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From last week

Shared features of a Protein family (at the sequence level) can
be described as a pattern.

Sequence Pattern and be represented as:

» Regular Expression (deterministic -> yes/no)
« Weight Matrix (probabilistic)
* Profile (probabilistic)
« HMM (probabilistic)

Example of a Prosite pattern:

e [DNSTAGC]-G-D-x(3)-{LIVMF}-G-A

Example of a profile or a weight matrix:

Coll Col2 Col3
a 50% 25% 50%
0% 75% 0%
C 25% 0% 0%
25% 0% 50%

@y

o ' 2929
QQ T O T
o o




Markov Chains

Def: A stochastic model for a series of random events (such as a time series)
whose probabilities at a time interval depend only on the previous Kth event.
The series can be a "sequence" of observations over time or space, and the
controlling factor is a transition probability.

Transition probability is a conditional probability for the system to go to a
particular new state, given the Kth previous state of the system.

Simplest ones are the first order Markov Chains: K =1 (model assumption).

S

In the context of biological sequences, can be used to store primary structure
(raw sequence) and/or higher level structures such as secondary — quaternary
structure of DNA/RNA/Proteins

Transition

Simple example from Durbin et al:

» CpG islands in genomic sequence of H.sapiens and other mammals:

* In human genome, a 'CpG' pair typically finds it's cytosine has been
methylated (chemical modification)

» Over time, there is high chance that this 'metCpG' will mutate to a
ITGI
The result is a lower than expected frequency of CpG pairs in the
genome (Obs'CG' < P('C).P(G") )

» Evolution has constrained this behaviour to certain areas of genome
only. For example, this behaviour is not observed around gene
promoter regions or inside coding regions.

» THESE ARE THE CpG ISLANDS!!



CpG island example: M.C

continues ...
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BIOLOGICAL QUESTIONS:

e 1. Given a sample of genomic sequence, does it come from a CpG island?

» 2. Given along piece of sequence, how do we find the CpG islands in it?

Under a first-order Markov assumption, we want a model in which the
probability of a symbol, depends on the previous one, thus we want to model
the probability, for example, of finding a “G” given that we already found a
“C” symbol. We model all other possibilities as well.

e Symbols: the alphabettouse: A,G,C, T
» States: In this case, the same as the symbols (residues)
e Transitions: Moving from one letter to the next in the sequence

* Model: A graphical description of the system of states and parameters

If the sequence is:
Xqs KXoy Xgy o X

The probability of the sequence can be
written as follows:

P(Xy...X.) = P(XL, X{pe i Xy)

Which becomes:

P(X) =PCX | Xq.o. X 1) POX 1] X X ) - POXY)
but first order Markov rule means that
P(X) =P(X_| X 1) POXq| X 5) ... POXS | Xp) P(Xy)



CpG island example: M.C

e continues ...
Begin and End ‘silent’ states can be added to the Markov Chain Model.

Using a set of real data, two separate MC models can be derived, one for each type of
region. The + model is the CpG Island regions, while the — model is the rest of sequence:

A C G T
0.180 0.274 0.426 0.120
0.171 0.368 0.274 0.188
0.161 0.339 0.375 0.125
0.079 0.355 0.384 0.182

A C G T
0.300 0.205 0.285 0.210
0.322 0.298 0.078 0.302
0.248 0.246 0.298 0.208
0.177 0.239 0.292 0.292
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The transition probabilities were calculated with the equation:
+
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And its analog for the ‘=" model, where C* is the number of times letter t
followed letter s in the labeled CpG island regions, the opposite applies for the
‘--> model . These are the ML estimators for the transition probabilities. In
the tables, each row sums to 1. Values are for large dataset.

Note G following A is more common than T following A. The CpG effect in
the ‘—’ table is obvious as well.



CpG island example: M.C

e continues ...
To answer the first question (discrimination test), calculate the log-odds ratio
for sequence x of the corresponding transition probabilities.

P(x|Model+) & &
S(x) = | = & |og2u
) =1005 3 Moda) ~ & '%9 a

» The following table shows the results of the calculation:

| A C G T

-0.740 0.419 0.580 -0.803
-0.913 0.302 1.812 -0.685
-0.624 0.461 0.331 -0.730

-0.117 0.573 0.393 -0.679

= ® 0>

The authors’ Figure 3.2 shows the distribution of scores S(x) normalized by
dividing by their length -> like in average number of bits/molecule

- <SEE FIG 3.2 from DURBIN’s BOOK. P.52>



3 Markov chains and hidden Markov models
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Figure 3.2 The histogram of the length-normalised scores for all the se-
guences. Cp( islands are shown with dark grey and non-CpG with light

ETEY.

Figure 3.3 An HMM for CpG islands. In addition to the transitions shown,
there is also a complete set of transitions within each set, as in the earlier
simple Markov chains.



To answer the second question:

Hidden Markov Models

o Def: An extension to the M.C. -> Another stochastic generative model.
The system randomly evolves from state to state while emitting symbols
from the alphabet. When system is at state i it has prob. t;; of moving to
state j and prob. e;, of emitting symbol X

e Symbols: the alphabettouse: A,G,C, T

o States: State space is discrete (mostly)

e Transitions: Hidden. Prob Transition matrix (between hidden states)
* Emissions: Visible. Prob. Emission matrix (between symbols)

* Model: see in addition figure 7.1 and 7.2 of Brunak et al’s book. p.146

—

Hidden
Transition

—

CpG *-’

e Only emissions are known (observable), but not the underlying random
walk between states, hence the term “hidden”.

e Differences with M.Cs.

e  The main difference is the added complexity of the hidden states and the
calculation of such state transitions. Hidden states create many possible paths
that could generate the observed sequence.

* Inthe case of the CpG example, the hidden states are the discrete values
“Yes/No” for being in a GpG island at a given time.

AGTGTGCTCGATTGACATITCGCTCGAATGGTCG
< >




Hidden Markov Model

e General Applications:

» First used in speech recognition, later applied in OCR. Also in other
fields such as economics and finance.

« Biological applications:

* Modeling of Coding/Non Coding regions, Promoter regions.

* Modeling of Intron/Exon boundaries

» Finding protein binding sites in the DNA (i.e. regulation of transcription)
» Categorization of protein families

»  Multiple alignments

» Structural analysis and pattern discovery (like above)

 The main questions to solve

» Evaluation (likelihood, discrimination question)

 Input: the completed model + observed sequence

» OQutput: Probability is that the observed sequence was generated
by our model.

 Inthis calculation, ALL possible PATHS are included (S), and
an algorithm based on dynamic programming is used to solve:
The Viterbi algorithm.



Hidden Markov Model

Continues....

Decoding

* Input: the completed model + observed sequence

» Output: finds most probable path that generated such sequence of
states given our model. Equivalent to find the BEST PATH.

* |t also uses the Viterbi algorithm

Learning (Training question). This is the most difficult of all.

 Input: A set of sequences (structured data) for training. i.e. The
sequences for a Protein Family.

e Output: Constructs the complete model: Helps designing the
general structure (states and connections between them) and obtains
the parameters that define such model: transition probabilities and
emission probabilities.

» Several optimising algorithms may be used. The most common is
the EM procedure (ML type). Others include Gibbs sampling
(Bayesian solution) and Gradient descent

* The Expectation-Maximization (EM) algorithm

A type of learning algorithm.
begins with an arbitrary set of parameters

ML re-estimation of such parameters by considering probable
paths for training sequences with the current model. This
indicates how they may be modified to improve on the current
model

try again. The process is iterated until some stopping criterion is
reached (like not being able to improve beyond a threshold).
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Etli::: 7.1: A Simple Example of an HMM, with Two States in Addition to the St and End

Fijpure 7.2: The Standard HMM Architecture. § is the start state, E s the end state, and d, m,,



Discrete state-space models
DSMs

Examples we saw before included primary structure only, but we can model
higher structure information, such as secondary structure.

A DSM is an idealized representation of a particular tertiary structure class
—> alpha box, antiparallel bundle, central beta-sheet, barrel, etc.

The DSMs can be viewed as automatic generators of a.a sequences. They are
stochastic.

Each DSM describes probabilistically (Fig 1, 1993 paper)

allowed secondary structural elements, types (a-helix , b -strand/ b-sheet,
coil/loop/turn) associated with particular folds.

= Lengths and connectivity (antiparallel, barrel, etc)

a.a composition (as well as relative residue positions within the secondary
structures and the relative exposure of residues to the solvent)

All these elements are modeled in a hierarchy of states in a Markov Chain,
with transitions between states determined by a transition prob. matrix.

A number of general protein folds have been modeled with DSMs by the
authors (see 1993 paper by same authors) from PDB data.

—> Given a sequence of unknown structure, determine the probability that
EACH model has generated it, using a Bayesian filtering algorithm
(find posterior probability of each model given the observed sequence)

—> Once the most probable model is found, the most probable secondary
structure for each residue is calculated for the sequence (Fig 4)

Their mathematical structure is the same as the one used for HMMs
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Fig. 1. Schematic of model for the /8 structural class having a cen-
tral 8-sheet containing five, six, or seven g-strands. A: The DSM or-
ganization at the § plex level of detail. B: The A plex is composed of
secondary structural elements. C: One of these elements, the §-strand
submodel, which has a chain of discrete states at the amino acid posi-

#imn laval AF Aatail



Discrete state-space models
DSMs

Differences with Hidden Markov Models

> DSMs DO NOT use a training procedure to create the model.
Therefore, estimation of transition probabilities is different:

» Start with a stationary model, based on EXPERT protein knowledge

» Based on physical interpretation of structural fold, build model that
encompasses all possible members (all possible sequences annotated as a
given fold type in database of structures).

Modified Discrete state-space
models pDSMSs

Starting with a defined DSM for a fold, change the residue
probability associated with secondary structural states to a
distribution of conserved sequence patterns elements.

Equivalent to say that functionally conserved sequence patterns are
embedded into the model (this is primary structure information).

The final model combines primary sequence and secondary/tertiary
sequence structure. See figure 6

One advantage is that not training is required. Derived from expert
knowledge only (observation of distributions in curated dataset). But
this may also be thought of as a disadvantage by others



PDSMs

The inclusion of conserved sequence patterns assigns zero
probabilities to certain states and emissions. While in the case
of HMMs, even the very unlikely states have a chance of
happening (fig 6).

The space of possible paths is reduced drastically

GO TO RESULTS

Limitations of HMM & pDSM

Limitations of HSMs

» Often have very large number of parameters to estimate

« Training of Model is very difficult, and EM algorithm may
give sup-optimal answer (falling in local minima region)

» They are limited by their first order markov property.
I.e. They cannot express dependencies between hidden
states such as long-range correlations, like certain a.a
proximity properties (from 3D folding). Unless these
properties are consistently present in the training set.
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Limitations of HMM & pDSM

Limitations of pDSMs

Need to construct models “manually” for every protein
family. Fig 5 shows one for a cluster within the serine
proteases

Model is not really “optimal”, since no EM procedure was
used. However, this is the main point the authors of DSMs
want to stress as being also a problem in HMMs, and
Instead they opt for inclusion of expert knowledge

As with HMMs, there some loss of information in the
mapping of 3D information into secondary structure, such
as long range residue proximity and contacts

DOES NOT work with multidomain proteins. The models
are made for single domains only. This could be modified.

Could actually use HMMs to improve further on their
already “good” models.



Results of the pDSM paper

Two protein families tested on pDSMs method with a set of false
positives and false negatives to test

» Trypsin-like serine proteases (his-Asp-Ser triad)

» Diverse, with >200 structures available, > 400 sequences. %ID can be as
low as 10%.

e Globins
» Used a very generic pattern: X ;g0 F X35 H X434

Performed a genome scanning of three fully sequence genomes to find
new putative members.

Comparisons with other methods : BLAST, Patterns

See results in tables.



Table 1. Sensitivity and specificity of serine protease
homology identification by different methods®

Sensitivity Specificity
PDB(32) Genbank(111) PDB(206)
Search method (%) (%) (%)
Conserved sequence 100 100 0
Pattern
BLAST 65 T8 100
D&M g4 &0 B
pDSM 100 100 93

“Number of sequences in each dataset arc shown in parentheses.

Table 4. Sensitivity and specificity of homology identification

for globins by different methods

- Sensitiviy . Specificity
(26 proteins) (77 proteins)

Search method (%) (%)

Conserved sequence pattemn 100 0

BLAST 42 100

DSM 58 S0

pDSM 100 97




Table 2. The potential trypsin-like serine proteases in genomes
identified by pDSM sequence analysis

Prediction

Comment

Prediction

Comment

Prediction

Comment

Prediction

Comment

B. subtilis: MPR_PBS

(1) Probability: 0.85
(2) Serine protease domain: 104-313
(3) Catalytic triad: His146, Asp191, Ser267

(1) Annotation®: extracellular metalloprotease
(Rufo et al., 1996)

(2) Weakly similar to 1TRY and 1ELT (PDB), similar to
GSEP_BACLI® (SWISS-PROT)

(3) Signature®: TRYPSIN_HIS

(4) Alignment with known serine protease: Figure 1

E. coli: b1598

(1) Probability: 0.86

(2) Serine protease domain: entire sequence

(3) Catalytic triad: His84, Asp145, Ser223

(1) Annotation: 24% identical to MPR_BACSU

(2) Weakly similar to MPR_PBS and GSEP_BACLI
(SWISS-PROT)

(3) Signatures: TRYPSIN_HIS and TRYPSIN_SER

(4) Alignment with known serine protease: Figure 1

S. cerevisiae: YNL123W

(1) Probability: 0.85

(2) Serine protease domain: 76-286

(3) Catalytic triad: His121, Asp152, Ser236

(1) Annotation: weak similarity to C. jejuni serine protcase
(2) Similar to HTRA_ECOLI (SWISS-PROT)

(3) Signature: none

(4) Alignment with known serine protcasc Figure 2

C. elegans: CEIV000158

(1) Probability: 0.95

(2) Serine protease domain: entire sequence

(3) Catalytic triad: His69, Asp117, Ser212

(1) Annotation: similar to peptidase family S1 (lrypsm)
(2) Similar to 1PFX, etc.!

(3) Signature: TRYPSIN_HIS and TRYPSIN_SER

(4) Alignment with known serine proteases: Figure 3

*The annotations are obtained from the original genome databases.

bGSEP_BACLI has recently been ideatified as a remote homolog of
trypsin-like serine protcases by sequence analysis (Alexandre et al., 1996;
Pearson, 1997).

The signatures of serine proteases are defined in PROSITE (Bairoch,

1991).

4CEIV000158 matches many serine proteases by BLAST search.



Homology identification

Tuble 5. The 03 accuracy, sensitivity, and specificity of helix
prediction for globins by DSMs and pDSMs*

Q3 (%) Scasitivity (%) Specificity (%)
Loci DSM pDSM DSM pDSM DSM  pDSM
1ASH T6 ‘82 89 92 M 51
1BBBA ™ g2 91 92 36 5
1BVC BE g7 20 o4 G4 &7
1CMYRB 25 m 19 21 92 39
1ECA 47 71 45 80 28 26
IFDHG 55 80 43 21 57 49
1FLP 82 ES 25 02 44 a7
IFSLA T6 g3 81 02 31 59
1GD1 83 BS a7 n 41 &5
1HBG 78 BO 94 92 n 49
IHBHA 51 B3 53 4 50 58
IHBHB 6l g1 61 23 54 45
1HBIA 51 B4 53 92 41 62
IHDSA 38 g7} 61 100 54 42
1HDSB 43 60 49 B3 45 28
1HLB T6 73 99 o7 41 43
IHLM T2 T2 99 95 39 43
IITHA T4 Bl g1 92 40 57
ILHS g6 BE 05 96 59 64
IMBA &0 79 91 90 46 49
IMYT T6 82 04 05 34 52
1OUTA 55 82 45 g8 56 67
10UTE 25 % 19 g9 g8 55
1SCTA 38 79 53 88 60 47
I1SCTB &0 B4 91 91 37 &0
2LHB B Bl 95 o4 42 51
Average 66 80(62) 73 92(62) 43 52(74)
STD 18 6 26 L] 16 I1

_—  ————————=————

*The DSSP secondary structure sssignments are taken as the truc soc-
ondary strocture. The numbers in parentheses, listed in the row Average,
were obtained asing the GOR algorithm (Garnier et al., 1978) and are for
comparison oaly. The numbers in row STD are the standard deviations of
each column.




