1 Review

In the previous lecture, we formalised the notion of a strong one-way function that is easy to compute, but hard to invert.

Definition 1 (Negligible function) A function $\epsilon : \mathbb{N} \rightarrow \mathbb{R}$ is negligible if for any $c \in \mathbb{N}$, there is a $k_0 \in \mathbb{N}$ such that we have $\epsilon(k) < \frac{1}{k^c}$ for all $k > k_0$.

Definition 2 (Strong one-way function) A function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ is strongly one-way if it satisfies the following two conditions.

1. Easy to compute. There is a probabilistic polytime algorithm $C : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that $C(x) = f(x)$ on all inputs $x \in \{0, 1\}^*$.

2. Hard to invert. Any efficient attempt to invert f on random input will succeed with only negligible probability. Formally, for any probabilistic polytime algorithm $A : \{0, 1\}^* \rightarrow \{0, 1\}^*$, there exists a negligible function ϵ such that for any input length $k \in \mathbb{N}$,

$$\Pr [x \leftarrow \{0, 1\}^k; y = f(x); A(1^k, y) = x' : f(x') = y] \leq \epsilon(k).$$

2 Weak One-Way Functions

Consider the function $f_{\text{mult}} : \mathbb{N}^2 \rightarrow \mathbb{N}$ defined by $f_{\text{mult}}(x, y) = xy$, with $|x| = |y|$. Is this a one-way function? Clearly, by the multiplication algorithm, f_{mult} is easy to compute. But f_{mult} is not always hard to invert! If at least one of x and y is even, then their product will be even as well. This happens with probability $\frac{3}{4}$ if the input (x, y) is picked uniformly at random from \mathbb{N}^2. So the following attack A will succeed with probability $\frac{3}{4}$:

$$A(z) = \begin{cases} (2, \frac{z}{2}) & \text{if } z \text{ even} \\ (0, 0) & \text{otherwise.} \end{cases}$$

Something is not quite right here, since f_{mult} is conjectured to be hard to invert on some, but not all, inputs. Our current definition of a one-way function is too restrictive to
capture this notion, so we will define a weaker variant that relaxes the hardness condition on inverting the function. This weaker version only requires that all efficient attempts at inverting will fail with some non-negligible probability.

Definition 3 (Weak one-way function) A function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ is weakly one-way if it satisfies the following two conditions.

1. **Easy to compute.** (Same as that for a strong one-way function.) There is a probabilistic polytime algorithm $C : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that $C(x) = f(x)$ on all inputs $x \in \{0, 1\}^*$.

2. **Hard to invert.** Any efficient algorithm will fail to invert f on random input with non-negligible probability. More formally, for any probabilistic polytime algorithm $A : \{0, 1\}^* \rightarrow \{0, 1\}^*$, there exists a polynomial function $q : \mathbb{N} \rightarrow \mathbb{N}$ such that for any input length $k \in \mathbb{N}$,

$$\Pr[x \leftarrow \{0, 1\}^k; \ y = f(x); \ A(1^k, y) = x' : f(x') = y] \leq 1 - \frac{1}{q(k)}$$

It is conjectured that f_{mult} is a weak one-way function.

3 Hardness Amplification

By falling back on the weak version of a one-way function, we actually haven’t lost anything. As we will now show, a weak one-way function can be used to produce a strong one-way function by amplifying hardness. The main insight we will use is if we run a weak one-way function f with enough inputs, with luck, f will be hard to invert on least one of those inputs.

Theorem 1 If there is a weak one-way function, then there is a strong one-way function. In particular, given a weak one-way function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$, there is a fixed $m \in \mathbb{N}$, polynomial in the input length $n \in \mathbb{N}$, such that the following function $f' : (\{0, 1\}^n)^m \rightarrow (\{0, 1\}^n)^m$ is strongly one-way:

$$f'(x_1, x_2, \ldots, x_m) = (f(x_1), f(x_2), \ldots, f(x_m)).$$

We will prove this theorem by contradiction. We assume that f' is not strongly one-way so that there is an algorithm A' that inverts it with non-negligible probability. From this, we construct an algorithm A that inverts f with high probability.
Proof. Since f is weakly one-way, let $q : \mathbb{N} \rightarrow \mathbb{N}$ be a polynomial such that for any probabilistic polytime algorithm \mathcal{A} and any input length $n \in \mathbb{N},$

$$\Pr[x \leftarrow \{0, 1\}^n; \ y = f(x); \ \mathcal{A}(1^n, y) = x' : f(x') = y] \leq 1 - \frac{1}{q(n)}.$$

Define $m = 2nq(n)$, dependent on the input length $n \in \mathbb{N}$ to f.

Assume that f' as defined in the theorem is not strongly one-way. Then let \mathcal{A}' be a probabilistic polytime algorithm and $p' : \mathbb{N} \rightarrow \mathbb{N}$ be a polynomial such that for infinitely many input lengths $n \in \mathbb{N}$ to f, \mathcal{A}' inverts f' with probability $p'(n)$. i.e.,

$$\Pr[x_i \leftarrow \{0, 1\}^n; y_i = f(x_i) : f'(\mathcal{A}'(y_1, y_2, \ldots, y_m)) = (y_1, y_2, \ldots, y_m)] > \frac{1}{p'(m)}.$$

Since m is polynomial in n, then the function $p(n) = p'(m) = p'(2nq(n))$ is also a polynomial. Rewriting the above probability, we have

$$\Pr[x_i \leftarrow \{0, 1\}^n; y_i = f(x_i) : f'(\mathcal{A}'(y_1, y_2, \ldots, y_m)) = (y_1, y_2, \ldots, y_m)] > \frac{1}{p(n)}. \quad (1)$$

Define the algorithm $\mathcal{A}_0 : \{0, 1\}^n \rightarrow \{0, 1\}^n \perp$, which will attempt to use \mathcal{A}' to invert f, as follows.

1. Input $y \in \{0, 1\}^n$.
2. Pick a random $i \leftarrow [1, m]$.
3. For all $j \neq i$, pick a random $x_j \leftarrow \{0, 1\}^n$, and let $y_j = f(x_j)$.
4. Let $y_i = y$.
5. Let $(z_1, z_2, \ldots, z_m) = \mathcal{A}(y_1, y_2, \ldots, y_m)$.
6. If $f(z_i) = y$, then output z_i; otherwise, fail and output \perp.

To improve our chances of inverting f, we will run \mathcal{A}_0 multiple times. To capture this, define the algorithm $\mathcal{A} : \{0, 1\}^n \rightarrow \{0, 1\}_n^\perp$ to run \mathcal{A}_0 with its input $2nm^2p(n)$ times, outputting the first non-\perp result it receives. If all runs of \mathcal{A}_0 result in \perp, then \mathcal{A} outputs \perp as well.

Given this, call an element $x \in \{0, 1\}^n$ “good” if \mathcal{A}_0 will successfully invert $f(x)$ with non-negligible probability:

$$\Pr[\mathcal{A}_0(f(x)) \neq \perp] \geq \frac{1}{2m^2p(n)};$$

otherwise, call x “bad.”
Note that the probability of \mathcal{A} failing to invert $f(x)$ on a good x is small:

$$\Pr[\mathcal{A}(f(x)) \text{ fails} \mid x \text{ good}] \leq \left(1 - \frac{1}{2m^2p(n)}\right)^{2m^2np(n)} \approx e^{-n}.$$

We claim that there are a significant number of good elements—enough for \mathcal{A} to invert f with sufficient probability to contradict the weakly one-way assumption on f. In particular, we claim there are at least $2^n \left(1 - \frac{1}{2q(n)} \right)$ good elements in $\{0, 1\}^n$. If this holds, then

$$\Pr[\mathcal{A}(f(x)) \text{ fails}] = \Pr[\mathcal{A}(f(x)) \text{ fails} \mid x \text{ good}] \cdot \Pr[x \text{ good}] + \Pr[\mathcal{A}(f(x)) \text{ fails} \mid x \text{ bad}] \cdot \Pr[x \text{ bad}] \leq \Pr[\mathcal{A}(f(x)) \text{ fails} \mid x \text{ good}] + \Pr[x \text{ bad}] \leq \left(1 - \frac{1}{2m^2p(n)}\right)^{2m^2np(n)} + \frac{1}{2q(n)} \approx e^{-n} + \frac{1}{2q(n)}.$$

This contradicts the assumption that f is $q(n)$-weak.

It remains to be shown that there are at least $2^n \left(1 - \frac{1}{2q(n)} \right)$ good elements in $\{0, 1\}^n$. Assume that there are more than $2^n \left(1 - \frac{1}{2q(n)} \right)$ bad elements. We will contradict fact (1) that with probability $\frac{1}{p(n)}$, \mathcal{A}' succeeds in inverting $f'(x)$ on a random input x. To do so, we establish an upper bound on the probability by splitting it into two quantities:

$$\Pr[x_i \leftarrow \{0, 1\}^n; y_i = f'(x_i) : \mathcal{A}'(\vec{y}) \text{ succeeds}] = \Pr[x_i \leftarrow \{0, 1\}^n; y_i = f'(x_i) : \mathcal{A}'(\vec{y}) \text{ succeeds and some } x_i \text{ is bad}] + \Pr[x_i \leftarrow \{0, 1\}^n; y_i = f'(x_i) : \mathcal{A}'(\vec{y}) \text{ succeeds and all } x_i \text{ are good}]$$

For each $j \in [1, n]$, we have

$$\Pr[x_i \leftarrow \{0, 1\}^n; y_i = f'(x_i) : \mathcal{A}'(\vec{y}) \text{ succeeds and } x_j \text{ is bad}] \leq \Pr[x_i \leftarrow \{0, 1\}^n; y_i = f'(x_i) : \mathcal{A}'(\vec{y}) \text{ succeeds} \mid x_j \text{ is bad}] \leq m \cdot \Pr[\mathcal{A}_0(f(x_j)) \text{ succeeds} \mid x_j \text{ is bad}] \leq \frac{m}{2m^2p(n)} = \frac{1}{2mp(n)}.$$

So taking a union bound, we have

$$\Pr[x_i \leftarrow \{0, 1\}^n; y_i = f'(x_i) : \mathcal{A}'(\vec{y}) \text{ succeeds and some } x_i \text{ is bad}] \leq \sum_j \Pr[x_i \leftarrow \{0, 1\}^n; y_i = f'(x_i) : \mathcal{A}'(\vec{y}) \text{ succeeds and } x_j \text{ is bad}] \leq \frac{m}{2m^2p(n)} = \frac{1}{2p(n)}.$$
Also,
\[
\Pr [x_i \leftarrow \{0,1\}^n; y_i = f'(x_i) : \mathcal{A}'(\vec{y}) \text{ succeeds and all } x_i \text{ are good}] \\
\leq \Pr [x_i \leftarrow \{0,1\}^n : \text{all } x_i \text{ are good}] \\
< \left(1 - \frac{1}{2^{q(n)}} \right)^m = \left(1 - \frac{1}{2^{q(n)}} \right)^{2nq(n)} \approx e^{-n}.
\]

Hence, \(\Pr [x_i \leftarrow \{0,1\}^n; y_i = f'(x_i) : \mathcal{A}'(\vec{y}) \text{ succeeds}] < \frac{1}{2^{p(n)}} + e^{-n} < \frac{1}{p(n)}, \) thus contradicting (1). \qed

This theorem indicates that the existence of weak one-way functions is equivalent to that of strong one-way functions. In the next lecture, we will identify a “universal” one-way function \(f_{\text{Levin}}. \) This function is universal in the sense that if one-way functions exist, then \(f_{\text{Levin}} \) is one-way.