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Abstract
Abstract –– General–purpose programmers have

come to expect a high degree of portability among widely
varying architectures.  Advances in run–time systems for
parallel programs have been proposed in order to harness
available resources as efficiently as possible.
Simultaneously, advances in algorithmic ways of
dynamically balancing computational load have been
proposed in order to respond to variations in actual
performance and therefore in runtime.  The primary
mechanism for harnessing idle resources effectively, task
migration, can be used alongside the primary mechanism
for dynamic load balancing, data redistribution.  Besides
the fact that the two methods can be used simultaneously to
spur further increases in performance, the run–time
information–gathering infrastructure necessary to detect
and use idle resources can also benefit dynamically
load–balanced applications.  This paper describes an
architecture for and preliminary implementation of a
system that combines data–parallel load–balancing with
task–parallel load–balancing.  Performance test results are
included as well.

1:  Introduction and Survey of Existing
Systems

One of the responsibilities of a parallel program and/or
run–time system is that of load–balancing.  Individual
processors may vary in performance, external workload, or
data distribution, and so methods to maintain an even
distribution of work are usually needed to obtain good
performance and speedup.

One can consider a parallel program as consisting of p
threads of execution and q data partitions.  In general, p does
not have to equal q (although this is usually the case).  To
maintain a balanced load, the threads can be moved, the data

in the partitions can be redistributed, or the two (matched
pairs of threads and data) can be moved together.  These
three cases can be called “thread migration”, “data
migration”, and “task migration”, respectively.

This paper considers the network–of–workstation
environment, and in the NOW environment there is an
additional reason to migrate work.  It is often desirable to
return a workstation back to its “owner” and release the
CPU and memory resources.  Thus “release of resources”
is an additional reason to provide and use task migration.
This is an important distinction, as task–migration–based
load–balancing systems can perform task migrations for
reasons unrelated to load–balancing, and data–migration
and thread–migration–based systems may also provide task
migration services.  The three styles of migration (and of
programming) are characterized below.

1.1:  Task Migration

Task–parallel applications tend to be coarse–grained,
and task migration, involving transfer of the program’s state
to another computer during run–time, represents a coarse
degree of load–balancing.  It has the advantage of a natural
mapping to the operating system  (the entire process is
transferred) but the disadvantage of being relatively
cumbersome.  It also has the advantage of being able to
release resources (such as workstations) back to indiviual
users by moving the work elsewhere and freeing up both the
CPU and memory.

1.2:  Data Migration

Data migration is typically supported by the
application itself.  That is, data–parallel programs tend to
use data migration (or dynamic data allocation) to maintain
a balanced load, and therefore tend to be self–balancing.
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This represents a finer grain of control than task migration,
as only fractions of a program state have to be moved.

1.3:  Thread Migration

Thread–parallel applications take advantage of
shared–memory multiprocessors to operate over a large
data set.  As the case with data–parallel applications, they
are typically supported at the application/algorithm level
and may offer a fine degree of control due to the relatively
small state size of a single thread.

1.4:  A Run–Time System for All Three

The ideal run–time system should provide support for
all of these strategies, as they have complementary sets of
advantages.  Once the programmer has expressed the
algorithm to be used, the run–time system should execute
the program efficiently, taking maximum advantage of
available resources.  It may have to migrate entire tasks in
order to relinquish processors back to “owners”, but if it
does not have to migrate an entire task, it is desirable to
move only the amount of data needed to rebalance the load.
The key point is that these load–balancing strategies can
actually work in concert to provide additional benefits.

It is the desire to support multiple load–balancing
strategies that provides impetus for this work.  This paper
demonstrates that a prototype run–time system, combining
both task and data migration, can provide performance
advantages with little overhead, and outlines an architecture
for even tighter coupling between the task–based and
data–based balancing mechanisms.  After a review of both
data–based and task–based load balancing, a joint
architecture is outlined and some preliminary testing and
performance results are presented.

2:  Data–Parallel, Fine–Grained Load
Balancing

2.1:  Background and Related Work

 Although many scientific application algorithms are
amenable to parallelization, performance gains from
execution on parallel machines are  difficult to obtain due
to load imbalances caused by irregular distributions  of data,
by the different processing requirements of data in the
interior versus those near the boundary of the space, and by
system effects (such as data access latency and operating
system interference) .  The distribution  of data may need to
change at each time step in the algorithm, for example.

Currently, most data–parallel scientific applications
use static scheduling methods to address performance
degradation due to load imbalance.  Some of them use
repetitive static methods to adapt to variable work loads
from one  step to another.  However, this requires profiling

which results in  increased overhead.  “Profiling”, in this
context, refers to detailed performance analysis that is only
available after the program is finished, or at least after the
current program iteration is completed.

Another potential shortcoming involves the amount of
data exchanged among tasks  to balance the load.  If the
amount of data is too large, the resulting  corrections will be
too coarse.  If the amount of data is too small, the  process
of exchanging data will occur much overhead.  The
Fractiling method was developed in response to the
shortcomings of these other methods [2],[7].  It draws on
earlier schemes that schedule loop iterations in
decreasing–size chunks: the early larger chunks have
relatively little overhead, while the later smaller chunks
smooth over their unevenness [10], [8].

2.2:  Current Work and Recent Results

Fractiling simultaneously balances  processor loads
and maintains locality by exploiting the self–similarity
properties of fractals. It is based on a probabilistic analysis,
and thus,  accommodates load imbalances caused by
predictable phenomena, such as irregular data, and
unpredictable phenomena, such as data–access latencies
and variations in processor performance.

 In fractiling, work and the associated data are initially
placed to  processors in tiles so as to maximize locality, and
processors that finish  early are allowed to “borrow’’
decreasing–sized subtiles of work from slower  processors
to balance loads.  Each successive  subtile is one–half the
size of the previous subtile. Early in the program run, large
performance variations can be accommodated  by
exchanging large subtiles.  As the program runs, the subtiles
shrink so  that smaller variations can be corrected.  By
having subtile sizes based on a uniform size ratio, a complex
history of  executed subtiles does not need to be maintained.
Each task simply tracks  the size of its currently executing
subtile, and the unit of data exchange  among tasks is the
largest subtile currently being executed by any task.  Thus
the algorithm inherently minimizes the global
“bookkeeping” data requirement.

In experiments on a KSR1 and a IBM SP2 the
performance of  N–body simulation  codes were improved
by as much as 53% by fractiling [3],[4].   The corresponding
coefficient of variation in processor finishing time  among
the simulation tasks was extremely small, indicating a very
good  load–balance was obtained.   Performance
improvements were obtained on uniform and nonuniform
 distributions of bodies, underscoring the need for a
scheduling scheme that  accommodates system–induced
variance.

In fractiling, negotiations by idle resources for more
work replaces profiling.  The load–balancing actions taken
by fractiling are a function of performance, in the sense that
idle processors have performed well, but are not a function



of a direct performance measurement.  Rather, they simply
exchange work from “busy” processors to “idle” ones.  This
reduces overhead, as detailed data collection is not needed,
and increases responsiveness, as load balancing can occur
in mid–iteration.  Note that the bulk of load–balancing work
is done by idle tasks, and so little negative effect on
run–time is expected.  Additionally, note that fractiling does
not have to be aware of the source of imbalance in order to
spur useful performance gains.  Even applications where
the amount of computation per grid point (or data element)
varies dynamically can benefit, as it will simply look for
idle and busy resources.

Section 4 describes our integration of Fractiling into
the Hector environment (coarse–grained load balancing
environment) and presents some of our  experimental
results obtained on running N–body simulations.

3:  Task–Parallel, Coarse–Grained Load
Balancing

3.1:  Background and Related Work

Many systems exist to run sequential and parallel
programs on networked workstations, SMP’s, and MPP’s.
Differing in their degree of sophistication and in the
methods used to balance the computational load, they offer
a variety of features and services.  A good survey of
task–based job–scheduling systems may be found in [1].
Recent work has highlighted the benefits of extracting
information from applications as they run [5].  For example,
Nguyen et al. have shown that extracting run–time
information can be minimally intrusive and can
substantially improve the performance of a parallel job
scheduler [9].  Gibbons proposed a simpler system to
correlate run–times to different job queues [6].

These approaches have shown the ability of detailed
performance information to improve job scheduling.
However, to summarize, these approaches have several
shortcomings.  First, some of them require special–purpose
hardware.  Second, some systems require user
modifications to the applications program in order to keep
track of relevant run–time performance information.  Third,
the information that is gathered is relatively coarse.  The
Hector environment is designed to address these
shortcomings.

3.2:  Hector:  A Task–Parallel Load–Balancing
Environment

Hector is  designed to provide features transparently to
MPI programs [11],[12].  Hector’s MPI library provides a
complete MPI implementation as well as interfaces to a
self–migration facility, to Hector’s command and control
structure, and to an instrumentation facility.  (The MPI
implementation is based on the MPICH implementation
developed at Argonne National Laboratory and Mississippi
State University.)  Thus unmodified MPI programs can be
linked with this library and obtain access to its services.
These interfaces are diagrammed in Figure 1.

It is also designed to provide the infrastructure to
control parallel programs during their execution and
monitor their performance.  It does this by running in a
distributed manner, as shown in Figure 2.  The central
decision–maker and control process is called a ‘‘master
allocator’’ or ‘‘MA’’.  Running on each candidate platform
(where a ‘‘platform’’ can range from a desktop workstation
to an SMP) is a supervisory task called a ‘‘slave allocator’’
or ‘‘SA’’.  The SA’s gather performance information from
the ‘‘tasks’’ (pieces of MPI programs) under their control
and execute commands issued by the MA.
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Figure 1:  The Hector Library and Its Interfaces
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Many of Hector’s features are very important for
running large MPI jobs, but have been described before in
the literature. For example, migration of tasks during
run–time is accomplished by the combination of a method
that permits a running UNIX task to transfer its own state a
specially designed communications protocol that maintains
message consistency [11].  The ability to migrate tasks
naturally supports the ability to checkpoint them  for “safe”
storage and can be used to restart the program if a failure
occurs.  Hector collects run–time information about the
CPU loading and memory usage of every candidate
platform  and determines a machine’s status (busy or idle),
its relative performance, the amount of memory available,
and the total CPU usage of each MPI task under its control
[12].  Task self–instrumentation provides more detailed
information as well; the SA’s can read the task’s address
space in order to gather this information.

3.3:  Current Work and Recent Results

Testing was performed on specially instrumented 90
MHz Sparcstation 10’s in order to make detailed timing
measurements [12].  Note that the measurements below are
for wall–clock time.  First, every call to MPI activates local
instrumentation and adds about 4.2 �s latency per MPI call.
Second, information about every running task and the
machine itself is gathered by the local slave allocator.  As
an example, the Sparc 10 took an average of 346 �s per
estimate with 12 tasks running.   Since this is only done once
every five seconds, this represents a negligible amount of
CPU time.  Third, the master allocator must process status

messages from every slave allocator.  The average status
message took about 6NT + 18 �s, where NT is the number
of tasks.  Again, the processing time is extremely small and
implies that the practical limit for the number of slaves that
a single master can monitor is limited more by network
bandwidth than by processing time.  More details about the
overhead, along with its accuracy, may be found in [12].

4:  Integration and Architecture of
Combined System

4.1:  Run–Time Needs of Data–Parallel Jobs

Data–parallel jobs, such as fractiling applications,
exchange requests for additional workload from idle tasks
with extra work from busy tasks.  The process of
data–parallel load–balancing therefore requires knowledge
of both busy and idle tasks.  Detection of idle tasks can be
very simple––since they are idle, they can send requests for
additional work.  Detection of busy tasks requires some
ongoing knowledge of the status of all tasks.

(An alternative strategy, master/worker parallelism,
requires instead that the master retains the entire workload
and distributes it in response to requests.  This reduces the
need to know about task progress, but if the increment of
workload that the master distributes is too small or too large,
inefficiency and/or imbalance results.)

4.2:  An Architecture for Cooperative Execution

The Hector environment is equipped to support
data–parallel jobs.  For example, data–parallel load
balancers can benefit from more detailed information about
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Figure 2:  Hector’s Run–Time Structure



system loads and task completion.  Since much of this
information is already gathered by the Hector run–time
system, it makes sense to draw on Hector’s information
repository in order to make “better informed” data
migration decisions.  Likewise, requests for additional
work can be funnelled through Hector’s
information–gathering infrastructure.

An architecture for running a fractiling (or any
data–parallel load–balancing) application under Hector is
shown in Figure 3.  Note that the data–parallel
load–balancer is assumed to have some sort of “master” task
to broker workload requests.  This master may be an
explicitly declared task or it may simply be an idle one.

The Slave Allocators continuously monitor the tasks
and their nearness to completion via shared–memory.
Nearness to completion can be monitored by checking an
iteration loop counter, for example.  (The Slave Allocators
have demonstrated the ability to read the address space of
individual tasks and send the information to the Master
Allocator [12].)  This is sent to the master allocator as part
of the normal “machine update” process, and so is
continuously updated.  Individual tasks, once they have
completed their current work assignment, ask the fractile
master for additional workload.  These requests are also sent
to the master allocator.

The master allocator forwards the global state
information and the explicit workload requests to the
fractiling master (or masters, if multiple masters are used
for efficiency).  The fractiling master can use each task’s
status to estimate its nearness to completion.  Workload can
then be transferred from relatively “busy” tasks to idle ones.
Since the state of each task is being monitored by the slaves,

busy tasks can be identified.  Since idle tasks post explicit
requests for additional workload, they are already known.

The first phase of implementation involves routing the
explicit requests for additional work through the master,
and is nearing completion.  The second phase will be to add
the instrumentation of individual tasks and the forwarding
of this information to the appropriate fractile master.  That
is, in the second phase state information such as progress
indicators and/or iteration loop counters will be forwarded
to the fractile master.

The third phase of work will draw on the capabilities of
the instrumentation to guide prefetching of data.  That is, the
instrumentation will be used to detect tasks that are busy and
tasks that are about to be idle.  Additional data can be sent
to nearly–idle tasks before becoming idle, so that it is
available immediately.  This approach should reduce actual
idle time in tasks and should reduce the workload request
message traffic.  Idle time is reduced because under the
original scheme a task must wait until the fractile master
receives and processes the workload request before
receiving additional data to process.

Finally, the amount of data sent to idle processes can be
adjusted by the relative performance imbalance.  If task A
is idle and has historically been twice as fast as task B, then
two–thirds of task B’s remaining workload should be sent
to task A.

4.3:  Benefits of the Approach

There are several advantages of running self–balancing
applications under a load–balancing run–time system.
First, the ability of the system to relinquish workstations
back to their “owners” is retained.  Thus self–balancing

Fractiling
Task

Master
Allocator

Slave
Alloc.

Slave
Alloc.

Slave
Alloc.

Slave
Alloc.

Fractiling
Master

Fractiling
Task

Fractiling
Task

Global State Updates and
Forwarded Workload
Requests

Status Updates via
“procfs”

Hector Run–
Time System

Fractiling
Application

Explicit Workload Request

Data Redistribution Commands and Data Transfer

Performance / Progress Updates

Figure 3:  Running a Fractiling Data–Parallel Application under Hector



applications can completely abandon busy resources and
rapidly reclaim idle ones.  Second, construction of
data–parallel applications is simplified because the
run–time system can take over the information–gathering
responsibilities.  Additionally, the depth of information is
greater because the run–time system already extracts
detailed information.  Third, data prefetching becomes
possible.  As pointed out above, this can reduce idle time
and messaging traffic.  Fourth, jobs with fundamentally
different load–balancing strategies can be run alongside one
another and be scheduled cooperatively.

4.4:  Testing an Initial Implementation

For the purposes of initial testing, fractiling–based
algorithms were run under Hector without any
special–purpose interface between them.  The purpose of
this testing was to demonstrate the advantage of the
fractiling–based algorithm over the same algorithm without
fractiling and to show that running under Hector adds very
little overhead.

A 100,000–point parallel fast multipole algorithm (i.e.
N–body) simulation was coded twice, with and without
fractiling.  It was run on a cluster of 8 quad–processor 90
MHz Sparcstation 10’s with three different data
distributions––a uniform distribution of points
(“Uniform”), a Gaussian distribution of points centered on
the grid space (“Gaussian”), and a Gaussian distribution of
points centered near one corner of the solution space

(“Corner”).  The non–fractile and fractiling cases were run
with and without Hector over 4 to 32 processors on an
otherwise unloaded cluster.  The results are shown in
Figure 4, Figure 5, and Figure 6 below for the uniform,
Gaussian and corner cases respectively.  The graphs show
cost (run time times number of processors) on the vertical
axis and number of processors horizontally, and so “lower”
is “better”.  Each graph charts four cases.  The N–body
simulation without fractiling is called “PFMA” and
N–body simulation with fractiling is labelled “Fractiling”.
The simulations run under Hector are also labelled
“(Hector)”.

The results confirmed that the addition of fractiling
improved performance dramatically, and that these
performance improvements were maintained with the
addition of Hector.  Hector added very little overhead, and
even ran some jobs faster.  Hector’s MPI implementation is
able to exploit shared–memory more easily than the
non–Hector MPI implementation, and so the speedup from
shared–memory usage offset the increased overhead of
Hector’s run–time instrumentation.  The most dramatic
improvements  from Fractiling occurred when the data
distribution was the most uneven, as would be expected,
because Fractiling is able to redistribute the uneven
workload.

Further testing with the addition of external load on the
cluster at run–time is underway.  External load will cause
the fractiling to redistribute data and will cause Hector to
move tasks.

Figure 4:  Costs for Uniform Distribution

0

400

800

1200

1600

2000

0 5 10 15 20 25 30 35
No. of Processors

PFMA (Hector)
Fractiling (Hector)
PFMA
Fractiling

Note: Cost = run time � num-
ber of processors



5:  Conclusions and Future Work

5.1:  Support for Thread–Parallel Applications
The information gathered by the run–time system can

benefit thread–parallel applications as well.  One remaining

obstacle is relatively poor support for DSM, which is
important because most distributed thread systems are
DSM–based.  Once DSM support is obtained, the final
system will be able to run data–parallel, thread–parallel,
and task–parallel programs efficiently.

Figure 5:  Costs for Gaussian Distribution
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Figure 6:  Costs for Corner Distribution
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5.2:  Real–Time (Time–Constrained)
Applications

Communications events can be tagged and
timestamped transparently, laying the groundwork for a
run–time system with transparent support for measuring
compliance with real–time deadlines and having the ability
to alter the allocation of work to compensate.

5.3:  Fault Tolerance

Task migration can be used to duplicate tasks.  When
accompanied with additions to the communications library
to duplicate (and decimate) messages, the system could
support rapid fault recovery via task duplication.  Each task
would have a “hot standby” task running on a physically
separate machine, able to continue functioning in the
presence of single–node failures.

5.4:  Improvements to Fractiling

The current fractiling method uses fixed sub–tile ratios
and involves exchanges of integer numbers of sub–tiles.
Future work could use a finer–grained unit of data
exchange, drawing on Hector’s run–time information to
provide an estimate of an optimal amount of data to
exchange.
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