1 Review

Last lecture, we defined strong and weak one-way functions (OWFs) as follows:

Definition 1 A function $\epsilon : \mathbb{N} \rightarrow \mathbb{R}$ is **negligible** if, for every $c \in \mathbb{N}$ there exists n_0 such that for all $n > n_0$, $\epsilon(n) < \frac{1}{n^c}$.

Definition 2 A function $f : \{0,1\}^* \rightarrow \{0,1\}^*$ is **strongly one-way** if:

- f can be computed in probabilistic polynomial time (PPT).
- for every non-uniform probabilistic polynomial time (N.U. PPT) algorithm A, there exists a negligible function ϵ such that for every $n \in \mathbb{N}$,
 $$\Pr[x \leftarrow \{0,1\}^n; A(1^n, f(x)) \in f^{-1}(f(x))] < \epsilon(n)$$

So f can be inverted only with negligible probability on a random input – it is hard to invert on all but a negligible fraction of inputs.

Definition 3 A function $f : \{0,1\}^* \rightarrow \{0,1\}^*$ is **weakly one-way** if:

- f can be computed in probabilistic polynomial time (PPT).
- for every non-uniform probabilistic polynomial time (N.U. PPT) algorithm A, there exists a polynomial $q : \mathbb{N} \rightarrow \mathbb{R}$ such that for every input length $n \in \mathbb{N}$,
 $$\Pr[x \leftarrow \{0,1\}^n; A(1^n, f(x)) \in f^{-1}(f(x))] < 1 - \frac{1}{q(n)}$$

So f can be inverted with non-negligible probability on a random input – this suggests that f is easy to invert on some non-negligible fraction of inputs.

We considered the function $f_{\text{mult}} : \mathbb{N}^2 \rightarrow \mathbb{N}$ defined by $f_{\text{mult}}(x, y) = xy$ for $|x| = |y|$, and showed that this is at best weakly one-way, being easy to invert when one of the inputs is even.
We will now show that we don’t lose anything by relaxing our requirements from strong to weak one-wayness, since a weak OWF can in fact be used to construct a strong OWF; this is called hardness amplification. The intuition behind this is that, if we evaluate a weak one-way function on a sufficiently large number of inputs, it is likely to be hard to invert on at least one of those inputs.

Lemma 1 Let $f : \{0,1\}^* \rightarrow \{0,1\}^*$ be a weak OWF. Then there exists a polynomial $m : \mathbb{N} \rightarrow \mathbb{N}$ such that for input length $n \in \mathbb{N}$, the following function $g : \{0,1\}^{mn} \rightarrow \{0,1\}^{mn}$ (where $m = m(n)$) is a strong OWF:

$$g(x_1, x_2, ..., x_m) = f(x_1)f(x_2)...f(x_m)$$

Proof. By contradiction. We will assume that g is not strongly one-way and construct an algorithm that inverts f with high probability, contradicting its weak one-wayness.

Let $q : \mathbb{N} \rightarrow \mathbb{N}$ be the polynomial in the definition of a weak OWF, such that for any PPT algorithm A and any input length $n \in \mathbb{N}$,

$$\Pr[x \leftarrow \{0,1\}^n; A(1^n, f(x)) \in f^{-1}(f(x))] < 1 - \frac{1}{q(n)}$$

We want to define m such that $(1 - \frac{1}{q(n)})^m$ tends to 0 for large n. $(1 - \frac{1}{q(n)})^{nq(n)} \approx (\frac{1}{e})^n$, so we choose $m = 2nq(n)$.

Assume for a contradiction that g is not a strong OWF. Then there exists a N.U. PPT algorithm A and a polynomial $p' : \mathbb{N} \rightarrow \mathbb{R}$ such that for infinitely many input lengths $n' \in \mathbb{N}$, A can invert g with probability at least $\frac{1}{p'(n')}$. Formally,

$$\Pr[x \leftarrow \{0,1\}^n; A(1^n, g(x_1, x_2, ..., x_m)) \in g^{-1}(g(x_1, x_2, ..., x_m))] \geq \frac{1}{p'(mn)}$$

Since m is polynomial in n, the function $p : \mathbb{N} \rightarrow \mathbb{R}$ defined as $p(n) = p'(mn) = p'(2n^2q(n))$ is also a polynomial in n. So we can rewrite the above probability as

$$\Pr[x \leftarrow \{0,1\}^n; A(1^{mn}, g(x_1, x_2, ..., x_m)) \in g^{-1}(g(x_1, x_2, ..., x_m))] \geq \frac{1}{p(n)}$$

For convenience, we will rewrite the above inequality as

$$\Pr[x_i \leftarrow \{0,1\}^n; A \text{ succeeds}] \geq \frac{1}{p(n)}$$

Goal: Given A that takes $y_1y_2...y_m$ as input and outputs $z_1, ..., z_m$ such that $f(z_i) = y_i$ for all i with probability $\geq \frac{1}{p(n)}$, we want to construct an adversary A' that uses A to
invert f with probability $\geq 1 - \frac{1}{q(n)}$. In other words, given $y = f(x)$ for random x, we want algorithm A' to return z such that $f(z) = y$ with probability $\geq 1 - \frac{1}{q(n)}$.

Approach 1: Given y, give A as input $yy...y$ (i.e. $y_i = y$ for all i). However, it is possible that the algorithm A always fails when the input has the format above, i.e. consists of a string repeated m times (these strings form a very small fraction of all strings of length mn). So this won’t work.

Approach 2: Give A as input, set $y_1 = y$ and for $j \neq 1$, select a random $x_j \in \{0, 1\}^n$ and set $y_j = f(x_j)$. Again, it is possible that the algorithm A always returns garbage for the first “spot”.

Correct Approach: Pick a random $i \in \{1, ..., m\}$ and set $y_i = y$. For $j \neq i$, select a random $x_j \in \{0, 1\}^n$ and set $y_j = f(x_j)$. Formally, $A''(y)$:

- Pick $i \leftarrow [1, m]$ and let $y_i = y$.
- For all $j \neq i$, pick $x_j \leftarrow \{0, 1\}^n$ and let $y_j = f(x_j)$.
- Let $z_1, ..., z_m = A'(1^{mn}, y_1, ..., y_m)$.
- If $f(z_1) = y$, output z. Otherwise output \bot (fail).

The algorithm A' does what we want, but the probability of success is not high enough. To improve the probability of inverting f, we need to run A' multiple times. To do so, define the algorithm A' as follows:

$A'(y)$:

- Run $A''(y) 2nm^2p(n)$ times.
- Output the first answer that is not \bot.
- If no such answer exists, output \bot.

However, we are using the same input y in all $2nm^2p(n)$ runs, so the runs are not independent. Therefore it may be the case that y is simply a bad input for A'', and therefore fails on every run.

To overcome this, we define the notion of “good” and “bad” inputs. We say that element $x \in \{0, 1\}^n$ is “good” if $\Pr[A''(f(x))$ succeeds] $\geq \frac{1}{2nm^2p(n)}$. Otherwise x is “bad”.

Thus,

$$\Pr[A'(f(x))$ fails$|x$ is good$] \leq \left(1 - \frac{1}{2m^2p(n)}\right)^{2nm^2p(n)} \approx \left(\frac{1}{e}\right)^n$$

3-3
Claim: There are at least $2^n \left(1 - \frac{1}{2q(n)} \right)$ good inputs $x \in \{0, 1\}^n$.

Why does proving this claim give us what we want?

If the above claim is true, then $Pr[x \text{ is good}] \geq \left(1 - \frac{1}{2q(n)} \right)$, so $Pr[x \text{ is bad}] \leq \frac{1}{2q(n)}$. So

$$Pr[A'(f(x)) \text{ fails}] = \Pr[A'(f(x)) \text{ fails}|x \text{ is good}] \cdot Pr[x \text{ is good}] + Pr[x \text{ is bad}] \leq Pr[x \text{ is good}] + \Pr[A'(f(x)) \text{ fails}|x \text{ is bad}] \cdot Pr[x \text{ is bad}]$$

$$\approx \left(\frac{1}{e} \right)^n + \frac{1}{2q(n)} \leq \frac{1}{q(n)}$$

So A' succeeds in inverting $f(x)$ for random x with probability $\geq 1 - \frac{1}{q(n)}$, contradicting the weak one-wayness of f. So if we can prove that there are a significant number of good elements, A' can invert f with high probability, contradicting the assumption that f is weakly one-way.

Proof. Assume for a contradiction that the number of bad inputs $> \frac{2^n}{2q(n)}$. We wish to contradict the fact that A inverts g with probability $\geq \frac{1}{p(n)}$.

$$Pr[A(1^{mn}, g(x_1, ..., x_m)) \text{ succeeds}] = Pr[A(1^{mn}, g(x_1, ..., x_m)) \text{ succeeds} \land \exists i \text{ is bad x}_i]$$

$$+ Pr[A(1^{mn}, g(x_1, ..., x_m)) \text{ succeeds} \land \forall i, x_i \text{ is good}] \tag{2}$$

(1) $Pr[A \text{ succeeds} \land \exists i \text{ bad } x_i] \leq \sum_i Pr[A \text{ succeeds} \land x_i \text{ is bad}]$ (via the union bound)

For each $i \in [1, m]$,

$$Pr[A \text{ succeeds} \land x_i \text{ is bad}] \leq Pr[A \text{ succeeds}|x_i \text{ is bad}]$$

$$< m \cdot Pr[A'(f(x_i)) \text{ succeeds}|x_i \text{ is bad}] \quad (A'' \text{ can put } x_i \text{ at one of } m \text{ positions})$$

$$\leq \frac{m}{2m^2p(n)} = \frac{1}{2mp(n)}$$

So $Pr[A \text{ succeeds} \land \exists i \text{ bad } x_i] \leq \sum_i \frac{1}{2mp(n)} = \frac{1}{2p(n)}$
(2) $\Pr[A \text{ succeeds } \land \forall x_i, x_i \text{ is good}]$

\[
\begin{align*}
&< \Pr[\forall x_i, x_i \text{ is good}] \\
&\leq \left(1 - \frac{1}{2q(n)}\right)^m \\
&= \left(1 - \frac{1}{2q(n)}\right)^{2nq(n)} \\
&\approx \left(\frac{1}{e}\right)^n
\end{align*}
\]

Hence, $\Pr[A(1^{mn}, g(x_1, ..., x_m)) \text{ succeeds}] < \frac{1}{2p(n)} + \frac{1}{e} < \frac{1}{p(n)} \Rightarrow \Leftarrow$

Therefore the number of bad inputs $\leq \frac{2n}{2q(n)}$, and the number of good inputs $\geq 1 - \frac{2n}{2q(n)}$. ■

This proves Lemma 1, showing that the existence of weak one-way functions implies that of strong one-way functions.