample of genomic sequence, does it come from a CpG island?

• 2.  Given a long piece of sequence, how do we find the CpG islands in it?

• Under a first-order Markov assumption, we want a model in which the
probability of a symbol, depends on the previous one, thus we want to model
the probability, for example, of finding a “G” given that we already found a
“C” symbol.  We model all other possibilities as well.

• Symbols :  the alphabet to use:    A , G, C, T

• States:    In this case, the same as the symbols (residues)

• Transitions:  Moving from one letter to the next in the sequence

• Model: A graphical description of the system of states and parameters

A T

C G

If the sequence is:

   X1, X2, X3,…XL

The probability of the sequence can be
written as follows:

P(X1…XL) = P(XL, XL-1,…,X1)

Which becomes:

P(x)  = P(XL | X1…XL-1 ) P(XL-1 | X1…XL-2 ) …. P(X1) ,

                        but first order Markov rule means that

P(x)  = P(XL | XL-1 ) P(XL-1 | XL-2 ) …. P(X2 | X1) P(X1)



CpG island example:   M.C

• continues …
Begin and End ‘silent' states can be added to the Markov Chain Model.

" Using a set of real data, two separate MC models can be derived, one for each type of
region. The + model is the CpG Island regions, while the – model is the rest of sequence:

A T

C G

B E

+ A C G T - A C G T
A 0.180 0.274 0.426 0.120 A 0.300 0.205 0.285 0.210
C 0.171 0.368 0.274 0.188 C 0.322 0.298 0.078 0.302
G 0.161 0.339 0.375 0.125 G 0.248 0.246 0.298 0.208
T 0.079 0.355 0.384 0.182 T 0.177 0.239 0.292 0.292

The transition probabilities were calculated with the equation:

And its analog for the ‘–’ model,  where C+
st is the number of times letter t

followed letter s in the labeled CpG island regions, the opposite applies for the
‘--’ model .  These are the ML estimators for the transition probabilities.   In
the tables,  each row sums to 1. Values are for large dataset.

Note G following A is more common than T following A.  The CpG effect in
the ‘–’ table is obvious as well.
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CpG island example:   M.C

• continues …
To answer the first question (discrimination test), calculate the log-odds ratio
for sequence x of the corresponding transition probabilities.

• The following table shows the results of the calculation:

" The authors’ Figure 3.2 shows the distribution of scores S(x) normalized by
dividing by their length -> like in average number of bits/molecule

" <SEE FIG 3.2  from DURBIN’s BOOK. P.52>

S(x) = log
P(x | Model+)

P(x | Model−)
= log

axi −1x i

+

axi −1x i

−
i =1

L

∑

log A C G T
A -0.740 0.419 0.580 -0.803
C -0.913 0.302 1.812 -0.685
G -0.624 0.461 0.331 -0.730
T -0.117 0.573 0.393 -0.679





Hidden Markov Models
• Def:  An extension to the M.C. -> Another stochastic generative model.

The system randomly evolves from state to state while emitting symbols
from the alphabet. When system is at state i it has prob. tij of moving to
state j and prob.  eix of emitting symbol X

• Symbols :  the alphabet to use:    A , G, C, T

• States:    State space is discrete (mostly)

• Transitions:  Hidden. Prob Transition matrix  (between hidden states)

• Emissions:  Visible.   Prob. Emission matrix (between symbols)

• Model:  see in addition figure 7.1 and 7.2 of Brunak et al’s  book. p.146

• Only emissions are known (observable), but not the underlying random
walk between states, hence the term “hidden”.

• Differences with M.Cs.

•   The main difference is the added complexity of the hidden states and the
calculation of such state transitions.  Hidden states create many possible paths
that could generate the observed sequence.

• In the case of the CpG example,  the hidden states are the discrete values
“Yes/No” for being in a GpG island at a given time.

A G T G T G C T C G A T T G A C A T T C G C T C G A A T G G T C G

A T

C G

A T

C G

Hidden
Transition

To answer the second question:

CpG ‘+’ CpG ‘-’



Hidden Markov Model

• General Applications:

• First used in speech recognition, later applied in OCR. Also in other
fields such as economics and finance.

• Biological applications:

• Modeling of Coding/Non Coding regions, Promoter regions.

• Modeling of Intron/Exon boundaries

• Finding protein binding sites in the DNA (i.e. regulation of transcription)

• Categorization of protein families

• Multiple alignments

• Structural analysis and pattern discovery (like above)

• The main questions to solve

• Evaluation (likelihood, discrimination question)

• Input: the completed model + observed sequence

• Output: Probability is that the observed sequence was generated
by our model.

• In this calculation,  ALL possible PATHS are included (Σ), and
an algorithm based on dynamic programming is used to solve:
The Viterbi algorithm.

• …



Hidden Markov Model

Continues….

• Decoding

• Input: the completed model + observed sequence

• Output: finds most probable path that generated such sequence of
states given our model. Equivalent to find the BEST PATH.

• It also uses the Viterbi algorithm

• Learning (Training question).  This is the most difficult of all.

• Input: A set of sequences (structured data) for training. i.e. The
sequences for a Protein Family.

• Output:  Constructs the complete model: Helps designing the
general structure (states and connections between them) and obtains
the parameters that define such model:  transition probabilities and
emission probabilities.

• Several optimising algorithms may be used.  The most common is
the EM procedure (ML type). Others include Gibbs sampling
(Bayesian solution) and Gradient descent

• The Expectation-Maximization (EM) algorithm

• A type of learning algorithm.

• begins with an arbitrary set of parameters

• ML re-estimation of such parameters by considering probable
paths for training sequences with the current model. This
indicates how they may be modified to improve on the current
model

• try again. The process is iterated until some stopping criterion is
reached (like not being able to improve beyond a threshold).





Discrete state-space models
DSMs

• Examples we saw before included primary structure only, but we can model
higher structure information, such as secondary structure.

§ A DSM is an idealized representation of a particular tertiary structure class
à  alpha box, antiparallel bundle, central beta-sheet, barrel, etc.

§ The DSMs can be viewed as automatic generators of a.a sequences. They are
stochastic.

§ Each DSM describes probabilistically (Fig 1, 1993 paper)

§ allowed secondary structural elements, types (α-helix , β -strand/ β-sheet,
coil/loop/turn) associated with particular folds.

§ Lengths and connectivity (antiparallel, barrel, etc)

§ a.a composition (as well as relative residue positions within the secondary
structures and the relative exposure of residues to the solvent)

§ All these elements are modeled in a hierarchy of states in a Markov Chain,
with transitions between states determined by a transition prob. matrix.

§ A number of general protein folds have been modeled with DSMs by the
authors (see 1993 paper by same authors)  from PDB data.

     à Given a sequence of unknown structure, determine the probability that   
EACH model has generated it, using a Bayesian filtering algorithm
(find posterior probability of each model given the observed sequence)

    à  Once the most probable model is found, the most probable secondary 
structure for each residue is calculated for the sequence (Fig 4)

§ Their mathematical structure is the same as the one used for HMMs





Discrete state-space models
DSMs

Differences with Hidden Markov Models

Ø DSMs  DO NOT use a training procedure to create the model.
Therefore, estimation of transition probabilities is different:

Ø Start with a stationary model, based on EXPERT protein knowledge

Ø Based on physical interpretation of structural fold, build model that
encompasses all possible members (all possible sequences annotated as a
given fold type in database of structures).

Modified Discrete state-space
models  pDSMs

§ Starting with a defined DSM for a fold,  change the residue
probability associated with secondary structural states  to a
distribution  of conserved sequence patterns elements.

§ Equivalent to say that functionally conserved sequence patterns are
embedded into the model  (this is primary structure information).

§  The final model combines primary sequence and secondary/tertiary
sequence structure.  See figure 6

§ One advantage is that not training is required. Derived from expert
knowledge only (observation of distributions in curated dataset). But
this may also be thought of as a disadvantage by others



pDSMs

§ The inclusion of conserved sequence patterns assigns zero
probabilities to certain states and emissions. While in the case
of HMMs, even the very unlikely states have a chance of
happening (fig 6).

§ The space of possible paths is reduced drastically

§  GO TO RESULTS

§ Limitations of HSMs

• Often have very large number of parameters to estimate

• Training of Model is very difficult, and EM algorithm may
give sup-optimal answer (falling in local minima region)

• They are limited by their first order markov property.
i.e. They cannot express dependencies between hidden
states such as long-range correlations, like certain a.a
proximity properties (from 3D folding).  Unless these
properties are consistently present in the training set.

Limitations of HMM & pDSM





Limitations of HMM & pDSM

Limitations of pDSMs

• Need to construct models “manually” for every protein
family. Fig 5 shows one for a cluster within the serine
proteases

• Model is not really “optimal”, since no EM procedure was
used.  However, this is the main point the authors of DSMs
want to stress as being also a problem in HMMs, and
instead they opt for inclusion of expert knowledge

• As with HMMs, there some loss of information in the
mapping of 3D information into secondary structure, such
as long range residue proximity and contacts

• DOES NOT work with multidomain proteins.  The models
are made for single domains only.  This could be modified.

• Could actually use HMMs to improve further on their
already “good” models.



Results of the pDSM paper

Two protein families tested on pDSMs method with a set of false
positives and false negatives to test

• Trypsin-like serine proteases (his-Asp-Ser triad)

• Diverse, with >200 structures available, > 400 sequences.  %ID can be as
low as 10%.

• Pattern is X24-69 H X18-86 D X40-109 S X44-141      (his-Asp-Ser triad)

• Globins

• Used a very generic pattern: X41-60 F X38 H X43-68

Performed a genome scanning of three fully sequence genomes to find
new putative members.

Comparisons with other methods :  BLAST, Patterns

See results in tables.








