“A Mathematical Theory of Communication”

Claude Shannon’s paper
presented by Kate Jenkins
2/19/00
• Published in two parts, July 1948 and October 1948 in the Bell System Technical Journal
• Founding paper of Information Theory
• First person to use a probabilistic model of communication
• Developed around same time as Coding Theory
• Huge Impact:

 now the mathematical theory of communication
 follow on papers
 idea that “all information is essentially digital”
 telecommunications, CD players, computer networks
 applications to biology, artificial intelligence..
Questions:

• How much information is produced by a source? (info/symbol or info/sec)

• How quickly can information be transmitted through a channel? (info/sec)

• What is best achievable transmission rate (source symbols/sec)?

• If channel has noise, under what conditions can the sent message be reconstructed from the received message?
What is information?

Acquiring information = Reducing uncertainty

Amount of information = Level of “surprise”

\[S = \{ s_i : 1 \leq i \leq n \} \] set of all possible events

\[p_i = \text{probability that } s_i \text{ occurs} \]

Information\((s_i) = \log_2 \frac{1}{p_i} \) "bits"

Example:

\[S = \{0,1\} \quad S_N = \{0,1\}^N \]

\[p_0 = p_1 = \frac{1}{2} \quad \Rightarrow \quad \text{Info}(0) = \text{Info}(1) = 1 \text{ bit} \]

\[s \in S_N \Rightarrow p_s = \frac{1}{2^N} \Rightarrow \text{Info}(s) = N \text{ bits} \]

\[p_0 = \frac{1}{16}, p_1 = \frac{15}{16} \Rightarrow \text{Info}(0) = 4 \text{ bits} \]

\[p_0 = 0, p_1 = 1 \quad \Rightarrow \quad \text{Info}(1) = 0 \text{ bits} \]
Channel capacity measured in bits/sec

\[C = \lim_{T \to \infty} \log N(T) / T \]

\[N(T) = \text{number of allowed signals of duration } T \]

Example: Digital channel

All \{0,1\} sequences allowed, produce \(r \) symbols/sec.

\[N(T) = 2^{rT} \]

\[C = r \text{ bits/sec} \]

Allows more complicated channel structures:

• varying time per symbol
• restrictions on allowed sequences of symbols
Define information generated by source (measured in bits/symbol) to be expected amount of information generated per symbol.

Recall,

\[\text{Info}(s_i) = \log \frac{1}{p_i}, \quad s_i \in S \]

So,

\[E(\text{Info}) = \sum_{s_i \in S} p_i \log \frac{1}{p_i} \]

Call this quantity the “Entropy” of the source. Use the symbol H.

\[H(x) = -\sum_{s_i \in S} p_i \log p_i \]

Where x is a random variable representing our signal.
Nice properties of Entropy:

\[H \geq 0 \]

\[H = 0 \text{ only if } p_i = 1 \text{ for some } i \]

If \(|S| = n\), \(H\) is maximized when \(p_i = 1/n \forall i\)

Suppose \(x, y\) two events,

then \(H(x, y) = - \sum_{i,j} p(i,j) \log p(i,j) \leq H(x) + H(y)\)

\(H(x, y) = H(x) + H(y)\) only if \(x, y\) independent.

Define Conditional Entropy (uncertainty of \(y\) given value of \(x\)):

\[H_x(y) = \sum_i p(i)H_i(y) = \sum_{i,j} p(i)p(i,j) \log p_i(j) \]

\[= - \sum_{i,j} p(i,j) \log p_i(j) \]

Then \(H(x, y) = H(x) + H_x(y)\), and \(H(y) \geq H_x(y)\)
Now consider messages of length N, N large.
Suppose source produces each symbol independently at random.
Then with high probability, for a message m

$\text{# of occurrences of } s_i \text{ in } m \approx p_i N \forall i$

so $p_m \approx \prod_i p_i^{p_i N}$

$\Rightarrow \log p_m \approx \sum_i N p_i \log p_i = -NH$

$\Rightarrow p_m \approx 2^{-HN}$

\Rightarrow for N large, have $\approx 2^{HN}$ probable, equally likely messages,

This result also holds for more complicated source models.
For ergodic Markov processes, use entropy $H = \sum_{i \in \text{states}} P_i H_i$
A channel with noise:

Consider two distinct signals

\[x = \text{signal input into the channel} \]
\[y = \text{signal received at the other end} \]

Equivocation = \(H_y(x) \)

Rate of actual transmission \(R(x) = H(x) - H_y(x) \) bits/sec

Channel capacity \(C = \max_{\text{info sources}} R(x) = \max_{\text{info sources}} (H(x) - H_y(x)) \)
The Fundamental Theorem for a Discrete Channel with Noise:

Let a discrete channel have capacity C, and a discrete source have entropy H bits/second. If $H < C$, there exists a coding system such that the output of the source can be transmitted over the channel with arbitrarily small errors.

Proof:
Recall $C = \max_{\text{encodings}} R(x)$

Suppose encoding S attains this maximum (or arbitrarily close).

S has input entropy $H^S(x)$, output entropy $H^S(y)$. So there are $2^{H^S(x)T}$ probable input messages of duration T,
$2^{H^S(y)T}$ probable received messages of duration T, and $2^{H^S_y(x)T}$ probable inputs for a given output.
Construct a bipartite graph, where each node is a probable input or output message of duration T for source S. Connect nodes A and B by an edge if message A is an input likely to produce output B.

Let R be the source we’re interested in, with entropy $< C$. Encode R by randomly assigning messages of duration T to nodes in the left column of the graph. Given an output message, the probability that it is connected to more than one R-input message is

$$\leq \left(\frac{2^{H^R_T}}{2^{H^S_T}}\right)2^{H^S_{xT}} = 2^{(H^R - (H^S - H^S_x)T} = 2^{(H^R - C)T} \to 0 \text{ as } T \to \infty$$
Extensions to Shannon’s work:

• Continuous source/channel (in 2nd part of paper)
• Consider multi-terminal case
• Consider multi-way channels (like telephone lines!)
• Consider more complicated source structures (non-ergodic!) and different memory models for transmitters.
• Kolmogorov applied Shannon’s ideas to solve long-standing problems in ergodic theory.

• Applications to biology:
 • Entropy of DNA to identify binding sites
 • Intra-organism communication
Discussion Topics:

• Any questions?

• Any Shannon anecdotes?

 Required reading at NSA

 Wrote good article on the mathematics of juggling

 Made a maze-learning mouse out of phone-relays

 Married a numerical analyst from Bell Labs

• Shannon says (p.413) that no explicit description is known of approximations to the ideal coding for a noisy channel. I understand this is still the case. Comments on what is done in practice?

• Other applications/impact of information theory?

• Any ideas about entropy of English and crossword puzzles? (p.399) How to go about proving such a result?