Notation

Algorithm

Let A denote an algorithm. We write $A(.)$ to denote an algorithm with one input and $A(.,.)$ for two inputs. In general, the output of an algorithm can be considered as a probability distribution. So $A(x)$ denotes a probability distribution. The algorithm is deterministic if the probability is concentrated on a single element.

Experiment

To sample an element x from a distribution S we denote the experiment by $x \leftarrow S$. If F is a finite set, then $x \leftarrow F$ is the experiment of sampling uniformly from the set F. To denote the ordered sequence in which the experiments happen we use semicolon.

$$(x \leftarrow S; (y, z) \leftarrow A(x))$$

Using this notation we can describe probability of events. If $p(.,.)$ denotes a predicate, then

$$Pr[x \leftarrow S; (y, z) \leftarrow A(x) : p(y, z)]$$

is the probability that the predicate $p(y,z)$ is true after the ordered sequence of events $(x \leftarrow S; (y, z) \leftarrow A(x))$. The notation $\{x \leftarrow S; (y, z) \leftarrow A(x) : (y, z)\}$ denotes the probability distribution $\{y, z\}$ generated by the ordered sequence of experiments $(x \leftarrow S; (y, z) \leftarrow A(x))$.

Probability

Basic Facts

- Events A and B are said to be independent if

$$Pr[A \cap B] = Pr[A] \cdot Pr[B]$$

1-1
• Events A_1, A_2, \ldots, A_n are said to be pairwise independent if for every i and every $j \neq i$, A_i and A_j are independent.

• Union Bound: Let A_1, A_2, \ldots, A_n be events. Then,
 \[
 Pr[A_1 \cup A_2 \cup \ldots \cup A_n] \leq Pr[A_1] + Pr[A_2] + \ldots + Pr[A_n]
 \]

• Let X be a random variable with range Ω. The expectation of X is a number defined as follows.
 \[
 E[X] = \sum_{x \in \Omega} x Pr[X = x]
 \]
 The variance is given by,
 \[
 Var[X] = E[X^2] - (E[X])^2
 \]

• Let X_1, X_2, \ldots, X_n be random variables. Then,
 \[
 E[X_1 + X_2 + \cdots + X_n] = E[X_1] + E[X_2] + \cdots + E[X_n]
 \]

• If X and Y are independent random variables, then
 \[
 E[XY] = E[X] \cdot E[Y]
 \]
 \[
 Var[X + Y] = Var[X] + Var[Y]
 \]

Markov’s Inequality

If X is a positive random variable with expectation $E(X)$ and $a > 0$, then
\[
Pr[X \geq a] \leq \frac{E(X)}{a}
\]

Chebyshev’s Inequality

Let X be a random variable with expectation $E(X)$ and variance σ^2, then for any $k > 0$,
\[
Pr[|X - E(X)| \geq k] \leq \frac{\sigma^2}{k^2}
\]

Chernoff’s inequality

Let X_1, X_2, \ldots, X_n denote independent random variables, such that for all i, $E(X_i) = \mu$ and $|X_i| \leq 1$.
\[
Pr \left[\left| \frac{\sum X_i}{n} - \mu \right| \geq \epsilon \right] \leq 2^{-\epsilon^2 n}
\]