Reducibility among Combinatorial Problems

Richard Karp

Presented by
Chaitanya Swamy

Richard Manning Karp

- Born in Boston, MA on January 3, 1935.
- AB in 1955, SM in 1956 and Ph.D. in 1959 from Harvard.
- 1959-1968 : IBM TJ Watson Research Center.
- 1968-1995 : UC Berkeley.
- 1972 : Wrote this paper.
- 1995-1999 : U. Washington, Seattle.
- Since 1999 at UC Berkeley. Currently works in Computational Biology - sequencing the human genome, analyzing gene expression data, other combinatorial problems

Richard Karp

Awards and Honors

- 1996 : National Medal of Science
- 1995 : Babbage Prize
- 1990 : John von Neumann Theory Prize, ORSA-TIMS
- 1986 : Distinguished Teaching Award, UC Berkeley
- 1985 : ACM Turing Award
- 1979 : Fulkerson Prize, AMS
- 1977 : Lanchester Prize, ORSA

History of NP-Completeness

- Stephen Cook, 1971, showed that formula Satisfiability is $N P$-Complete.
- Karp's paper showed that computational intractability is the rule rather than the exception.
- Together Cook \& Karp, and independently Levin laid the foundations of the theory of $N P$-Completeness.
- "... Karp introduced the now standard methodology for proving problems to be $N P$-Complete ..." - Turing Award citation.

Definitions

Given an alphabet Σ,
A problem Q is a set of 'yes' instances e.g..
SAT $=\{F \mid F$ is satisfiable $\}, \quad(x 1 \vee x 2) \in$ SAT
An algorithm A solves problem Q if, $A(x)=$ 'yes' $\Leftrightarrow x \in Q$.
A certifier B is an efficient certifier for problem Q if, $\forall x .(x \in Q \Leftrightarrow \exists y .|y| \leq \operatorname{poly}(|x|)$ s.t. $B(x, y)=' y e s$ ' and running time of $B \leq \operatorname{poly}(|x|+|y|))$
$P=\{Q \mid Q$ has a polynomial time algorithm $A\}$
$N P=\{Q \mid Q$ has an efficient certifier $B\}$

Defn's. (contd.)

Let L, M be languages.
$L \leq_{\mathrm{P}} M$ if \exists a polynomial time computable function f s.t.
$x \in L \Leftrightarrow f(x) \in M$.
The relation \leq_{P} is symmetric and transitive.
Also, $L \leq_{\mathrm{p}} M$ and $M \in P \Rightarrow L \in P$

$$
L \leq_{\mathrm{P}} M \text { and } M \in N P \Rightarrow L \in N P .
$$

L is said to be complete for $N P$ w.r.t \leq_{P}, if
i. $\forall M \in N P, M \leq_{\mathrm{P}} L(\Rightarrow L$ is $N P$-Hard $)$, and
ii. $L \in N P$

Classification of NP-Complete Problems

1. Constraint Satisfaction : SAT, 3SAT
2. Covering : Set Cover, Vertex Cover, Feedback Set, Clique Cover, Chromatic Number, Hitting Set
3. Packing : Set Packing
4. Partitioning : 3D-Matching, Exact Cover
5. Sequencing : Hamilton Circuit, Sequencing
6. Numerical Problems : Subset Sum, Max Cut

Some NP-Complete Problems

3SAT : Given $F\left(x_{l}, \ldots, x_{n}\right)$ in 3-CNF i.e. $F=C_{l} \wedge \ldots \wedge C_{m}$, $C_{i}=\left(x_{i 1} \vee x_{i 2} \vee x_{i 3}\right)$, is F satisfiable ?

Clique : Given a graph G, a number k, does G have a complete subgraph of size k ?

Vertex Cover : Given $G=(V, E), l$, is there a subset U of V s.t. $|U|=l$ and for every $e=(u, v)$, at least one of u, v is in U ?

3D-Matching : Given finite disjoint sets X, Y, Z of size n, and a set of triples $\left\{t_{i}\right\} \subseteq X \times Y \times Z$, are there n pairwise disjoint triples ?

Subset Sum(Knapsack) : Given n elements, $\left\{w_{1}, \ldots, w_{n}\right\}$ and a target B, is there a subset of elements which adds up exactly to B ?

3SAT \leq_{p} Clique

Construct $V=\left\{\langle\sigma, i\rangle \mid \sigma\right.$ is a literal and occurs in $\left.C_{i}\right\}$
$E=\{(\langle\sigma, i\rangle,\langle\delta, j\rangle) \mid i \neq j$ and $\sigma \neq \bar{\delta}\}$
$k=m$
e.g. $F=\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{2} \vee \bar{x}_{1} \vee x_{3}\right)$
$C_{1} \quad C_{2}$

Suppose $F=C_{I} \wedge \ldots \wedge C_{m}$ is satisfiable, then at least one literal σ_{i} in every C_{i} is true, also both σ_{i} and σ_{i} are not true \Rightarrow the nodes $\left\{\left\langle\sigma_{I}, 1\right\rangle, \ldots,\left\langle\sigma_{m}, m\right\rangle\right\}$ form a clique of size $m=k$.

Conversely if \exists a clique of size m, then we must have a node $\left\langle\sigma_{i}, i\right\rangle$ for each i, since two literals in the same clause do not have an edge between them. Also both $\sigma, \bar{\sigma}$ cannot be in the clique.
\Rightarrow setting the corresponding literals to true satisfies F.
$\therefore F \in$ 3SAT $\Leftrightarrow(G, m) \in$ Clique

Clique \leq_{p} Vertex Cover

Construct $G^{C}=\left(V, E^{C}\right)$, where $E^{C}=\{(u, v) \mid(u, v) \notin E\}$

$$
l=|V|-k=n-k
$$

Suppose G has a clique K of size k. Then in G^{C}, no two vertices in K are connected $\Rightarrow V-K$ is a vertex cover for G^{C} since for any edge $e=(u, v) \in E^{C}$, both u, v cannot be in K $\Rightarrow V-K$ is a vertex cover of size $n-k$.

Conversely if G^{C} has a vertex cover U of size $n-k$. Then no two vertices in $V-U$ are connected in G^{C}
$\Rightarrow V-U$ forms a clique of size k in G.

3D-Matching \leq_{p} Subset Sum

Let $m=\left|\left\{t_{i}\right\}\right|+1$. Encode each triple as a number in base m. Each triple written as a 'bit' string of length $3 n$ in base m.
$x_{j} \mapsto$ position $j^{\prime}=j-1,0 \leq j^{\prime}<n$
$y_{k} \rightarrow$ position $k^{\prime}=n+k-1, n \leq k^{\prime}<2 n$
$z_{l} \mapsto$ position $l^{\prime}=2 n+l-1,2 n \leq l^{\prime}<3 n$
For each $t_{i}=\left(x_{j}, y_{k}, z_{l}\right)$, we have $w_{i}=m^{\prime}+m^{k^{\prime}}+m^{\prime}$ ie. w_{i} is the string which has 1 s at positions j^{\prime}, k^{\prime} and l^{\prime}.
$z_{n} \ldots z_{l} \ldots z_{l} y_{n} \ldots y_{k} \ldots y_{l} x_{n} \ldots x_{j} \ldots x_{l}$
$\left.\begin{array}{llllllllllllll}0 & \ldots & 1 & \ldots & 0 & 0 & \ldots & 1 & \ldots & 0 & 0 & \ldots & 1 & \ldots\end{array}\right)$
Finally we let $B=$ string of all $1 \mathrm{~s}=\left(m^{3 n}-1\right) /(m-1)$.

If we have a 3D-Matching, then since there are n pairwise disjoint triples, each x_{j}, y_{k}, z_{l} is present in exactly one triple \therefore adding w_{i}^{\prime} 's corresponding to the triples gives a string of 1 s
\Rightarrow there is a subset with sum $=B$.

Conversely if there is a subset adding up to B, then by construction the triples corresponding to the elements cover each x_{j}, y_{k}, z_{l} exactly once
\Rightarrow there are n pairwise disjoint triples.

Impact of the paper

- Along with Cook's paper laid the foundations of the theory of $N P$-Completeness.
- Showed that all these different looking problems are essentially the same problem in disguise.
- Since Karp's paper there have been a plethora of papers on proving problems $N P$-Complete or $N P$-Hard. Gary \& Johnson, "Computers and Intractability : A Guide to the Theory of NP-Completeness" has an extensive catalogue of these.
- An AltaVista search for $N P$ Completeness gave 227,598 hits.

Discussion

- In the face of computational intractability, how do we approach $N P$-Complete problems?
- Are all $N P$-Complete and $N P$-Hard problems equally hard?
- Are all instances of $N P$-Complete problems equally hard?
- PCP model(Arora, Lund, Motwani et al.) - Proof, Verifier model.
Given a string x, a proof of membership y, a probabilistic $(r(n), q(n))$ verifier uses $O(r(n))$ random bits to compute $O(q(n))$ addresses in the proof. Then using random access it queries those addresses and decides membership.
Main Theorem : $N P=P C P(\log n, 1)$
- Karp anecdotes?
- $P=N P$?

