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History of NP-Completeness

• Stephen Cook, 1971, showed that formula Satisfiability is 
NP-Complete.

• Karp’s paper showed that computational intractability is 
the rule rather than the exception.

• Together Cook & Karp, and independently Levin laid the 
foundations of the theory of NP-Completeness.

• “… Karp introduced the now standard methodology for 
proving problems to be NP-Complete …” – Turing Award 
citation.



Definitions

Given an alphabet Σ,

A problem Q is a set of ‘yes’ instances e.g..
SAT = {F | F is satisfiable }, ( x1 ∨ x2 ) ∈ SAT

An algorithm A solves problem Q if,  A(x)=‘yes’ , x ∈ Q.

A certifier B is an efficient certifier for problem Q if,
∀x. ( x ∈ Q ,∃y. |y| ≤  poly(|x|) s.t. B(x,y)=‘yes’ and 

running time of B ≤  poly(|x|+|y|) )

P = {Q | Q has a polynomial time algorithm A}

NP = {Q | Q has an efficient certifier B}



Defn’s. (contd.)

Let L, M be languages.

L ≤P M if  ∃a polynomial time computable function f s.t.
x ∈ L , f(x) ∈ M.

The relation ≤P is symmetric and transitive.
Also, L ≤P M and M ∈ P ⇒ L ∈ P

L ≤P M and M ∈ NP ⇒ L ∈ NP.

L is said to be complete for NP w.r.t ≤P, if
i. ∀M ∈ NP,  M ≤P L (⇒ L is NP-Hard ), and
ii. L ∈ NP



Classification of NP-Complete 
Problems

1. Constraint Satisfaction : SAT, 3SAT

2. Covering : Set Cover, Vertex Cover, Feedback Set, Clique 
Cover, Chromatic Number, Hitting Set

3. Packing : Set Packing

4. Partitioning : 3D-Matching, Exact Cover

5. Sequencing : Hamilton Circuit, Sequencing

6. Numerical Problems : Subset Sum, Max Cut



Some NP-Complete Problems

3SAT : Given F(x1, …,xn) in 3-CNF i.e. F = C1 ∧ … ∧ Cm, 
Ci = (xi1 ∨ xi2 ∨ xi3), is F satisfiable ?

Clique : Given a graph G, a number k, does G have a complete 
subgraph of size k ?

Vertex Cover : Given G=(V,E), l, is there a subset U of V s.t. 
|U |= l and for every e=(u,v), at least one of u,v is in U ?

3D-Matching : Given finite disjoint sets X, Y, Z of size n, and a set 
of triples {ti} ⊆ X ×Y ×Z, are there n pairwise disjoint triples ?

Subset Sum(Knapsack) : Given n elements, {w1, …,wn} and a 
target B, is there a subset of elements which adds up exactly to B ?



3SAT ≤P Clique

Construct V={〈σ, i〉 | σ is a literal and occurs in Ci }
E={(〈σ, i〉, 〈δ, j〉) | i≠ j and σ ≠δ }
k = m

e.g. F = (x1 ∨ x2 ∨x3) ∧ (x2 ∨x1 ∨ x3)



Suppose F = C1 ∧ … ∧ Cm is satisfiable, then at least one 
literal σi in every Ci is true, also both σi and σi are not true
⇒ the nodes {〈σ1, 1〉, … , 〈σm, m〉} form a clique of size m=k.

Conversely if  ∃ a clique of size m, then we must have a node
〈σi, i〉 for each i, since two literals in the same clause do not 
have an edge between them. Also both σ, σ cannot be in the 
clique.
⇒setting the corresponding literals to true satisfies F.

∴ F ∈ 3SAT , (G, m) ∈ Clique



Clique ≤P Vertex Cover

Construct GC = (V,EC), where EC = {(u,v) | (u, v) ∉ E }
l = |V | - k = n-k

Suppose G has a clique K of size k. Then in GC, no two 
vertices in K are connected ⇒ V-K is a vertex cover for GC

since for any edge e=(u,v) ∈ EC, both u, v cannot be in K
⇒ V-K is a vertex cover of size n-k.

Conversely if GC has a vertex cover U of size n-k. Then no 
two vertices in V-U are connected in GC

⇒ V-U forms a clique of size k in G.



3D-Matching ≤P Subset Sum

Let m = |{ti}|+1. Encode each triple as a number in base m.
Each triple written as a ‘bit’ string of length 3n in base m.
xj � position j’ = j-1,  0 ≤ j’ < n
yk� position k’ = n+k-1,  n ≤ k’ < 2n
zl � position l’ = 2n+l-1,  2n ≤ l’ < 3n
For each ti= (xj, yk, zl), we have wi = mj’ + mk’ + ml’ ie. wi is 
the string which has 1s at positions j’, k’ and l’.
zn . . .  zl . . .  z1 yn . . .  yk . . .  y1 xn . . .  xj . . .  x1 

0   …   1  …   0   0   …   1 …   0   0   …   1   …   0   

Finally we let B = string of all 1s = (m3n-1)/(m-1).



If we have a 3D-Matching, then since there are n pairwise
disjoint triples, each xj, yk, zl is present in exactly one triple
∴ adding wi’s corresponding to the triples gives a string of 1s
⇒ there is a subset with sum = B.

Conversely if there is a subset adding up to B, then by 
construction the triples corresponding to the elements cover 
each xj, yk, zl exactly once
⇒ there are n pairwise disjoint triples.



Impact of the paper

• Along with Cook’s paper laid the foundations of the theory 
of NP-Completeness.

• Showed that all these different looking problems are 
essentially the same problem in disguise.

• Since Karp’s paper there have been a plethora of papers on 
proving problems NP-Complete or NP-Hard. 
Gary & Johnson, “Computers and Intractability : A Guide 
to the Theory of NP-Completeness” has an extensive 
catalogue of these.

• An AltaVista search for NP Completeness gave 227,598
hits.



Discussion

• In the face of computational intractability, how do we 
approach NP-Complete problems?

• Are all NP-Complete and NP-Hard problems equally hard?
• Are all instances of NP-Complete problems equally hard?
• PCP model(Arora, Lund, Motwani et al.) – Proof, Verifier 

model.                                                          
Given a string x, a proof of membership y, a probabilistic (r(n), q(n)) 
verifier uses O(r(n)) random bits to compute O(q(n)) addresses in the 
proof. Then using random access it queries those addresses and decides 
membership.

Main Theorem : NP = PCP(log n,1)

• Karp anecdotes?
• P =NP ?


