
1

On Kalman Filtering

A study of “A New Approach to
Linear Filtering and Prediction

Problems” by R. E. Kalman

Mehul Motani

February 11, 2000

@ Mehul Motani, 2000 2

The 1960s: A Decade to
Remember

• Rudolf E. Kalman in 1960
– Research Institute for Advanced Studies (Baltimore)

– The Discrete-time Kalman Filter

• With Richard Bucy in 1961
– Bucy was with Johns Hopkins Applied Physics Lab

– The Continuous-time Kalman Filter

• Kalman Filtering used widely in
– Control Systems, Signal Processing, Communications
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Some Motivation
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The Static Case

• First Measurement

• First Estimate

Conditional PDF of position
based on measurement z1
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The Static Case (cont.)

• Second Measurement

• Second Estimate

Conditional PDF of position
based on measurement z2
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How do we optimally combine the two measurements?
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The Combined Estimate

),~Normal( 2ˆµ
•  Conditional PDF of position based on both measurements

µ
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The Optimum Estimate is …

µ=2x̂
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What does optimum mean?

• Unbiased (since it the conditional mean)

• Maximum Likelihood Estimate

• Least Squares Estimate

• Minimum Variance, Unbiased Estimate

• The Kalman filter is all of the above !
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Another Look
The Predictor-Corrector Structure

Predict Correct
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The Dynamic Case

• System dynamics:
0v

dt

dx =

1t 2t

0v
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What is the Kalman Filter?
 Optimum Recursive Data Processing Algorithm

• Optimum: Uses all available data
– ML, Least Squares, MVUE

• Recursive: Does not store all data
– Critical for implementation

• Data Processing
– Incorporates discrete-time measurements
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Assumptions

• Linear (Discrete) System Model
– Admits tractable analysis

– Linear systems theory is quite thorough.

• White Noise
– Real systems are bandpass.

• Gaussian Noise
– Use Central Limit Theorem arguments
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General System Dynamic Model
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Kalman’s Model

• Weiner Problem
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Kalman’s Solution

• Orthogonal Projection

• Using the state representation, he derives a
recursive optimum solution.

• We will not derive, but rather motivate the
solution.
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A Subtle Distinction

a posteriori

a priori

Estimate Error
Covariance

Estimate ErrorEstimate
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Basic Operation of the Filter

• Time Update (Predict)
– Project current state and covariance forward to

the next time step, i.e. compute the next a priori
estimates.

• Measurement Update (Correct)
– Update the a priori quantities using noisy

measurements, i.e. compute the a posteriori
estimates.
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The Optimum Solution

• Choose Kk to minimize the a posteriori error
covariance.

• A minimizing form for Kk is
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A Closer Look

• Good Measurements

• Bad Measurements

( ) 1−−− += k
T
kkk

T
kkk RMPMMPK

1,0As −→→ kkk MKR

0,0As →→−
kk KP

@ Mehul Motani, 2000 20

Kalman Filter Algorithm
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Fine Tuning the Kalman Filter

• Measurement Noise Covariance, Q
– Can take offline samples and estimate

• Process Noise Covariance, R
– Not so clear how to estimate

• Both quantities can be time varying!

• Choosing Q and R is actually an art.
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Example: Lost in Space
• Spacecraft accelerating with random bursts

from its thrusters.

k
k

k

k

k a
T

T

x

xT

x

x
+=

+

+ 2/

10

1 2

1

1
��

kkk vxz +=

2
vR σ= = 22/3

2/34/4
2

TT

TT
aQ σ



12

@ Mehul Motani, 2000 23

Kalman Filter Performance

22,ft./sec5.0.,ft10 vav R σσσ ===
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Kalman Filter Performance

1,ft./sec5.0.,ft10 2 === Rav σσ
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Kalman Filter Performance

10000,ft./sec5.0.,ft10 2 === Rav σσ
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Applications

• Navigational and Guidance Systems

• Radar tracking and Sonar ranging

• Satellite orbit computations

• Active Noise Control

• Predictive tracking for virtual reality

• MMSE receiver is Kalman filtering
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Recall our Assumptions

• Linear Discrete System Model

• White Measurement and Process Noise

• Gaussian Measurement and Process Noise

The Kalman Filter is the “best” possible.

@ Mehul Motani, 2000 28

Variations on a filter

• Discrete-Discrete Kalman Filter  Π
• Continuous-Discrete Kalman Filter

• Extended Kalman Filter



15

@ Mehul Motani, 2000 29

Continuous-Discrete Kalman

• System Model
– Continuous Model for dynamical system
– Discrete measurement equations

• Why?
– Flexibility
– Irregularly spaced measurements
– Use numerical integration (e.g. Runge-Kutta) to

project states ahead.
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Non-linear Systems

• Can we relax the linearity assumption?

• Nonlinear stochastic difference equation
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The Extended Kalman Filter

• Linearize about the current mean and
covariance using Taylor Series notions.

• Use Jacobians to project ahead and to relate
measurement to states.
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Non-Gaussian Noise

• Kalman filter is no longer “universally”
optimum.

• It is still the minimum variance estimator
amongst all linear unbiased estimators.
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What did they do before Kalman?

• Weiner filter
– Developed by Weiner at MIT in the 1940s

– Analyzes time series in the frequency domain

– Applies only to stationary problems

• There is much work on extending Weiner’s
ideas to nonstationary problems.
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Kalman vs. Weiner

• Kalman Filter applies to both stationary and
nonstationary problems

• Implementation Issues
– Weiner filter operates on all data directly for

each estimate

– Kalman filter recursively conditions current
estimate on all past measurements.
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All Roads Lead From Gauss
“… since all our measurements and observations are nothing more
than approximations to the truth, the same must be true of all
calculations resting upon them, and the highest aim of all
computations made concerning concrete phenomena must be to
approximate, as nearly as practicable, to the truth. But this can be
accomplished in no other way than by a suitable combination of
more observations than the number absolutely requisite for the
determination of the unknown quantities. This problem can only
be properly undertaken when an  approximate  knowledge of the
orbit has been already attained, which is afterwards to be
corrected so as to  satisfy all the observations in the most accurate
manner possible.”

-- From Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections, Gauss, 1809
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Discussion
• Non-white measurement and process noise.
• Non-independent noise
• What if the statistics of the noise are

unknown or vary rapidly?
• Efficient as it is, the Kalman filter is still

not practical for high dimensional systems.
Can you approximate the Kalman filter for
large systems?
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One Last Thing to Think About

• Suppose we want to construct a time history
of the states given all the measurements,
rather than estimating the state as
measurements come in.

• Can we do better than the Kalman filter?


