
Mobile Object Layer: A Runtime Substrate for Parallel Adaptive

and Irregular Computations

Nikos Chrisochoides�y, Kevin Barkerz, D�emian Navex Chris Hawblitzel{

Computer Science and Engineering Computer Science

University of Notre Dame Cornell University

Notre Dame, IN 46556 Ithaca, NY 14853

Abstract

In this paper we present a parallel runtime substrate, the Mobile Object Layer (MOL), that sup-

ports data or object mobility and automatic message forwarding in order to ease the implementation

of adaptive and irregular applications on distributed memory machines. The MOL implements a global

logical name space for message passing and distributed directories to assist in the translation of logical

to physical addresses. Our data show that the latency of the MOL primitives is within 10% to 14% of

the the latency of the underlying communication substrate. The MOL is a light-weight, portable library

designed to minimize maintenance costs for very large-scale parallel adaptive applications.

Keywords: Parallel, message passing, load balancing, runtime software, adaptive mesh generation.

1 Introduction

The time required to complete computationally intensive simulations, such as crack growth in complex ge-

ometries (e.g. gear assemblies and airframes), can have a detrimental impact on the e�ectiveness of the

engineers studying the simulated problem. If, for example, a crack growth problem could be completed in

under an hour on a 100 node (or larger) parallel machine, then the e�ectiveness of the engineers would sub-

stantially increase [1]. With current processor and network performance, �eld simulations of 1 to 10 million

degrees of freedom can be realized in less than two hours [2] on massively parallel machines. Unfortunately,

this technology is not widely available; however, it is expected that, within several years, the ever-decreasing

�To whom correspondence should be addressed at Computer Science and Engineering, University of Notre Dame: E-mail

address: nikos@cse.nd.edu and Fax: (219) 631-9260.
yThis work partially supported by NSF CAREER Award grant # CCR98-76179, NSF grant # CCISE-9726388, and JPL

award #961097.
zPartially supported by the Arthur J. Schmidt Fellowship and by NSF grant # CCISE-9726388
xSupported by NSF grant # CCISE-9726388
{Partially supported by an NSF fellowship.

1

cost of both symmetric multiprocessor (SMP) machines and low-latency, high-bandwidth interconnects will

help alleviate this problem.

While hardware advancements are leading to more powerful computing platforms, the software to utilize

these new systems is nearly non-existent. The building blocks needed to implement adaptive and irregular

applications are missing, and development of these components takes years. An example of this is the lack

of parallel software to eÆciently handle the discretization (i.e. mesh generation) of 3-dimensional (3D)

complex domains with rapidly changing geometry and/or topology. The complexity of eÆcient parallel

codes, for adaptive applications such as 3D unstructured mesh generation, increases dramatically compared

to the corresponding sequential code, due to dynamic, data-dependent, and irregular computation and

communcation requirements of the applications. This inherent complexity makes development using existing

parallel programming paradigms (e.g. message passing) both time-consuming and error-prone, especially

without the aid of parallel languages, software tools, and libraries.

In this paper we present a software system that greatly eases the burden placed on application developers

to implement and maintain building blocks for parallel adaptive applications. Parallel software tools in

general and our software system speci�cally should assist application programmers to address the following

fundamental issues in parallel computing:

� Data Locality: While processors can quickly access data stored in their local memories, the perfor-

mance penalty for accessing non-local data is too large to be ignored. Furthermore, adaptive, irregular

applications are not amenable to compile-time analysis; therefore, a parallel run-time system should

be used to exploit data-locality.

� Communication Overhead: The necessarily large physical size of massively parallel machines implies

large message-passing latencies, the e�ects of which are exacerbated by increasing processor speeds.

Compile time analysis is of little or no help in hiding these latences, because the communication

patterns of adaptive, irregular applications are variable and unpredictable. Therefore, new techniques,

such as multithreading, are required to hide message-passing latencies at run-time.

� Load Balancing: Large-scale, high-performance parallel machines generally consist of many nodes

(often SMP nodes), which coordinate in a loosely synchronous fashion. In order to better utilize

available resources, it is important to avoid overloading some nodes while leaving others idle. The

eÆcient implementation of adaptive applications which dynamically balance processor loads at run-

time requires a great deal of e�ort above what is required to implment a non-load balancing application.

The software support system should therefore facilitate the implementation of dynamic load-balancing

strategies.

With these issues in mind, we have developed the Mobile Object Layer, a software system which is

designed to simplify the implementation of bulding-blocks for parallel adaptive applications. Our system

2

is designed to tolerate communication and synchronization costs, and to be
exible enough to allow ap-

plication developers to easily exploit data locality in their parallel codes. The MOL was built especially

to simplify the implementation of dynamic load-balancing libraries, an important component for parallel

adaptive applications.

Existing load balancing heuristics are classi�ed into two categories: (A) global (direct) [3, 4] and (B) local

(incremental) [5, 8]. Global algorithms are based on grouping mesh components (points or elements) into

clusters such that the components within a cluster have a high degree of natural association, while the clusters

are \relatively distinct" from each other. Most of these algorithms are very successful in solving the load-

balancing problem for static PDE computations. However, these methods are computationally expensive

and hard to parallelize|they require a global knowledge of the topology of the mesh (eg. the element-dual

graph), and therefore are not suitable for adaptive methods in which the topology and geometry of the mesh

can change any time h-re�nement is performed. In addition, some of these methods, at least those based

on spectral techniques like Recursive Spectral Bisection (RSB), are sensitive to small perturbations in the

graph (characteristic of h-re�nement methods), and often lead to heavy data migration [10, 11]. Some of

these concerns, though, have been addressed [12].

Incremental methods start with an initial partition or distribution of work, and then iteratively minimize

the imbalance among the nodes by using pro�t functions [13] that guide the load balancing process. These

methods are not as computationally expensive as global methods, and are easier to parallelize. In the

early 90's, it was shown that incremental methods are very successful in load-balancing the computation

of parallel adaptive PDE methods [6, 7]. Both global methods, like RSB, and incremental methods, like

Geometry Graph Partitioning [5] and PartGraphKway (PGK) [8], have been studied extensively during the

last 10 years. Today, in software packages such as Chaco [4] and Metis [8], one can �nd very eÆcient

implementations of algorithms for the solution of the graph partitioning problem |the solution of the graph

partitioning problem is in the core of traditional load balancing methods for many parallel applications.

Table 1 depicts the performance of the global RSB method implemented in Chaco, and the incremental

PGK method implemented in Metis. These algorithms are evaluated in terms of the surface to volume ratio,

the size of the separators, and the connectivity of the resulting subdomains. Sequential implementations of

both global and incremental methods yield partitions with very good balance with respect to the number

of elements per subdomain. However, the incremental methods, independent of the implementation, are an

order of magnitude faster than the global methods.

In the scienti�c computing community, incremental methods, like those implemented in Chaco and Metis,

are used explicitly; i.e., at certain points of the simulation, load-balancing routines are called in order to

equi-distribute processors' work-loads. These points are usually choosen to be placed before computation

phases in which load imbalance reduces eÆciency (e.g. before a solution step), or after computation phases

in which load imbalance is introduced (e.g. after mesh re�nement). Although this explicit load-balancing

approach is conceptually clean for the parallelization of existing sequential PDE solvers, it has three main

3

disadvantages:

� It is very diÆcult to hide the overheads associated with the migration of data and the translation of

the mesh data structure into a suitable format for the partitioning libraries like Chaco and Metis (see

Table 2).

� Explicit calls to the load-balancing routines require synchronization, since, in general, all processors

have to cooperate. In certain cases|for example, load balancing the mesh generation subphase|

the explicit approach causes large overheads due to unnecessary synchronization (see Table 2 and

Section 5).

� The eÆcient implementation of adaptive applications is challenging even for sequential machines. In

parallel implementations with data re-distribution, program complexity increases by many orders of

magnitude due to additional bookkeeping required becuase of the data re-distribution. This bookkeep-

ing is an error prone task that makes maintainability of parallel adaptive codes even more diÆcult|

especially when the codes are optimized to reduce communication overheads.

An alternative to a traditional explicit load balancing approach is an implicit approach [14], based upon

work stealing [15, 17] or work sharing [18] methods, which have been implemented in runtime systems like

Cilk [16] and Charm++ [19]. The rest of this paper describes the Mobile Object Layer, a lean, language-

independent, and easy to understand, port, and maintain runtime library for the eÆcient implementation

of implicit dynamic load balancing methods for adaptive and irregular applications on distributed memory

parallel platforms. The MOL supports a global addressing scheme designed for object mobility, and provides

a correct and eÆcient protocol for message forwarding and communication between migrating objects. We

demonstrate the e�ectiveness and the usability of our system for the implicit dynamic load balancing of a

parallel 3-D Delaunay mesh generation code.

In Section 2, we provide background information and related work on message passing and object (data)

migration. Next, in Section 3, we describe the MOL, which is the main contribution of this paper. Then,

in Section 4, we describe a parallel 3D unstructured mesh generation code, which is a building block for a

problem speci�c environment for 3D fracture mechanics simulations [20]. The performance data in Section 5

suggest that the
exibility and general nature of the MOL's approach for data migration do not cause undue

overhead. We conclude with our closing remarks and future work in Sections 6 and 7, respectively.

2 Background and Related Work

The MOL is a lean, language-independent and easy to port and maintain runtime system for implementing

adaptive applications on current and non-traditional parallel platforms [21]. Our design philosophy is based

on the principle of separation of concerns. Figure 1 depicts the architecture of the overall system and the

layers which address the di�erent requirements (concerns) of parallel applications.

4

In the remainder of this section, we will examine some background and research related to message

passing and object migration.

2.1 Background

The Mobile Object Layer is constructed on top of DMCS [22], which provides thread-safe one-sided commu-

nication. DMCS implements an API very similar to that proposed by the PORTS consortium [23], and those

implemented by Nexus [24] and Tulip [25]. The current version of DMCS is ported on top of MPI [26] and

LAPI [27]. The second layer, the MOL, supports a global addressing scheme in the context of object mobility.

Other runtime systems developed for parallel, object-oriented programming languages such as Amber [28],

COOL [17], and Charm++ [19], and distributed shared memory systems like ABC++ [29], TreadMarks [30],

and CRL [31] provide similar functionality.

Although software DSM systems may provide ideal platforms for the development of parallel adaptive

applications, by and large, computational scientists and application programmers choose message{passing

libraries, such as MPI. The most apparent reasons for this are the lack of standards, the short life-span of

software DSM systems due to diminishing support over time, and the complexity of current DSM software

| problems which could lead to high-maintenance applications on the next generation of parallel machines.

Also, existing DSM systems often require special hardware, operating system, or compiler support to enable

or enhance their functionality and performance. In contrast, the MOL has no such requirements; it is

designed to be easy to understand, and thus easy to maintain and port on the next generation of parallel

machines. The MOL is a lightweight system which supports only the minimal functionality needed to enable

a style of parallel programming which is more dynamic than either MPI or vendor-speci�c communication

systems.

The reasons for choosing a software system like MOL that supports a rather familiar programming model

(thread-safe message passing), but limited functionality (global name space without remote caching), over

complete software DSM systems are: (1) familiarity with the programming model, (2) maintainability of

large and expensive applications, (3) portability, and (4) performance. Communication libraries like MPI

are alternative choices for developing adaptive applications, but such libraries do not provide the tools

necessary for object migration. For example, using plain MPI, application programmers need to implement

some of the functionality of software DSM systems explicitly in their codes. This is not a trivial task, and

the result could lead into ineÆcient and sometimes incorrect codes. IneÆciencies could arise, for example,

because programmers might choose to maintain global information by using expensive remote \caching"

strategies such as all{to{all communication or \eager" updates, which increase traÆc in the network and

reduce the network bandwidth available to the application.

5

2.2 Related Work

Languages like Split-C [32] and CC++ [33] have integrated global pointers at the language level and have

shown that global pointers can be used successfully to build eÆcient distributed data structures. However,

neither language provides direct support for object migration, nor does either language transparently support

automatic updates of global pointers to migrated objects. The MOL, though, is not a high level language like

Split-C or CC++, but instead is a runtime library suitable for implementing high-level languages supporting

object migration.

The MOL supports mobile objects, similar to the globally addressable objects of Chaos++ [34]. However,

in Chaos++, global objects are owned by a single processor and all other processors with data-dependencies

to a global object possess shadow copies. The MOL does not use shadow objects because of the complexity of

the code required to maintain consistency between the original and shadow objects. Instead, MOL relies on

an eÆcient message-forwarding mechanism to locate and fetch data from \mobile objects" through \mobile

pointers" (see Section 3).

Like ABC++ [29], the MOL implements object migration mechanisms that allow an object to move away

from its original home node. The migration mechanisms in ABC++ require communication with the \home-

node" each time a message is sent to a mobile object. The MOL eliminates this additional communication

by automatically updating its directories to keep track of objects' locations. Furthermore, MOL updates are

not broadcast to all processors in the system, but are \lazily" sent to individual processors as needed. The

forwarding protocol used to deal with updates correctly and eÆciently is nontrivial (see Section 3.3), and

goes beyond those proposed in [29].

The MOL, like the C Region Library (CRL) [31], is light-weight software. However, the CRL (like

ABC++) implements a shared memory model through accesses to shared \regions" of memory, while the

MOL implements explicit message passing, which is a more familiar paradigm to parallel application pro-

grammers. Although the MOL requires programmers to send explicit messages to objects, it shares the same

minimalist philosophy with the CRL: they both are designed as light-weight, portable libraries, and do not

rely on special language, operating system, or hardware support.

In contrast, Emerald [35] and Amber [28] are comprehensive, object-oriented, high-level languages which

support object mobility. Both systems use a combination of specialized languages, compilers, and prepro-

cessors in order to make function invocation on objects as transparent as possible. Emerald relies on its

specialized language to translate operations on mobile objects into potential remote accesses, and to auto-

matically pack and unpack objects as they move from one node to another. Amber's language, a dialect of

C++, is more standard, and relies on virtual memory organization to make object operations transparent.

In particular, Amber facilitates object mobility by assigning each object a virtual memory address that is

unique across all nodes, which is maintained when an object moves from one node to another.

These systems are designed to make mobile pointers look nearly identical to local pointers, whereas, in

6

the MOL, mobile pointers are explicit, and cannot be used in the same way that local pointers can. However,

the transparency that Emerald and Amber provide must be weighed against the diÆculty in implementing

this transparency. For instance, both systems migrate stack frames as well as objects; [35] describes a

number of complications involved in moving stack frames, such as deciding which frames to move for a given

object, and dealing with callee-saves-registers. Solutions to these complications are machine and operating

system dependent, which makes porting these systems more diÆcult.

Finally, hardware systems like FLASH [36] integrate both message passing and global shared memory

into a single architecture. The key feature of the FLASH architecture is the MAGIC programmable node

controller which connects processor, memory, and network components at each node. MAGIC is an embed-

ded processor which can be programmed to implement both cache coherence and message passing protocols.

MOL's forwarding approach is similar in spirit to cache-coherency protocols developed for distributed shared

memory machines, like FLASH, which also maintain local directories without broadcasts; because of forward-

ing, however, the MOL's protocol is somewhat more aggressive. A message can be sent to an object without

waiting to �nd its true location. In addition, hardware supported implementations of cache-coherent proto-

cols multicast explicit \invalidation" messages, while invalidations in MOL are implicit | when an object

moves, then directory entries in other processors become invalid, but the invalid entries are detected only

when they are used.

3 Mobile Object Layer

The MOL provides the tools to build distributed, mobile data structures. In the MOL, such a data structure

consists of a number of mobile objects held together with mobile pointers. For example, a directed graph

might be built using one mobile object for each node, where each node holds a list of mobile pointers to other

nodes. Once such a data structure is built, the mobile objects can be moved from processor to processor and

all of the mobile pointers will remain valid. The MOL keeps track of the locations of objects with directories,

so that each use of a mobile pointer requires a lookup in the directory to determine the current location

of the mobile object. A simple way to do this might be to have one central directory located on a single

processor. However, the performance of this would be unacceptable | each use of a mobile pointer would

require communication with the central processor. Instead, the MOL completely decentralizes the directory

structure. Each processor has its own quickly accessible local directory, creating the problem of keeping all

of the local directories up to date when an object moves. Broadcasting updates to all processors each time

an object moves would be too expensive and would not scale to a large number of processors. Instead, the

MOL updates directories lazily, allowing some local directories to be out of date.

When a processor sends a message to a mobile object, it sends the message to the (possibly incorrect)

location given by its local directory. If the location turns out to be incorrect, the MOL forwards the message

towards the real location, and sends an update back to the processor that sent the message. In this (lazy)

7

way, updates to a processor's local directory occur only when one of the processor's messages \misses" the

correct location of the target object. This avoids the need to broadcast updates to all processors each time

an object moves.

The MOL provides the mechanisms to support mobile objects and mobile pointers, but it does not specify

the policies that say how mobile objects are moved. In particular, it is up to an application (or application-

speci�c library) to decide when and where to move an object. In this way, the MOL can support a large

number of systems requiring varying object migration policies, since no single policy could hope to eÆciently

satisfy the needs of a broad range of irregular, parallel applications. In addition, the MOL provides a simple

and low-overhead interface so that application-speci�c libraries and high-level languages can be eÆciently

layered on top of the MOL. Finally, the MOL augments a low-level messaging layer such as MPI or Active

Messages [37] without obscuring access to it. The current version of the MOL is built over DMCS [22],

Active Messages [38], LAPI[27], and NEXUS [24], but the application or library writer still has complete

and direct access to the underlying communication substrate. This is essential if the application is to obtain

maximal performance.

The MOL currently supports a threaded and a non-threaded model of execution. A threaded model

is usefeul because it eases the scheduling of computation | a thread that needs to wait for an incoming

message can yield to another thread instead of busy waiting, thus e�ectively overlapping computation with

communication. The MOL does not specify its own thread interface, but it can be easily adapted to work

with di�erent thread libraries. For example, we have used an implementation of the MOL in conjunction

with a simple implementation of the PORTS thread interface [39] running over an SP-2 Quickthreads imple-

mentation [40]. However, the MOL could also be used with pthreads. Because the MOL does not provide

a threads interface, mechanisms for locking and scheduling must be provided by the threads packages, and

not by the MOL.

3.1 Example Using MOL

This section presents a simple example to illustrate the MOL programming model. It does not discuss

the MOL interface in detail; the details of the MOL interface and its implementation are discussed in the

following sections.

Figure 2 shows a simple C++ class for a tree data structure, and a single method \setAll" that operates

on the tree. A parallel version of the class based on MOL is shown in Figure 3. The local pointers between

tree nodes have been replaced with mobile pointers, and the method invocation has been replaced with

a mobile object message. The mob message function sends a message to another mobile object that is

forwarded until it reaches the object. In this case, the message is sent to the object pointed to by the mobile

pointer \children[i]", the argument \f" is passed as data in the message, and the user-speci�ed handler

\remoteSetAll" is invoked when the message reaches the object. This example demonstrates that there is a

8

clear progression from a serial algorithm to an eÆcient parallel algorithm when using MOL.

As an optimization, the programmer can use the function mob deref to check if an object resides on the

local processor before sending a message to it; if the object is local, then the object can be accessed directly

without sending a message (see Figure 4). Otherwise, the programmer sends a message to the object on a

remote processor.

The power of MOL is that the code shown will work even if the tree nodes are migrating from processor to

processor while the call to \setAll" is taking place. A third version of the code (Figure 5) demonstrates the

use of the MOL interface for migrating objects. To migrate an object in MOL, the code uninstalls the object

from the original processor, sends the object data to another processor (along with a MoveInfo structure that

MOL uses to track the object's state), and then installs the object on the new processor. The MOL function

mob request is used in this example to transfer the data, but other functions (such as an Active Messages

am store) could be used as well. For simplicity, this code allocates each mobile object in a contiguous chunk

of memory to make it easy to move the object data, although this is not strictly necessary in MOL. In

addition, a \myself" and \moveInfo" �eld are included in the object itself for convenience, although again

MOL does not require this.

These examples show some of the
avor of MOL. The interface is simple but still powerful, and it

makes very few restrictions on the application program. In the next few sections, the interface and its

implementation are explored in detail, and we demonstrate that MOL is eÆcient as well as powerful.

3.2 Mobile Pointers and Distributed Directories

The basic building block provided by MOL is the mobile pointer. A mobile pointer consists of the number

(id) of the processor where the object was originally allocated (the \home node") and an index number

which is unique on that processor. A (home node, index number) pair forms a name for the mobile object

that is unique over the whole system. Mobile pointers are valid on all processors, and they can be passed

as data in messages without any extra help from the system. To allocate a new mobile pointer, the user

calls mob createMobilePointer, passing in a pointer to the local object that de�nes the mobile object data

(�g. 6). The MOL makes no requirements on the structure or size of a mobile object, so a mobile object

may be as simple as a single C structure or C++ object, or it may consist of many structures, objects, and

arrays linked together with local pointers.

Each processor maintains a directory that helps to �nd the location of a mobile object.1 Each directory

entry contains the processor number of the current best guess of the object's location, a sequence number

indicating how up to date the guess is, and a pointer containing the address of the object if the object resides

on the local processor.

Whenever a processor wants to send a message to a mobile object identi�ed by some mobile pointer, it

1Because directories are sparse, we have implemented them as hash tables, which gives us potentially constant lookup times

without the undue memory overhead required to store a large array of directory entries.

9

looks up the mobile pointer in its directory. There are three possible results of this lookup. First, the object

may reside on the current processor, in which case the message can be handled locally. Second, there may be

an entry in the directory indicating that an object resides or at least used to reside at some other processor.

In this case, the message is sent to the processor indicated by the directory entry. If the object does not

actually reside at the processor indicated by the directory entry, then the message will be forwarded. Third,

the directory may have no entry for the mobile pointer. In this case, the mobile pointer's home node entry

is used as a default \best guess" processor, and the message is sent to the home node.

The MOL allows directory entries to be out of date in order to minimize the cost of moving an object.

When the user moves an object from some source processor to some target processor, only the source and

target processors are aware of the change. The target processor sets the directory entry for the mobile

pointer to point to the local address of the object, and the source processor sets its directory entry to point

to the target processor. Other processors' directories are updated lazily, when they send a message to the

object's old location and the message gets forwarded. Once a processor receives an update for an object, all

further messages from the processor to the object will go directly to the object's new location.

Each mobile object has a movement sequence number associated with it, which is incremented each time

the object moves. The MOL does not assume any special ordering properties in the network (such as FIFO

or causal ordering), and allows the network to delay or slow down messages for arbitrary lengths of time.

It is therefore possible for a processor to receive updates out of order. To prevent an older update from

overwriting a more recent one, each update is tagged with the movement sequence number of the object that

the update represents. The processor receiving updates can then tell which update is the most recent.

Because the user must be allowed to specify the object migration policy, the MOL does not move ob-

jects automatically, nor does the MOL make any special requirements on how objects must be packed and

unpacked. To move an object, the user �rst calls mob uninstallObj, which updates the processor's directory

entry to re
ect the mobile object's next location. The object's data is then moved to the new processor

using, for example, mpi send or am store. The MoveInfo handle returned by mob uninstallObj must also be

moved so that MOL can track the state of the object. The object is then installed on the new processor by

calling mob installObj.

To free a mobile object, mob freeMobileObj is called with the object's mobile pointer and a user handler

as parameters. The MOL invokes the user handler on the processor where the object resides, so that the

handler can free the object data. For instance, if multiple C++ objects are allocated to hold the mobile

object's data, then the user handler can free each of those C++ objects. Then, the MOL sets this processor's

directory entry for the mobile object to point back to the mobile pointer's home node. The home node can

later reuse the mobile pointer for a new object when the user calls mob newMobilePtr.

Processors can access local objects through the mob deref function, which returns the local address of a

mobile object if the object is currently on the local processor. If the object does not currently reside on the

local processor, then mob deref returns NULL. Remote objects are accessed via mobile messages, which are

10

discussed in detail in Section 3.4.

3.3 Analysis of the Directory Protocol

This section presents more details about the directory protocol and outlines a proof of the protocol's correct-

ness. Correctness means that a message destined for some mobile object will always make progress towards

that object as it is forwarded from processor to processor, in a way that this section will make precise.

A directory entry on some processor p for some object O contains a \best guess" of the location of O,

and a movement sequence number indicating how up to date the directory entry is. To describe directory

entries for an object O, let G(O) be processor p's guess of the location of O, and S(p) be the corresponding

sequence number in p's directory entry for O. The value of G(p) may be either a processor (which means that

the object O does not currently reside on p, but may be found on the processor G(p)), or the value \local"

(which means that O currently resides on processor p). G(p) = p is not synonymous with G(p) = local (the

distinction between these will be clari�ed shortly). Finally, let s� be the movement sequence number of the

object O itself. s� will be incremented each time O is moved. To aid the analysis, let L(s) be the location

that O resided at when O's sequence number was equal to s.

When the object O is allocated on some processor po, G(po) = local and S(po) = s� = 1. No other

processors have yet heard of O; for all p 6= po, the assignment S(p) = 0 is used to indicate that processor p

knows nothing about O, and G(p) is set to po (the default guess of an object's location is the home node of

that object). After the initial allocation of O, there are three operations that a�ect the directories:

1) O may be uninstalled from its current locationm, pcurrent, in preparation for moving it to some new

node pnew. This updates the directories as follows:

G(pcurrent) := pnew ; s� := s� + 1;

At this point, L(s�) is equal to pnew. Note that S(pcurrent) is unchanged|it is still equal to the old s�,

not the newly incremented s�, so that after the uninstall operation s� equals S(pcurrent) + 1. If pcurrent

sends out an update at this point, it will have the form, \when O had sequence number S(pcurrent) + 1, it

was located at processor pnew". An update of this form may be sent out even before O reaches pnew|this

allows MOL to forward messages as eagerly as possible, without waiting for an acknowledgment that O has

reached pnew. As described below, MOL is able to handle messages that arrive at a processor before the

object itself arrives.

2) After O has been uninstalled from pcurrent, O may be installed on pnew. This updates the directories

as follows:

G(pnew) := local; S(pnew) := s�;

3) At any time, an update may show up at processor p. The update contains the information \when O

had sequence number s+ 1, it was located at processor L(s+ 1)". If s > S(p), then the update is placed in

p's directory:

11

G(p) := L(s+ 1); S(p) := s;

If s � S(p), then p ignores the update (this ensures that old information never overwrites new informa-

tion).

Each operation a�ects the state of only a single processor, so an operation can be thought of as an

atomic action, and the evolution of the state of the whole system can be described by a sequence of atomic

operations.

Figure 7 shows an example state, where the object O was allocated on processor u1, then moved to u2,

then �nally moved to u3. In addition, processor u4 received an update and knows that the object moved

to u3. The arrows in the graph indicate the guesses G(u) of each processor. Note that the arrows out of

each processor u point to a G(u) with a higher sequence number than u's sequence number; in other words,

S(G(u)) > S(u). Here is a more rigorous statement of this observation: at any point in the sequence of

operations on the system, the following invariant holds:

- If an object O is currently installed on some processor pcurrent, then S(G(p)) > S(p) for all p 6= pcurrent.

- If an object O is currently uninstalled (it is in transit from processor pcurrent to processor pnew), then

S(G(p)) > S(p) for all p such that G(p) 6= pnew.

This invariant is the crux of the correctness of the protocol. Roughly, it means that if a message follows

the \best guesses" in the processors' directories, than it will only get forwarded from a processor with a

lower sequence number to a processor with a higher sequence number. With each step, the message sees a

higher sequence number, and the message therefore makes progress towards the destination object. When

the message reaches a node with the sequence number s�, it has found the object. Note that s� may also be

increasing if O is moving around, so it is possible for O to outrace the message so that the message never

catches up, even though the message makes progress towards O. However, if O eventually settles down, then

the message will eventually catch up with it; the message will not get stuck on a processor or lost in a loop.

The rough argument above leaves out some details, because the invariant contains some cases where

S(G(p)) > S(p) does not hold. First, if O is installed on processor pcurrent, then S(pcurrent) = local, so

S(G(pcurrent)) does not exist. This is not a problem, though { if a message for O arrives at pcurrent then it

has reached its �nal destination and does not need to be forwarded. Second, if O is in transit from pcurrent

to pnew, then S(G(p)) might be less than or equal to S(p) if G(p) = pnew. When this happens, a message

destined for O that is sent from p to pnew may arrive at pnew before O arrives at pnew. In the MOL system,

a message detects this condition by watching sequence numbers as it moves from processor to processor. If

it steps to a processor whose sequence number is not greater than the previous processor, then the message

knows that it has stepped to the processor pnew to which the object is moving, and it simply waits for the

object on that processor. Thus, the message reaches O even when the message sees a decrease in the sequence

numbers. As a special case of this situation, it is possible for G(pnew) = pnew to occur (pnew may receive

an update saying that O is moving to pnew before O actually arrives at pnew). This is why G(pnew) = local

is not equivalent to G(pnew) = pnew { the �rst equation says that O resides on pnew, while the second says

12

that O does not reside on pnew but is in transit towards pnew .

The full proof of the invariant is omitted for brevity. The key point in the proof is as follows: when

an object O with sequence number s� is installed on a processor pnew = L(s�), then S(L(s�)) = s�, and

sequence numbers S(p) only increase over time (as s� grows), so for all sequence numbers s < s�, S(L(s)) is

always always greater than or equal to s. For an update \when O had sequence number s+1, it was located

at processor L(s+1)" to change a directory entry at processor p, the condition s > S(p) must initially hold.

The update sets G(p) to L(s+ 1), so S(G(p)) is then equal to S(L(s + 1)), which must be greater than or

equal to s+ 1, which in turn is greater than s.2 The update sets S(p) to s, so S(G(p)) > S(p) is true after

the update.

Interestingly, the correctness of the protocol does not depend on any ordering properties of the network.

The protocol will work, for instance, even if the communication channels do not provide FIFO ordering.

One last note: the correctness proof assumed that sequence numbers could grow arbitrarily large, but the

hardware representation of an integral number is bounded. As a result, it is possible for sequence numbers

to over
ow after an object has moved many times. If this happens, the MOL broadcasts an update to all

processors before an over
ow occurs. Over
ows happen rarely, so these broadcasts do not impose a signi�cant

performance penalty.

3.4 Message Layer

There are two types of MOL messages: mobile requests which are sent to speci�c processors and are not

forwarded, and mobile messages which are sent to mobile objects and may be forwarded from processor to

processor as they make progress toward their target object. Both requests and messages transfer data to

their target processors and invoke a user-speci�ed handler upon receipt.

In order to avoid the overhead of dynamically allocating memory to hold incoming and outgoing messages,

the MOL maintains incoming and outgoing message pools on each processor. This allows senders of a message

to have memory preallocated on a remote node to hold that message, thus avoiding the handshaking and

address passing that would otherwise be necessary. The sizes of the entries in the message pools, the number

of message pools, and the initial number of entries in each pool can be determined by the application at the

time of MOL initialization. This number of pool entries is not �xed throughout the life of the application;

pools are allowed to grow dynamically during runtime in order to avoid deadlock.

Whenever a message is sent, the sending processor reserves space in an outgoing pool for the message,

and it copies the message into this space. After the outgoing message is constructed, space is reserved in

the remote nodes incoming message pool, and the message is sent via an asynchronous store mechanism

provided by the underlying communication substrate. Once this store completes, the message's space in the

outgoing pool is released.

2This argument does not hold if G(p) is set to pnew while O is still in transit to pnew, because S(L(s
�)) may be less than

s� before the installation; this is part of the reason for the quali�cation G(p) 6= pnew in the invariant.

13

When the message arrives at the destination processor, a DMCS handler is invoked to handle the incoming

message. If the message needs to be forwarded, then space is reserved in the next destination processor's

incoming message pool and the message is sent on with another asynchronous store. However, this can

not be done from within the original DMCS handler due to restrictions placed on communications from

within handlers. Instead, the original handler is placed into a queue of delayed handlers, to be executed at a

later time after the original handler exits. Some communication substrates, in order to guarantee deadlock-

free execution, prevent communication from within a handler. In order to ease application portability, we

maintain this semantic rule in the MOL, even though it does not apply to DMCS. For this reason, we provide

three di�erent types of user handlers, with varying degrees of performance and functionality.

The application is able to specify which type of handler should execute on the target node. The �rst type

is a function handler, and these execute directly from within the DMCS handler running on the destination

processor. This is the fastest approach and the one with the lowest overhead. However, it is the least
exible;

a functional handler is not able to perform any communication operations or to context switch to another

thread. The reasons for this are deadlock prevention and to ensure that progress is being made. The second

type of handler is a delayed handler. Delayed handlers are not executed directly from within the DMCS

handler, but instead are enqueued, and executed when the delayed queue is
ushed (which comes during a

mob poll() call). This is slightly slower, but the user is allowed to do an arbitrary amount of communication.

The third type of handler is the most
exible, but also has the most overhead: threaded handlers. Threaded

handlers allow communication and context switching

4 Application: Guaranteed-Quality 3D Delaunay Mesh Genera-

tion

Mesh generation is the procedure of discretizing a geometric domain into small and simpler cells (or ele-

ments), such as triangles for two-dimensional domains, and tetrahedra for three-dimensional domains. Mesh

generation is a necessary step for the discretization of continuous partial di�erential equations (PDE's) into

discrete systems of algebraic equations using �nite element analysis.

Delaunay triangulation algorithms have been used very successfully for guaranteed-quality unstructured

grid generation on sequential machines. Delaunay-based algorithms generate unstructured grids by iteratively

adding new points and modifying the existing triangulation by means of purely local operations. These

algorithms can be viewed as iterative procedures performing four basic operations per iteration: (i) point

creation, where a new point is created using an appropriate spatial distribution technique; (ii) point location,

where an element that contains the new point is identi�ed; (iii) cavity computation, where existing elements

that violate the Delaunay property [41] are removed; and (iv) element creation, where new triangles are built

by connecting the new point with old points such that the resulting triangulation satis�es certain geometric

14

properties. This type of incremental construction of a Delaunay triangulation is sometimes referred to as

the Bowyer-Watson (BW) algorithm [43, 44].

In our parallel implementation of the BW algorithm, an initial Delaunay tetrahedralization, T0, of a set

of points is overdecomposed into N � P subdomains (or regions), where P is the number of processors.

Regions are assigned to processors in a way that maximizes data locality, and each processor is responsible for

managing multiple regions. As a result of this decomposition, imbalance can arise due to unequal distribution

of regions over the processors, and due to large di�erences in computation in each processor (e.g. because

of regridding changing topology and geometry, or because of h-re�nement).

By decomposing T0 into many regions, new points can be inserted concurrently into many areas of

the mesh. However, two new points cannot be added concurrently if their corresponding cavities overlap;

retriangulating the cavities will result in edges of new elements crossing other elements in the triangulation.

To prevent the construction of an invalid triangulation, either the processors involved must be synchronized,

or the computation of one of the cavities must be restarted at a later time. In the latter case, there is a

setback in the progress of the mesh generation, in that a halted cavity must release its elements, and the work

done to compute the cavity must be done again. Both synchronization and setbacks introduce two additional

sources of imbalance, the e�ects of which are exacerbated by the variable and unpredictable computation

and communication patterns of the parallel implementation of the BW algorithm. We implement an implicit

work{stealing load balancing algorithm to deal with this imbalance at run{time.

4.1 Load-balancing with a Work-stealing Method.

The work-stealing load balancing method we implement maintains a counter of the number of work-units

that are currently waiting to be processed, and consults a threshold of work to determine when work should

be requested from other processors. When the number of work-units falls below the threshold, a processor

requests a suÆcient amount of work to maintain consistent resource utilization. The regions can be viewed

as the work-units or objects which the load balancer can migrate to re-distribute the computation. Each

region can be viewed as a mobile object; by associating a mobile pointer with each region, messages sent to

migrated regions will be forwarded by the MOL to the regions' new locations.

The MOL allows the load-balancing library to migrate data without interfering with the message-passing

of the code that performs the computation. This suggests an incremental development of parallel adaptive

applications. Initially, the developer implements an eÆcient and correct code while dealing only with data-

locality and communication, not dynamic load-balancing. Once this phase is completed, load-balancing

algorithms which maintain data-locality and minimize communication can be developed with minimum

modi�cations to the original code. The developer is spared the problems of concurrently developing two very

complex, but conceptually independent components of an application.

15

4.2 Data Movement Using the MOL.

The critical steps in the load balancing phase of the mesh generator are the region migration and the updates

of the mesh near the interfaces of the regions. To move a region, the MOL requires that mob uninstallObj be

called to update the sending processor's local directory to re
ect the pending change in the region's location.

Next, a programmer-supplied procedure is used to pack the region's data into a bu�er, which must also

contain the region's mobile pointer and the MoveInfo structure returned by mob uninstallObj to track the

region's migration.3 Then, a message-passing primitive (e.g. mpi send or am store) is invoked to transport

the bu�er. Upon receiving the bu�er on the target processor, another user-supplied procedure unpacks and

rebuilds the region in the new processor. After the region has been unpacked, mob installObj must be called

with the region's mobile pointer and the MoveInfo structure to update the new processor's directory.

Since the MOL is used to move data, standard message-passing primitives, like mpi send or am put, will

not work to send mesh updates from one region to another, since regions can be migrated. The user can

use MOL's mob message to send messages related to mesh updates; this guarantees that the message will

be forwarded in a correct (see Section 3.3) and eÆcient way to the appropriate processor. mob message also

updates the sending processor's directory so that, unless the target region moves again, subsequent messages

will be sent directly to the new processor, instead of forwarded.

The MOL is an integral part of simplifying the mesh generation process, since it allows regions, and

thus in-progress cavities, to be migrated without blocking or synchronization. More importantly, the MOL

eliminates problems with moving a region which is a target of a cavity expansion or region update message.

Since the MOL forwards messages from a migrated region's original processor to the region's new location,

messages bound for the migrated region are received and enqueued on the new processor to await the

reconstruction and installation of the region. Otherwise, it would be up to the application to forward

the misdirected messages; the implementation of such a forwarding mechanism is non-trivial, and at best

error-prone.

5 Performance Data

We present results formob message, which allows messages to be sent to a mobile object via a mobile pointer,

and for mob request, which directs messages to speci�c processors without explicitly requesting storage space

on the target processor. In addition, we present data gathered from the parallel meshing application for

both non-load balanced and load balanced runs at di�erent percentages of imbalance in the computation.

All measurements for mob message and mob request were taken on an IBM RISC System/6000 SP, using

the LAPI implementation developed in [27]. The benchmarks measured the per-hop latency of messages

ranging from 1 to 8192 bytes, as compared to the equivalent LAPI Amsend calls. The performance is

3This requirement will be removed from the next version of the MOL.

16

very reasonable; the latency of mob request is within about 11% of the latency of LAPI Amsend, while

mob message's latency is about 10% to 14% higher than LAPI Amsend's latency.

To illustrate the importance of the MOL's updates, �g. 9 shows the latency of messages that were

forwarded once each time they were sent versus messages that were not forwarded. Not surprisingly, the

latency of the forwarded messages was about twice as high as that of the unforwarded messages. In a real

application, the overall (amortized) cost of forwarding is determined by how often an object moves versus

how often messages are sent to the object, since messages are forwarded immediately after an object moves

but not after the updates have been received. In the case of the mesh generator, a large number of cavity

expansion messages are sent, relative to the number of times a mesh region is migrated (see �g. 13), resulting

in a low amortized cost for forwarding cavity expansion messages. Figure 10 shows the performance of the

MOL's three types of handlers. The graph clearly shows that the overheads caused by the delayed and

threaded handlers are fairly low relative to the functionality they add.

The next set of graphs represents data for a parallel mesh with between 1; 000; 000 and 4; 000; 000 tetra-

hedra, and for load imbalances of between 10% and 45%. Each of the 16 processors in the system started

with 16 regions. All measurements were taken on an SP2, using a LAPI implementation of the MOL.

Figure 11 shows the computation times for no load balancing, for explicit load-balancing using Parallel

METIS [9], and for implicit load-balancing using a work-stealing method for 10%, 15%, 20%, and 45%

imbalance for a 2 million tetrahedral mesh. The time to load balance using Parallel METIS consists of the

synchronization time, the CSR translation time, and the data movement time. Table 2 shows these times

for a single invocation of Parallel METIS, at the end of the mesh generation phase. Multiple invocations of

Parallel METIS would incur all three costs for each invocation. Therefore, the best case for this particular

application using Parallel METIS is load-balancing at the end of the mesh generation stage.

Figure 12 shows the same data, but for 1; 000; 000, 2; 000; 000 and 4; 000; 000 tetrahedral meshes at 10%

imbalance. Finally, �g. 13 details the minimal time spent in the MOL for implicit load-balancing of 1, 2,

and 4 million tetrahedral meshes at 10% imbalance. The average number of cavity expansions per processor

and the maximum number of region migrations is given iside each bar. The MOL overhead is indeed small,

because the forwarding time is amortized over the number of messages per region migration.

6 Summary and Conclusions

We have presented a run-time substrate, the Mobile Object Layer (MOL), which supports a global logical

name space and data migration for the eÆcient implementation of dynamic load-balancing strategies for

adaptive, irregular parallel applications. The MOL uses a global logical namespace to assist in message

passing between objects, and implements distributed directories to translate between logical and physical

addresses when an object is migrated, or when a message is sent or forwarded to an object. A message

may be forwarded when the message is destined for an object which has been migrated from the sending

17

processor's \best guess" location. In this case, as the message is forwarded, each processor in the path

uses the mobile pointer of the target object to determine the next \best guess" location of the object, and

forwards the message to the next location. When the target object is located, the processor containing

the object updates the directory of the processor sending the message, at which point subsequent messages

from the originating processor are no longer forwarded. The amortized costs of translation from logical to

physical addresses and forwarding messages are determined by how often an object moves versus how often

messages are sent to the object, since messages are forwarded immediately after an object moves, but not

after updates have been received.

The MOL o�ers a substantial improvement over explicit message passing systems through the added

functionality of communication between mobile objects without knowledge of an object's location. The MOL

eases the burden placed on developers of mobile, adaptive applications, and hides the complexity involved

in maintaining the validity of mobile pointers. The \separation of concerns" philosophy is adhered to in the

system; the DMCS layer ensures message ordering and implements an eÆcient one-sided message passing

interface, while the MOL maintains the causality of messages between objects. Application code would

responsible for the migration of objects and for the validity of references to those objects, if the application

relied solely upon a message-passing library, like MPI or LAPI.

The MOL is lightweight, in that its latency is very close to that of the message layer it is built upon,

even for forwarded messages. The actual latency of the MOL primitives is within 10% to 14% of the the

latency of the underlying communication substrate. Thus, little is lost in the eÆciency of an application

relying upon the MOL to e�ect object migration. This is accomplished by only doing a minimal amount

of extra computation to maintain the distributed directories and the incoming and outgoing message pools.

The results of this minimalism show up in the MOL interface; the MOL, in contrast to existing object-

oriented high-level languages like Amber [28], and software DSM systems like Treadmarks [30], does not

provide a comprehensive solution to the scalable shared memory paradigm. Instead, it is designed to reduce

the amount of e�ort needed to eÆciently and easily implement mobile, adaptive applications using a global

name space on distributed memory parallel machines.

7 Future Work

Our future plans include augmentations to address needs like I/O for computational steering, and out-of-

core computations for traditional parallel platforms and for multi-layer [21] architectures, like the HTMT

Peta
ops design. Also, further support for dynamic load-balancing will be added via dynamic resource

allocation and deallocation. We also plan on porting DMCS to the Virtual Interface Architecture [45]

communication subsystem for NT-SMP servers.

Enhancements to the MOL will include pointer arithmetic and application-speci�c distributed shared

memory management schemes, like space-�lling curves, for both structured and unstructured applications.

18

Finally, we will be developing a new open framework that will allow easier and more e�ective development

of run-time systems on commercially available communications substrates for networks and clusters of NT

workstations. All of these enhancements will be implemented such that the application developer will bene�t

from and trust these systems, while at the same time improving the ease-of-use and the maintainability of

complex software systems, even for non-experts.

8 Acknowledgments

We are grateful to our colleagues at Cornell Theory Center for making available to us their 128 node SP

machine. The code was developed on our two, 2-way SMP node SP that was donated to this PI by IBM's

Shared University Research program. Also, we thank Horst Simon, Keshav Pingali, Thorsten von Eicken,

Chi-Chao Chang and Greg Czajkowski for their very helpful comments on earlier and this draft of the paper.

References

[1] Ingrafea, T, Personal Communication, Cornell Univeristy, 1998.

[2] Mavriplis D., and Pirzadeh S., Large-scale parallel unstructured mesh computations for 3D high-lift

analysis, NASA/CR-1999-208999 ICASE Report No. 99-9, Institute for Computer Applications in Science

and Engineering Mail Stop 403, NASA Langley Research Center Hampton, VA 23681-2199, February

1999.

[3] Horst D. Simon. Partitioning of unstructured problems for parallel processing. Technical Report RNR-

91-008, NASA Ames Research Center, Mo�et Field, CA, 94035, 1990.

[4] Hendrickson B. and Robert L. The Chaco User's Guide, version 1.0. Technical Report SAND93-2339,

Sandia National Laboratories, 1993.

[5] Nikos Chrisochoides, Elias Houstis and John Rice. Mapping Algorithms and Software Environment for

Data Parallel PDE Iterative Solvers Special Issue of the Journal of Parallel and Distributed Computing

on Data-Parallel Algorithms and Programming, 1994;21(1):75{95.

[6] H. L. de Cougny, K.D. Devine, J.E. Flahery, R.M. Loy, C. Ozturan, and M. Shephard. Load balancing

for parallel adaptive solutions of partial di�erential equations. Appl. Numer. Math. 1994;16(1-2):157-182.

[7] A. Vidwans, Y. Kallinderis and V. Venkatakrishnan Parallel Dynamic Load-Balancing Algorithm for

Three-Dimensional Adaptive Unstructured Grids, AIAA Journal, 1995;32(3):497-505.

[8] George Karypis and V. Kumar. A fast and highly quality multilevel scheme for partitioning irregular

graphs. SIAM Journal on Scienti�c Computing, to appear.

19

[9] Kirk Schloegel, George Karypis, and Vipin Kuma. Parallel Multilevel Di�usion Schemes for Repartition-

ing of Adaptive Meshes. Technical Report 97-014, University of Minnesota, 1997.

[10] Roy D. Williams. Performance of dynamic load balancing algorithms for unstructured mesh calculations.

Concurrency Practice and Experience, 1991;3(5):457-481.

[11] C. Walshaw and M. Berzins, Dynamic load balancing for PDE solvers an adaptive unstructured meshes.

University of Leeds, School of Computer Studies, Report 92.32, 1992.

[12] Horst D. Simon, A. Shon, R. Biswas. HARP: A dynamic spectral partitioner. J. Parallel Distrib.

Comput. 1998;50(1-2):83-103.

[13] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms and Com-

plexity. Prentice-Hall, Englewood Cli�s, NJ 07632, 1982.

[14] Chrisochoides N, Multithreaded Model For Load Balancing Parallel Adaptive Computations On Mul-

ticomputers, Journal of Applied Numerical Mathematics, 1996;20:1{17.

[15] Blumofe R. and Leiserson C. Scheduling Multithreaded Computations by Work Stealing Proceedings

of the 35th Annual IEEE Conference on Foundations of Computer Science, Santa Fe, NM, Novemeber

20-22, 1994.

[16] Christopher F. J. The Cilk system for Parallel Multithreaded Computing. Ph.D. Thesis, Department of

Electrical Engineering and Computer Science, Massachusetts Institute of Technology, January, 1996.

[17] R. Chandra and A. Gupta and J.L. Hennessy Data Locality and Load Balancing in COOL PPOPP4,

pp 249{259, San Diego, CA, May 19{22, 1993.

[18] Casavat T, and Khul Hon G. A taxonomy of Scheduling in Gneral-Purpose Distributed Computing

Systems IEEE Transactions on Software Engineering, 1988;14(2):141{154.

[19] L. Kale, S. Krishnan, Charm++, Parallel Programming Using C++ (eds. Wilson, G. and Lu, P.), The

MIT Press, 1998.

[20] Bruce Carter, Chuin-Shan Chen, L. Paul Chew, Nikos Chrisochoides, Guang R. Gao, Gerd Heber,

Antony R. Ingra�ea, Roland Krause, Chris Myers, Demian Nave, Keshav Pingali, Paul Stodghill, Stephen

Vavasis, Paul A. Wawrzynek. Parallel FEM Simulation of Crack Propagation { Challenges, Status, and

Perspectives. To appear in Irregular 2000.

[21] Chrisochoides N, Application-driven Approach for Prototyping Runtime Systems for Future Tera
ops

and Peta
ops Architectures NSF Proposal Report (unpublished), Computer Science and Engineering,

University of Notre Dame, July 1998.

20

[22] Chrisochoides N, Pingali, K, Kodukula I, Data Movement and Control Substrate for Parallel Scienti�c

Computing Lecture Notes in Computer Science (LNCS), Springer-Verlag 1997;1199:256.

[23] Portable Run-Time Systems Consortium,

http://www.cs.uoregon.edu/research/paracomp/ports

[24] Foster, I, Kesselamn C, Tuecke S, The Nexus Task-parallel Runtime System, Proc. 1st Intl Workshop

on Parallel Processing, 1994.

[25] Pete Beckman and Dennis Gannon, Tulip: Parallel Run-time Support System for pC++,

http://www.extreme.indiana.edu

[26] MPI Forum (1997), Message-Passing Interface Standard 1.0 and 2.0,

http://www.mcs.anl.gov/mpi/index.html

[27] DiNicola P, Gildea K, Govindaraju R, Mirza J, Shah G; LAPI Architecture De�nition: Low Level API

Draft, IBM Con�dential Report, December 1996.

[28] J.S. Chase , F.G. Amador, E.D. Lazowska, H.M. Levy and R.J. Little�eld. The Amber System: Parallel

Programming on a Network of Multiprocessors SOSP12, pp 147{158, December, 1989.

[29] E. Arjomandi, W. O'Farrell, I. Kalas, G. Koblents, F. Ch. Eigler, and G. G. Gao, ABC++: Concurrency

by Inheritance in C++, IBM Systems Journal, Vol. 34, No.1, 1995, pp. 120-137.

[30] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel

TreadMarks: Shared Memory Computing on Networks of Workstations IEEE Computer, 1996;29(2):18-

28.

[31] K.L. Johnson, M.F. Kaashoek, and D.A. Wallach CRL: High-Performance All-Software Distributed

Shared Memory SOSP15, pp 213{228, Copper Mountain, CO, December, 1995.

[32] D. E. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumeta, T. von Eicken, and K. Yelick,

Parallel Programming in Split-C, In Proceedings of Supercomputing '93.

[33] K. M. Chandy and C. Kesselman, CC++: A Declarative Concurrent Object-Oriented Programming

Notation, In Research Directions in Concurrent Object-Oriented Programming, MIT Press, 1993.

[34] Chang, C.; Sussman A.; and Saltz, J.; Chaos++, Parallel Programming Using C++ (eds. Wilson, G.

and Lu, P.) The MIT Press, 1998.

[35] Jul E., Levy H, Hutchison N, Black A; Fine-Grained Mobility in the Emerald System, TOCS, 1988;

6(1):109-133.

21

[36] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin, D. Nakahira, J.

Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy, The Stanford FLASH Multiprocessor ,

In Proceedings of the 21st International Symposium on Computer Architecture, pages 302-313, Chicago,

IL, April 1994.

[37] D. E. Culler, K. Keeton, L. T. Liu, A. Mainwaring, R. Martin, S. Rodrigues, and K. Wright, Generic

Active Messages Interface Speci�cation, UC Berkeley, November 1994.

[38] C. Chang, G. Czajkowski, C. Hawblitzel, and T. von Eicken, Low-Latency Communication on the IBM

RISC System/6000 SP, In Proceedings of Supercomputing '96.

[39] PORTS Level 0 Thread Modules from Argonne/CalTech, ftp://ftp.mcs.anl.gov/pub/ports/

[40] David Keppel, Tools and Techniques for Building Fast Portable Threads Package, UW-CSE-93-05-06,

Technical Report, University of Washington at Seattle, 1993.

[41] Preparata F, and Shamos M, Computational Geometry, AnIntroduction, Springer-Verlag, pp 398, 1985.

[42] L. Paul Chew, Nikos Chrisochoides, and Florian Sukup, \Parallel Constrained Delaunay Meshing,"

In Proceedings of 1997 Joint ASME/ASCE/SES Summer Meeting, Special Symposium on Trends in

Unstructured Mesh Generation, June 29-July 2, 1997, Nortwestern Univeersity, Evanston, IL.

[43] Bowyer A, Computing Dirichlet Tessellations, The Computer Journal, 1981; 24(2):162{166.

[44] Watson D, Computing the n-dimensional Delaunay tessellation with applications to Vornoi polytopes,

The Computer Journal, 1981;24(2):167{172.

[45] Virtual Interface Architecture Speci�cation, Version 1.0, Compaq Corporation, Intel Corporation, and

Microsoft Corporation, 1997. http://www.viarch.org.

Biographies of Authors

Nikos P. Chrisochoides is an Assistant Professor in the Department of Computer Science and Engineering

at University of Notre Dame. His research focuses on the integration of algorithmic and applications-driven

research in parallel computing with research in parallel runtime software systems for high-end architectures.

Chrisochoides received his Ph.D in Computer Science from Purdue University in 1992. He has been the �rst

Alex Nason Fellow at the Northeast Parallel Architectures Center, Syracuse University from 1992 to 1995

and a Research Associate at Cornell from 1995 to 1997. He received an NSF Career Award on: \Application-

driven Approach for Prototyping Runtime Systems for Future Tera
ops and Peta
ops Architectures".

Kevin Barker is a graduate student in the Department of Computer Science and Engineering at University

of Notre Dame. His research interests include the design of application-driven parallel run-time systems. He

received a B.S. in Computer Science in 1997 from North Carolina State University.

22

Demian Nave is a graduate student in the Department of Computer Science and Engineering at University

of Notre Dame. His research includes the formulation of a theoretical framework for guaranteed-quality

parallel Delaunay mesh generation, with applications to parallel �nite-element simulations. Nave received a

B.S. in Computer Science and a B.S. in Aerospace Engineering from the University of Notre Dame in 1997.

Chris Hawblitzel is a graduate student in Computer Science at Cornell University. His research interests

include parallel processing and operating systems. His current research is in language based security.

23

9 Figures, Tables, and Captions

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
���������������������

�
�
�
�

�
�
�
�
����������������������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

Operating SystemMPI (LAPI)

Load Balancing Lib

Communication

Control
Threads

DMCS:

Parallel Adaptive Application

MOBILE OBJECT LAYER

Figure 1: Parallel run-time system: Architecture.

24

class TreeNode {

public:

float data;

TreeNode *parent;

TreeNode **children;

int numChildren;

void setAll(float f) {

int i;

data = f;

for(i = 0; i < numChildren; i++) {

children[i]->setAll(f);

}

}

};

Figure 2: Serial Implementation of a Tree Structure.

25

class TreeNode {

public:

float data;

MobilePtr parent;

MobilePtr *children;

int numChildren;

void setAll(float f) {

int i;

data = f;

for(i = 0; i < numChildren; i++) {

mob_message(children[i], remoteSetAll, &f, sizeof(f),

MOB_DELAYED_HANDLER, NULL);

}

}

};

void remoteSetAll(int srcProc, MobilePtr mp, TreeNode *treeNode,

float *f, int nbytes, void *arg) {

treeNode->setAll(*f);

}

Figure 3: Parallel Implementation of a Tree Structure based on MOL.

26

for(i = 0; i < numChildren; i++) {

TreeNode *child = (TreeNode *) mob_deref(children[i]);

if(child != NULL) child->setAll(f);

else mob_message(children[i], remoteSetAll, &f, sizeof(f),

MOB_DELAYED_HANDLER, NULL);

}

Figure 4: Optimizing code with mob deref.

27

Mesh RSB PGK

Size Time Sep. Size S/V Max Conn. Time Sep. Size S/V Max Conn.

200K Tets 65 1836 .036 10 4 1629 .032 11

500K Tets 164 3047 .024 9 11 3246 .026 10

1M Tets 389 3859 .017 9 25 4044 .022 9

Table 1: Time in seconds and the quality of separators measured in terms of size of the maximum separator

(in number of faces) and surface to volume ratio, for a 16-way partition of 200; 000, 500; 000 and 1 million

tetrahedron meshes using RSB from Chaco and PGK from Metis.

28

Size Execution Synchronization CSR Translation Data-Movement Total, 1 Invocation

1M Tets 47s 5s (11%) 1s (2%) 3s (6%) 9s (19%)

2M Tets 94s 6s (6%) 2s (2%) 7s (7%) 15s (15%)

Table 2: Total execution time in seconds for generating 1 million and 2 million tetrahedron meshes with 10%

imbalance on 16 nodes of an SP/2. Parallel METIS is invoked once at the end to explicitly load-balance the

mesh.

29

class TreeNode {

public:

MobilePtr myself;

MoveInfo moveInfo;

float data;

MobilePtr parent;

MobilePtr *children;

int numChildren;

void setAll(float f) {...}

};

void migrateNode(TreeNode *treeNode, int newProc) {

// uninstall the object:

treeNode->moveInfo = mob_uninstallObj(treeNode->myself, newProc);

// send the object data to the new processor:

int nbytes = sizeof(TreeNode) + treeNode->numChildren * sizeof(MobilePtr);

mob_request(newProc, migrateHandler, treeNode, nbytes,

MOB_DELAYED_HANDLER, NULL);

// free the local object:

free(treeNode);

}

void migrateHandler(int srcProc, char *treeNodeData, int nbytes, void *arg) {

// set up the new object:

TreeNode *treeNode = (TreeNode *) malloc(nbytes);

memcpy(treeNode, treeNodeData, nbytes);

treeNode->children = (MobilePtr *) (treeNodeData + sizeof(TreeNode));

// install the new object:

mob_installObj(treeNode->myself, treeNode, treeNode->moveInfo);

}

Figure 5: Implementation of Object Migration using MOL.

30

MobilePtr mob_newMobilePtr(void *localObjPtr,
 MobileObjData *mobileObjData);

void mob_freeMobileObj(MobilePtr mp,
 mob_handler freeHandle);

MoveInfo mob_uninstallObj(MobilePtr mp,
 int newProc);

void mob_installObj(MobilePtr mp,
 void *localPtr,
 MoveInfo moveInfo);

void *mob_deref(MobilePtr mp);

Figure 6: MOL Mobile Object Interface.

q*=3
Object o resides on u3

L(1)=u1
L(2)=u2
L(3)=u3

u1
G(u1)=u2
Q(u1)=1

u2
G(u2)=u3
Q(u2)=2

u3

G(u3)=local
Q(u3)=3

u4
G(u4)=u3
Q(u4)=2

u5
G(u5)=u1
Q(u5)=0

u6

G(u6)=u1
Q(u6)=0

Figure 7: Example System State

31

#define MOB_FUNC_HANDLER 1
#define MOB_DELAYED_HANDLER 2
#define MOB_THREAD_HANDLER 3

void mob_poll();

void mob_message(MobilePtr destObjPtr,
 mob_handler handler,
 void *src_addr,
 int nbytes,
 int flags,
 void *handler_arg);

void mob_request(int destProc,
 mob_handler handler,
 void *src_addr,
 int nbytes,
 int flags,
 void *handler_arg);

/* message handler prototype: */
void handler(int srcProc,
 MobilePtr mp,
 void *local_obj_ptr,
 void *msg_data,
 int nbytes,
 void *handler_arg)

/* request handler prototype: */
void handler(int srcProc,
 void *msg_data,
 int nbytes,
 void *handler_arg)

Figure 8: MOL Message Interface

32

0 2048 4096 6144 8192
Message size, bytes

0

200

400

600

800

1000

pe
r

ho
p

la
te

nc
y,

 m
ic

ro
se

cs

LAPI_Amstore
mol_message, function handler
mol_message, delayed handler
mol_message, with forwarding

Figure 9: MOL forwarding overhead versus message size, per hop. When amortized over the number of

messages sent to a migrated object, forwarding overhead approaches the mol message time, since most

messages are never forwarded (due to directory updating).

33

0 2048 4096 6144 8192
Message Size, bytes

0

100

200

300

La
te

nc
y,

 m
ic

ro
se

co
nd

s

LAPI_Amstore
mol_message
mol_message, function handler
mol_message, delayed handler
mol_message, threaded handler

Figure 10: MOL handler overhead versus message size.

34

10% 15% 20% 45%
% Imbalance

0

25

50

75

100

125

150

C
om

pu
ta

tio
n

T
im

e
(s

)

No Load Balancing
Explicit LB (Parallel METIS)
Implicit LB (MOL + work−stealing)

Figure 11: Computation times for no load-balancing, explicit load-balancing, and implicit load-balancing

versus percent imbalance for a 2 million tetrahedron mesh, on 16 processors of an IBM SP/2.

35

1 2 4
Mesh Size (x 1e6 elements)

0

100

200

300

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s

)

No Load Balancing
Explicit LB (Parallel METIS)
Implicit LB (MOL + work−stealing)

Figure 12: Computation times for no load-balancing, explicit load-balancing, and implicit load-balancing for

1, 2, and 4 million tetrahedra at 10% imbalance, on 16 processors of an IBM SP/2.

36

1 2 4
Mesh Size (x 1e6 elements)

0

50

100

150

200

250

300

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Computation Time
MOL Forwarding Time 94.99990

94.99995

Detail of Forwarding Cost

8000,6

16000,7

30000,9

Figure 13: Detail of MOL forwarding in the computation times for implicit load-balancing at 10% for 1, 2,

and 4 million tetrahedron meshes on 16 processors of an IBM SP/2. The average number of cavity expansions

and the maximum number of region migrations is given inside each bar.

37

