
CS 6861 S24 Lectures 7–8 Completeness of Star-continuity Week of February 12, 2024

We have argued in previous lectures that the equational theory of each of the following classes of interpreta-
tions is contained in the next in the list: Kleene algebras, star-continuous Kleene algebras, closed semirings,
S-algebras, N-algebras, relational models, language models, RegΣ, and RegΣ under the single canonical
interpretation RΣ.

In this lecture we show that all these classes from star-continuous Kleene algebra onward have the same
equational theory. It suffices to show that any equation that holds under the canonical interpretation
RΣ : ExpΣ → RegΣ holds in all star-continuous Kleene algebras. Later on we will add Kleene algebras to
this list as well.

Lemma 1. For all regular expressions s, t, u ∈ ExpΣ, the following property holds in any star-continuous
Kleene algebra K:

stu = sup
x∈RΣ(t)

sxu.

In other words, if K is star-continuous, then under any interpretation I : ExpΣ → K, the supremum of the
set

{I(sxu) | x ∈ RΣ(t)}

exists and is equal to I(stu).

In particular, in the special case s = u = 1,

t = sup
x∈RΣ(t)

x.

This says that if we take the regular set of strings x ∈ Σ∗ denoted by the regular expression t and interpret
each such string individually in K under the map I, then the resulting set of elements of K has a supremum,
and that supremum is the interpretation of t in K under I.

The star-continuity axiom itself is a special case of the lemma. It states that

ab∗c = sup
n≥0

abnc = sup
x∈RΣ(b∗)

axc,

that is, K is star-continuous if under any interpretation I : Exp {a, b, c} → K, the supremum of the set
{I(abnc) | n ≥ 0} exists and is equal to I(ab∗c). This is the special case for s = a, t = b∗, and u = c. The
lemma expresses a natural extension of the star-continuity property to all expressions s, t, u. Later on we
will do the same thing with the axioms of Kleene algebra; there we will extend the axioms, which give the
ability to solve one linear affine inequality, to a theorem that gives the solution to any finite system of linear
affine inequalities.

Proof. Let K be an arbitrary star-continuous Kleene algebra. We proceed by induction on the structure of
t. There are three base cases, corresponding to the regular expressions a ∈ Σ, 1, and 0. For a ∈ Σ, we have
RΣ(a) = {a} and

sup
x ∈ RΣ(a)

sxu = sau,

since the supremum of a singleton set is just the unique element of that set. The case of 1 is similar, since
RΣ(1) = {ε}. Finally, since RΣ(0) = ∅ and since 0 is the least element in K and therefore the supremum of
the empty set,

sup
x ∈ RΣ(0)

sxu = sup∅ = 0 = s0u.
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There are three cases to the inductive step, one for each of the operators +, ·, ∗. We give a step-by-step
argument for the case +, followed by a justification of each step.

s(t1 + t2)u = st1u+ st2u (1)
= sup

x ∈ RΣ(t1)

sxu+ sup
y ∈ RΣ(t2)

syu (2)

= sup
z ∈ RΣ(t1)∪RΣ(t2)

szu (3)

= sup
z ∈ RΣ(t1+t2)

szu. (4)

Equation (1) follows from the distributive laws of Kleene algebra; (2) follows from the induction hypothesis
on t1 and t2; (3) follows from the general property of upper semilattices that if A and B are two sets whose
suprema supA and supB exist, then the supremum of A∪B exists and is equal to supA+supB (this requires
proof—see below); finally, equation (4) follows from the fact that the interpretation RΣ is a homomorphism.

The general property used in step (3) states that if A and B are two subsets of an upper semilattice whose
suprema supA and supB exist, then the supremum sup(A ∪ B) exists and is equal to supA + supB. To
prove this, we must show two things:

(i) supA+ supB is an upper bound for A ∪B; that is, for any x ∈ A ∪B, x ≤ supA+ supB; and

(ii) supA + supB is the least such upper bound; that is, for any other upper bound y of the set A ∪ B,
supA+ supB ≤ y.

We can use the fact that in an upper semilattice with finitary join operation +, x + y is the supremum of
the set {x, y}. This holds in all Kleene algebras, since every KA is an upper semilattice with respect to +.

To show (i),

x ∈ A ∪B ⇒ x ∈ A or x ∈ B

⇒ x ≤ supA or x ≤ supB

⇒ x ≤ supA+ supB.

To show (ii), let y be any other upper bound for A ∪B. Then

(∀x ∈ A ∪B x ≤ y) ⇒ (∀x ∈ A x ≤ y) and (∀x ∈ B x ≤ y)

⇒ supA ≤ y and supB ≤ y

⇒ supA+ supB ≤ y.

Now we give a similar chain of equalities for the case of the multiplication operator (·).

s(t1t2)u = st1(t2u) = sup
x ∈ RΣ(t1)

sx(t2u) = sup
x ∈ RΣ(t1)

(sx)t2u = sup
x ∈ RΣ(t1)

sup
y∈RΣ(t2)

sxyu

= sup
x ∈ RΣ(t1), y ∈ RΣ(t2)

sxyu (5)

= sup
z ∈ RΣ(t1t2)

szu.

The inferences in the first line are justified by associativity of multiplication and the induction hypothesis.
Step (5) uses a general property of suprema that is a stronger form of the property used in step (3) of the
previous argument for +. It states that if C is a collection of subsets A of an ordered set, each with a
supremum supA, and if supA∈C supA exists, then sup

⋃
C exists and is equal to supA∈C supA. The proof is

a direct generalization of the proof for the weaker version above. The last step is by the definition of RΣ.
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Finally, for the case ∗, we have

st∗u = sup
n≥0

stnu = sup
n≥0

sup
x∈RΣ(tn)

sxu = sup
x ∈

⋃
n≥0 RΣ(tn)

sxu = sup
x ∈ RΣ(t∗)

sxu.

This argument uses the axiom of star-continuity in the first step, the induction hypothesis in the second
step, the same general property of suprema used above in the third step, and the definition of RΣ in the last
step.

Theorem 2. Let s, t be regular expressions over Σ. The equation s = t holds under all interpretations in
all star-continuous Kleene algebras if and only if RΣ(s) = RΣ(t).

Proof. The forward implication is immediate, since RegΣ is a star-continuous Kleene algebra. Conversely,
by two applications of Lemma 1, if RΣ(s) = RΣ(t), then under any interpretation in any star-continuous
Kleene algebra,

s = sup
x ∈ RΣ(s)

x = sup
x ∈ RΣ(t)

x = t.

Free Algebras

We have shown that the equational theory of the star-continuous Kleene algebras coincides with the equations
true in RegΣ under the interpretation RΣ. Another way of saying this is that RegΣ is the free star-continuous
Kleene algebra on generators Σ. The term free intuitively means that RegΣ satisfies only those equations
that it is forced to satisfy in order to be a star-continuous Kleene algebra and no others.

Formally, a member A of a class of algebraic structures C of the same signature is said to be free on generators
X for the class C if

• A is generated by X;

• any function h from X into another algebra B ∈ C extends to a homomorphism ĥ : A → B.

The extension is necessarily unique, since a homomorphism is completely determined by its action on a
generating set.

Thus to say that RegΣ is the free star-continuous Kleene algebra on generators Σ says that RegΣ is generated
by Σ (actually, by {{a} | a ∈ Σ} = {RΣ(a) | a ∈ Σ}), and for any star-continuous Kleene algebra K and map
h : Σ → K, there is a unique homomorphism ĥ : RegΣ → K such that the following diagram commutes:

RegΣ

Σ

K

ĥ

h

RΣ (6)

In other words, ĥ◦RΣ = h. This is an example of an adjunction, which we will describe in more depth later.
The set function RΣ that embeds the set Σ into the carrier of the algebra RegΣ is called the unit of the
adjunction.

Free algebras, if they exist, are unique up to isomorphism. If A and B are free algebras on generators X for
a class C, let i : X → A and j : X → B be the units of the two adjunctions. Since both algebras are free,
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these set maps extend to homomorphisms î : B → A and ĵ : A → B, respectively.

A

X

B

ĵ

j

i

B

X

A

î

i

j

Thus î ◦ j = i and ĵ ◦ i = j. Then (ĵ ◦ î) ◦ j = ĵ ◦ (̂i ◦ j) = ĵ ◦ i = j, so ĵ ◦ î and the identity function
agree on the set {j(x) | x ∈ X}. But B is generated by this set, which says that ĵ ◦ î : B → B is the
identity morphism—it agrees with the identity on the generating set {j(x) | x ∈ X}, and homomorphisms
are uniquely determined by their action on a generating set. Symmetrically, î◦ ĵ : A → A is also the identity,
so î and ĵ are inverses, therefore A and B are isomorphic.

Congruence Relations and the Quotient Construction

Any class of algebras defined by universal equations or equational implications, even infinitary ones, has free
algebras. Recall that the axioms for star-continuous Kleene algebra are of this form:

xynz ≤ xy∗z, n ≥ 0 (
∧
n≥0

(xynz ≤ w)) ⇒ xy∗z ≤ w.

There is a general technique for constructing free algebras called a quotient construction. Here we give a
brief account of this construction and how to apply it to obtain free algebras.

Fix an algebraic signature F consisting of some function symbols and their arities. Let A be any F -algebra.
A binary relation ≡ on A is call a congruence if

(i) ≡ is an equivalence relation (reflexive, symmetric, transitive);

(ii) ≡ is preserved by all the distinguished operations of the signature; that is, if f is n-ary, and if xi ≡ yi,
1 ≤ i ≤ n, then f(x1, . . . , xn) ≡ f(y1, . . . , yn). For example, for the signature of Kleene algebra, this
would mean

x1 ≡ y1 ∧ x2 ≡ y2 ⇒ x1 + x2 ≡ y1 + y2

x1 ≡ y1 ∧ x2 ≡ y2 ⇒ x1x2 ≡ y1y2

x ≡ y ⇒ x∗ ≡ y∗.

The kernel of a homomorphism h : A → B is

kerh
def
= {(x, y) | h(x) = h(y)}.

One can show that the kernel of any homomorphism with domain A is a congruence on A (Exercise ??).

Conversely, given any congruence ≡ on A, one can construct an F -algebra B and an epimorphism h : A → B
such that ≡ is the kernel of h. This is called the quotient construction. For any x ∈ A, define

[x]
def
= {y ∈ A | x ≡ y},

the congruence class of x. Let

A/≡ def
= {[x] | x ∈ A}.

One can make this into an F -algebra by defining

fA/≡([x1], . . . , [xn])
def
= [fA(x1, . . . , xn)].

The properties of congruence ensure that fA/≡ is well defined and that the map x 7→ [x] is an epimorphism
A → A/≡.
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Free Algebras as Quotients

Now we apply the quotient construction to obtain free algebras. As previously observed, if F is any signature,
the set of well-formed terms TX over variables X can be regarded as an F -algebra in which the operations of
F have their syntactic interpretation. For the signature of Kleene algebra, we have been calling the variables
Σ, and the terms TX are the regular expressions ExpΣ.

Let ∆ be a set of equations or equational implications over TX, and let Mod∆ denote the class of models of
∆, that is, the class of F -algebras that satisfy ∆. For example, if ∆ consists of the axioms of star-continuous
Kleene algebra, then Mod∆ will be the class of all star-continuous Kleene algebras.

Let ≡ be the smallest congruence on terms in TX containing all substitution instances of equations in ∆
and closed under all substitution instances of equational implications in ∆. The relation ≡ can be built
inductively, starting with the substitution instances of equations in ∆ and the reflexivity axiom s ≡ s and
adding pairs s ≡ t as required by the substitution instances of equational implications in ∆ and the symmetry,
transitivity, and congruence rules.

One can now show that the quotient TX/≡ is the free Mod∆ algebra on generators X. For any algebra
A satisfying ∆ and any map h : X → A, h extends uniquely to a homomorphism TX → A, which we also
denote by h. The kernel of h is the set of equations satisfied by A under interpretation h. Since A satisfies
∆, the kernel of h contains all the equations of ∆ and is closed under the equational implications of ∆. Since
≡ is the smallest such congruence, ≡ refines (is contained in) kerh. Thus we can define ĥ([x])

def
= h(x) and

the resulting map ĥ will be well defined. This is the desired homomorphism TX/≡ → A.

For star-continuous Kleene algebra, the free algebra given by the quotient construction is ExpΣ/≡, where ≡
is the smallest congruence containing all substitution instances of the axioms of idempotent semirings, e.g.
s+ (t+ u) ≡ (s+ t) + u for all s, t, u ∈ ExpΣ, etc., and stnu ≤ st∗u for all s, t, u ∈ ExpΣ and n ≥ 0 (where
s ≤ t is an abbreviation for s+ t ≡ t), and contains st∗u ≤ w whenever stnu ≤ w for all n ≥ 0.

We have shown in Theorem 2 that RegΣ is the free star-continuous KA on generators Σ, thus RegΣ is
isomorphic to ExpΣ/≡. To see this directly, let h : Σ → K be an arbitrary function into a star-continuous
Kleene algebra K, and extend h to a homomorphism h : ExpΣ → K. By Theorem 2, the set of equations
that hold under the interpretation RΣ, which is kerRΣ, is contained in the set of equations that hold under
any interpretation in any star-continuous Kleene algebra, including h. Thus kerRΣ refines kerh. This says
that we can define ĥ(RΣ(s))

def
= h(s), and the resulting map ĥ : RegΣ → K will be well defined. This is the

desired homomorphism making the diagram (6) commute.

Relations Among Algebras

The notion of free algebra is an example of a more general phenomenon called adjunction. An adjunction is
a way of describing a particular relationship between categories of algebraic structures.

There are many examples of adjunctions in mathematics, but one very common occurrence is when some
category C of algebras has more structure than another category D, and there is a canonical way to extend
any D-algebra to a C-algebra. The construction normally constitutes a functor F : D → C called the left
adjoint of the adjunction. There is normally a corresponding forgetful functor G : C → D going in the
opposite direction that ignores the extra structure, called the right adjoint.

For example, every closed semiring is a star-continuous Kleene algebra, because the * operation can be
defined in terms of the countable supremum operation and the star-continuity condition follows from the
axioms of closed semirings. This constitutes a forgetful functor from the category of closed semirings, the
category with more structure, to the category of star-continuous Kleene algebras, the category with less
structure. Typically, forgetful functors do not modify the sets in any way, they just ignore some structure.
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In the other direction, not every star-continuous KA is a closed semiring—the regular sets are not—but it
turns out that every star-continuous KA can be extended to a closed semiring in a canonical way. For RegΣ,
this construction would give 2Σ

∗
, the closed semiring of all subsets of Σ∗.

We will show that adjunctions characterize the relationships among the following categories:

• KA∗, the category of star-continuous Kleene algebras and Kleene algebra morphisms;

• CS, the category of closed semirings and ω-continuous semiring morphisms (semiring morphisms that
preserve suprema of countable sets); and

• SA, the category of S-algebras and continuous semiring morphisms (semiring morphisms that preserve
arbitrary suprema).

The construction of the free algebra on a set of generators is an example of such an adjunction in which the
category with less structure is Set, the category with no structure at all.

Adjunction

Formally, let F : D → C and G : C → D be functors between two categories C and D. We think of D as the
category with less structure. We write F ⊣ G and say that F is a left adjoint of G and that G is a right
adjoint of F if for any D-algebra X and C-algebra A, there is a natural one-to-one correspondence between
morphisms h : X → GA in D and morphisms ĥ : FX → A in C.

FX

X

A

GA

F

h

ĥ

G

D

C

GF ⊣

Note that this illustration does not denote a commutative diagram! The horizontal arrows represent mor-
phisms in D (lower tier) and C (upper tier), whereas the vertical arrows represent the actions of the functors
F and G on objects of their respective domains.

By natural we just mean that the one-to-one correspondence between h : X → GA and ĥ : FX → A plays
nicely with composition with morphisms in the following sense: if f : X ′ → X and g : A → A′, and if
k = Gg ◦ h ◦ f : X ′ → GA′, then k̂ = g ◦ ĥ ◦ Ff : FX ′ → A′.

FX

X

A

GA

F

h

ĥ
G

FX ′

X ′

A′

GA′

F

k = Gg ◦ h ◦ f

k̂ = g ◦ ĥ ◦ Ff

G

Ff g

f Gg

There are some special morphisms that exist. When A = FX, the morphism ηX : X → GFX down below
corresponding to the identity id : FX → FX up top is called the unit of the adjunction. Similarly, when
X = GA, the morphism εA : FGA → A up top corresponding to the identity id : GA → GA down below
is called the counit of the adjunction. It turns out that the one-to-one correspondence between h and ĥ is
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uniquely determined by ηX and εA:

FX

X

FX

GFX

F

ηX

id

G

A

GA

h = Gĥ ◦ ηX

ĥ

G
ĥ

Gĥ

FGA

GA

A

GA

F

id

εA

G

FX

X

F

h

ĥ = εA ◦ Fh

Fh

h

The left-hand diagram shows that h = Gĥ ◦ ηX and the right-hand diagram shows that ĥ = εA ◦ Fh.

In all instances we will consider, G is a forgetful functor, which means that A and GA have the same carrier,
and Gg is set-theoretically the same function as g; it just has less structure to preserve.

In the free construction of the last lecture, the two categories are the category KA∗ of star-continuous
Kleene algebras and Kleene algebra homomorphisms and the category Set of sets and set functions. The free
construction Reg constructs the regular sets on a given set of generators. It is the left adjoint of the forgetful
functor | · | that associates to every star-continuous Kleene algebra its carrier.

RegΣ

Σ

K

|K |

Reg

h

ĥ

| · |

Set

KA∗

| · |Reg ⊣

Here the unit of the adjunction is the set function RΣ : Σ → |RegΣ | given by RΣ(a) = {a}. The counit can
be viewed as an evaluation function evalK : Reg |K | → K that evaluates regular expressions over |K | in K.

Completion by Star-Ideals

As observed, every closed semiring (ω-complete idempotent semiring) B gives a star-continuous Kleene
algebra KB by defining x∗ =

∑
n x

n. Also, if h : B → B′ is an ω-continuous semiring morphism, then h
must preserve ∗, therefore is a Kleene algebra morphism Kh : KB → KB′. This constitutes a forgetful
functor K : CS → KA∗.

Similarly, every S-algebra (complete idempotent semiring) S is a closed semiring GS, and every morphism
of complete semirings is ω-continuous. This constitutes a forgetful functor G : SA → CS.

In the other direction, we have seen that not every star-continuous Kleene algebra is a closed semiring—for
example, the regular sets over a finite alphabet are not. However, it is possible to construct in a canonical
way a closed semiring CK extending any star-continuous Kleene algebra K. Similarly, although not every
closed semiring is an S-algebra, every closed semiring can be extended to one.

Furthermore, any Kleene algebra homomorphism h : K → K ′ extends naturally to an ω-continuous semiring
morphism Cg : CK → CK ′, and every ω-continuous semiring morphism g : B → B′ extends to a continuous
semiring morphism Sg : SB → SB′. The functors C : KA∗ → CS and S : CS → SA are left adjoints to K
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and G, respectively.

KA∗

CS

SA

K

S

C

G

⊣

⊣

The basic construction used here is known as completion by star-ideals and was used by Conway to extend
a star-continuous Kleene algebra to an S-algebra [1, Theorem 1, p. 102]. Thus Conway’s construction is
equivalent to the composition S ◦C and is left adjoint to the composition K ◦G. The construction C, which
shows that every star-continuous Kleene algebra is embedded in a closed semiring, can be described as a
completion by countably generated star-ideals.

Definition 3. (Conway [1]) Let K be a star-continuous Kleene algebra. A star-ideal is a subset I of K
such that

(i) I is nonempty,

(ii) I is closed under +,

(iii) I is closed downward under ≤,

(iv) if abnc ∈ I for all n ≥ 0, then ab∗c ∈ I.

A nonempty set A generates a star-ideal I if I is the smallest star-ideal containing A. We write ⟨A⟩ to
denote the star-ideal generated by A. A star-ideal is countably generated if it has a countable generating set.
If A is a singleton {x}, we abbreviate ⟨{x}⟩ by ⟨x⟩. Such an ideal is called principal with generator x.

Let K be a star-continuous Kleene algebra. We define the closed semiring CK as follows. The elements
of CK will be the countably generated star-ideals of K. For any countable set {In | n ≥ 0} of countably
generated star-ideals, define ∑

n

In = ⟨
⋃
n

In⟩.

This ideal is countably generated, since if An is countable and generates In for n ≥ 0, then
⋃

n An is countable
and generates

∑
n In. The operator

∑
is associative, commutative, and idempotent, since

⋃
is.

For any pair of elements I, J , define

I · J = ⟨{ab | a ∈ A, b ∈ B}⟩.

This ideal is countably generated if I and J are, since

⟨A⟩ · ⟨B⟩ = ⟨{ab | a ∈ ⟨A⟩, b ∈ ⟨B⟩}⟩ = ⟨{ab | a ∈ A, b ∈ B}⟩,

and {ab | a ∈ A, b ∈ B} is countable if A and B are (Exercise ??).

The ideal ⟨0⟩ = {0} is included in every ideal and is thus an additive identity. It is also a multiplicative
annihilator:

⟨0⟩ · I = ⟨{ab | a ∈ ⟨0⟩, b ∈ I}⟩ = ⟨{ab | a ∈ {0}, b ∈ I}⟩ = ⟨0⟩.
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The ideal ⟨1⟩ is a multiplicative identity:

⟨1⟩ · I = ⟨{ab | a ∈ ⟨1⟩, b ∈ I}⟩
= ⟨{ab | a ∈ {1}, b ∈ I}⟩ by Exercise ??
= ⟨I⟩ = I.

Finally, the distributive laws hold:

I ·
∑
n

Jn = ⟨{ab | a ∈ I, b ∈
∑
n

Jn}⟩ = ⟨{ab | a ∈ I, b ∈ ⟨
⋃
n

Jn⟩}⟩

= ⟨{ab | a ∈ I, b ∈
⋃
n

Jn}⟩ by Exercise ??

= ⟨
⋃
n

{ab | a ∈ I, b ∈ Jn}⟩ = ⟨
⋃
n

⟨{ab | a ∈ I, b ∈ Jn}⟩⟩

= ⟨
⋃
n

{ab | a ∈ I, b ∈ Jn}⟩ =
∑
n

I · Jn,

and symmetrically.

We note that condition (iv) in the definition of star-ideal ensures that the * operator gives the same value
in the extension as in the original algebra.

Closed Semirings and S-algebras

The other half of the factorization of Conway’s construction embeds an arbitrary closed semiring into an
S-algebra. In comparison to the previous construction, this construction is much less interesting. We give
the main construction and omit formal details.

Recall that closed semirings and S-algebras are both idempotent semirings with an infinite supremum oper-
ator

∑
. The only difference is that closed semirings allow only countable suprema, whereas S-algebras allow

arbitrary suprema. Morphisms of closed semirings are the ω-continuous semiring morphisms and those of
S-algebras are the continuous semiring morphisms.

To embed a given closed semiring B in an S-algebra SB, we complete B by ideals. An ideal is a subset
A ⊆ B such that

(i) A is nonempty,

(ii) A is closed downward under ≤,

(iii) A is closed under countable suprema.

Take SB to be the set of ideals of B with the following operations:∑
α

Iα = ⟨
⋃
α

Iα⟩ I · J = ⟨{ab | a ∈ I, b ∈ J}⟩ 0 = ⟨0⟩ 1 = ⟨1⟩.

The arguments from here on are quite analogous to those of the previous section. As before, condition (iii)
ensures that the construction does not introduce any new countable suprema; that is, countable suprema
are the same in SB and B.

References

[1] John Horton Conway. Regular Algebra and Finite Machines. Chapman and Hall, London, 1971. Dover
edition, 2012.

9


