
Problem Set 7 Due Thursday December 2, 2010 CS4860

1 Problem

(a) Prove the following formula using a Gentzen system proof that first moves
all information into the hypothesis list leaving false as the only goal to prove.

(∼ B ⇒∼ A) ⇒ (∼∼ A ⇒∼∼ B)

(b) Prove this formula by Refinement Logic and exhibit the reduced proof
term. Note that in Refinement Logic we define ∼ A to mean A ⇒ false.
(c) Discuss the advantages and disadvantages of each proof style.

2 Problem

Write Refinement proofs for the following formulas from Smullyan page 56
and produce the proof expressions in reduced form.

1. ∀x(Px ⇒ ∃xP (x))

2. ∃x(Px ∨ Qx) ⇒ ∃xPx ∨ ∃xQx

3. ∃x(Px ∨ Qx) ⇐ ∃xPx ∨ ∃x Qx

4. ∃x(Px ∧ Qx) ⇒ ∃xPx ∧ ∃xQx)

5. ∃y((∃xPx) ⇒ Py)

3 Problem

In Lecture 24 we stated the computation rule for the Standard Induction
proof expression. It is this:

ind(0; b; u, i.p(u, i)) = b
ind(n + 1; b; u, i.p(u, i)) = p(n, ind(n; b; u, i.p(u, i)).

1



This is an example of a primitive recursive function definition.

Give a proof expression for Complete Induction (from the last problem set)
and its reduction rule, similar to the one above for Standard Induction.

4 Problem

(a) Give a Refinement style proof of the following simple fact about the fac-
torial function defined as in lecture. Make the proof as close to an actual
Refinement Proof as possible.

∀n :N.∃y :N.fact(n) = y.

You can use a rule that allows you to expand the definition of factorial
in a proof step, call it Definition Rule.

(b) Show the extract for this proof as readably as possible.

5 Problem

Here is a recursive predicate about lists of natural numbers which defines
what it means for a natural number to be on a list. Recall that a list is
either nil or is a head h “consed” on to a tail t, that is h.t where h is a
number and t is a list.

ListMembership == ∀x : N.∀h : N.∀t : List.(OnList(x, nil) = false ∧
OnList(x, h.t) = (x = h ∨OnList(x, t))

Prove the following formula in Refinement Logic using list induction and a
rule for using the OnList(x,l) predicate.

∀l :List.∃y : N.∀x :N.(OnList(x, l) ⇒ x ≤ y).

2


