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Propositional Dynamic Logic (PDL) was first defined by Fischer and Ladner [3,4]. It plays the same role in
Dynamic Logic that classical propositional logic plays in classical predicate logic. It describes the properties
of the interaction between programs and propositions that are independent of the domain of computation.

1 Basic Definitions

1.1 Syntax

Syntactically, PDL is a blend of propositional logic, modal logic, and the algebra of regular events. It has
expressions of two sorts: programs p,q,r,... and propositions or formulas p,v,... . There are countably
many atomic symbols of each sort, as well as a variety of operators for forming compound expressions from
simpler ones:

e propositional operators V, —
e program operators U, ;, *

e mixed operators 7, < >

Compound programs and propositions are defined by mutual induction, as follows. If ¢, are propositions
and p, q are programs, then

oV (propositional disjunction)
- (propositional negation)
<p>p (modal possibility)

are propositions and
P q (sequential composition)
pUgq (nondeterministic choice)
p* (iteration)
p? (test)

are programs. The intuitive meanings of the less familiar of these constructs are as follows:

<p>p = “It is possible to execute p and terminate in a state satisfying ¢.”
p; ¢ = “Execute p, then execute q.”
p U q = “Choose either p or ¢ nondeterministically and execute it.”
p* = “Execute p repeatedly a nondeterministically chosen finite number of times.”

p? = “Test ¢; proceed if true, fail if false.”

The set of propositions is denoted ® and the set of programs is denoted ¥. We avoid parentheses by
assigning precedence to the operators: unary operators, including <p>, bind tighter than binary ones, and ;
binds tighter than U. Also, under the semantics to be given in the next section, the operators ; and U will
turn out to be associative, so we may write p; ¢;r and p U g U r without ambiguity.

The primitive operators are chosen for their mathematical simplicity. A number of more conventional
programming constructs can be defined from them. The propositional operators A, =, <, false, and true



are defined from V and — in the usual way. In addition:

skip = true?
fail = false?
[plp = —<p>—¢p
for=p | |len=pfi=e1p1U---Upn?;Dn
dopr=pi| | pn=ppod=(o17;p1U---Upp?;pn)"; (m1 A+ A=y )?

if pthenpelseg=if o= p|-p=qfi=¢?pU-p?q
while ¢ do p =do ¢ = p od = (p?;p)*; —~?
repeat p until ¢ = p;while = do p = p; (—p?;p)*; ©?
ledp{vy =9 = 1y

The propositions <p>p and [ple are read “diamond p ¢” and “box p ¢”, respectively. The latter has the
intuitive meaning, “Whenever p terminates, it must do so in a state satisfying ¢.” Unlike <p>p, [p]p does
not imply that p terminates. Indeed, the formula [p]false asserts that no computation of p terminates. For
fixed program p, the operator <p> behaves like a possibility operator of modal logic (see [2,8]). The operator
[p] is the modal dual of <p> and behaves like a modal necessity operator.

The ternary if-then-else and binary while-do operators are the usual conditional test and while loop constructs
found in conventional imperative programming languages. The constructs if-|-fi and do-|-od are the alter-
native guarded command and iterative guarded command constructs, respectively (see [5]). The construct
{¢}p{} is the classical Hoare partial correctness assertion [6].

1.2 Semantics

The formal semantics of PDL comes from modal logic. A Kripke model is a pair M = (S™ ™) where
SM = l{u,v,...} is an abstract set of states and I™ is an interpretation function. Each proposition ¢ is
interpreted as a subset ™ C SM and each program p is interpreted as binary relation p™ on SM. We may
think of oM as the set of states satisfying the proposition ¢, and p™ as the input/output relation of the
program p.

The function I'M assigns an arbitrary subset of S™ to each atomic proposition symbol and an arbitrary
binary relation on S to each atomic program symbol. Compound programs and propositions receive their
meanings inductively:

eV =pMuy
(_‘50 M:SM—QDM
M

)
(<p>)™ = pM o M = {u| Fv (u,v) € pM and v € ¢

S

"y

()™ =p™ o g™ ={(u,v) | Fw (u,w) € p" and (w,v) € ¢"'}
(U™ =p"ug"
(p*)M = reflexive transitive closure of p*
)

M M
(@)™ ={(w,u) [uec ™}
where the reflexive-transitive closure of a binary relation p is
Ue
n<w

where

P’ ={(u,u) |ueS™} prt = pop™.



The symbol o denotes relational composition.

The defined operators inherit their meanings from these definitions:

(e AYM =M nyM

(1™ ={u| Yo (u,v) € pM = v € ™}
trueM = M
false™ = @
skip” = {(u,u) | u e SM}
fail™ = &

The if-then-else, while-do, and guarded commands also receive meanings from the above definitions.

It can be argued that the input/output relations given by these definitions capture the intuitive operational
meanings of these constructs. For example, the relation associated with the program while ¢ do p is the set
of pairs (u,v) for which there exist states ug,u1,...,u,, n > 0, such that u = ug, v = u,, u; € ™ and
(ui, uigr1) € pM for 0 <i < n, and u,, € ~pM.

We often write M,u = ¢ for u € ™ and say that u satisfies ¢ in M. We may write u = ¢ when M is
understood. We write M |= ¢ if M,u |= ¢ for all u € M, and we write = ¢ and say that ¢ is valid if M = ¢
for all M. We say that ¢ is satisfiable if M,u = ¢ for some M,u. If ¥ is a set of propositions, we write
M EXYif M | ¢ for all ¢ € X.. A proposition ¥ is said to be a logical consequence of X if for all M, M =
whenever M |= ¥, in which case we write ¥ |= 4. (Note that this is not the same as saying that M, u = ¢
whenever M, u |= X.) We say that an inference rule

by
(G
is sound if ¢ is a logical consequence of X..

This version of PDL is usually called regular PDL because of the primitive operators U, ; , %, which are familiar
from Kleene algebra. Programs can be viewed as regular expressions over the atomic programs and tests.
In fact, it can be shown that if ¢ is an atomic proposition symbol, then any two test-free programs p, g are
equivalent as regular expressions if and only if the formula <p>¢ < <g>¢p is valid.

Example 1. Let ¢ be an atomic proposition, let p be an atomic program, and let M = (SM, IM) be a Kripke
model with

SM = {u,v,w} M = {u,v} pM = {(u,0), (u,w), (v,w), (w,v)}
Then u = <p>=p A<p>p, but v = [pl—¢ and w | [plp. Moreover,

M = <p*>[(p;p)" 1o A <p™>L(p;p)"1-e.
Other semantics besides Kripke semantics have been studied [1,9-12,14].
1.3 Computation Sequences

Let p be a program. A finite computation sequence of p is a finite-length string of atomic programs and tests
representing a possible sequence of atomic steps that may occur in a halting execution of p. The set of all
such sequences is denoted CS(p). We use the word “possible” loosely—CS(p) is determined by the syntax of
p alone, and may contain strings that are never executed in any interpretation.



Formally, the set CS(p) is defined by induction on syntax:

CS(p) = {p}, p an atomic program or test
q)

CS(p, —{Oé,ﬁ'OéECS( ) ﬂECS( )}
CS(pUq) CS(p )UCS( )
p)=JCsp
n>0

where p? = skip and p"t! = p;p". For example, if p is an atomic program and ¢ is an atomic formula, then
the program

while ¢ do p = (?;p)"; ~p?
has as computation sequences all strings of the form
Ol Tip- - @7 piskip; —p?.
Note that each finite computation sequence ¢ of a program p is itself a program, and
CS(q) = {q}-
Moreover, the following proposition is not difficult to prove by induction on syntax:

Proposition 2. pM = qucs(p) qM
2 A Deductive System for PDL
The following Hilbert-style axiom system for PDL was formulated by Segerberg [13].

Axioms of PDL

1. Azioms for propositional logic
<p>p A [pl = <p>(p A1)
<p>(p Vip) & <p>p V <p>)
<pU@>p & <p>p V <g>p

<p; > <= <p><q>p

Y>p S P Ap

(p V <p><p*>) = <p*>p

ST S S AR SR

P> = (V<P >(—p A <p>p))

Axioms 2 and 3 are not particular to PDL, but hold in all normal modal systems (see [2,8]). Axiom 8 is
called the PDL induction aziom, and is better known in its dual form (Theorem 3(viii) below).



Rules of Inference

1. Modus ponens:
©, 9=

(4

2. Modal generalization:
¥

[plp

We write F ¢ if the proposition ¢ is a theorem of this system, and say that ¢ is consistent if not = —p. A
set X of propositions is consistent if all finite conjunctions of elements of 3 are consistent.

The soundness of these axioms and rules over the Kripke semantics can be established by elementary argu-
ments in relational algebra.

3 Basic Properties

We list some basic theorems and derived rules of PDL that are provable in the deductive system of the
previous section.

Theorem 3. The following are theorems of PDL:

(i) all propositional tautologies
(ii) [pl(e = ¢¥) = ([ply = [p1¥)
(it) [pl(p Avp) < [ple A [plv
(iv) [pUqle < [pleA lgde
(v) piale < [pllgley
(vi) [p?1¢ < (9 = 1)
(vii) [p*lp = oA [P [p*lyp

<p>(p AY) = <p>p A <p>p

(ple Vv [ply = [pl(e V ¥)

*

(ix
(x
(xi) <p*;p*>p & <p*>p
(xil) <p*™*>p & <p*>p

(xiil) (@ V <p><p*>p) & <p*>p

(xiv) <p*>p < (@ V <p*>(—p A <p>p))

)
)
)
)
)
)
)
(viii) (oA *1(p = plp)) = [p*le
)
)
)
)
)
)
(xv) (¢ A Ip*1(p = [ply)) & [p1p

Theorem 4. The following are sound rules of inference of PDL:

(i) monotonicity of <p>:
=Y
<p>p = <p>1p



(ii) monotonicity of [pl:
=Y
[ple = [ply

(iii) reflexive-transitive closure:
(pV<p>y) =
P =

(iv) loop invariance rule:
Y= [ply
Y= [p*1y

(v) Hoare composition rule:

{etp{o} {o}a{v}
{e}p;a{v}

(vi) Hoare conditional rule:

{enaipid) {=pAata{d}
{o}if ¢ then p else ¢{v}

(vii) Hoare while rule:

{oA}p{v}
{¥}while ¢ do p{—¢p A1}

The properties of Theorem 3(ii-viii) are the modal duals of Axioms 2-8. The converses of Theorem 3(ix,x)
are not valid. They are violated in state u of the model of Example 1. The rules of Theorem 4(i,ii) say that
the constructs <p>p and [p]p are monotone in ¢ with respect to the ordering of logical implication. These
constructs are also monotone and antitone in p, respectively, as asserted by the following metatheorem:

Proposition 5. If p™ C ¢™, then for all o,

1. M ):<p>(p:><q><p
2. M = [qle = [ple.

These follow from Axiom 4 and Theorem 3(iv).
3.1 The * Operator, Induction, and Reflexive-Transitive Closure

The iteration operator * is interpreted as the reflexive-transitive closure operator on binary relations. It is
the means by which looping is coded in PDL. Looping introduces a level of complexity to PDL beyond the
other operators. Because of it, PDL is not compact: the set

{<p*>p} U {~p, ~<p>p, ~<p?>p, ...} (1)

is finitely satisfiable but not satisfiable. This seems to say that looping is inherently infinitary; it is thus
rather surprising that there should be a finitary complete axiomatization.



The dual propositions Axiom 8 and Theorem 3(viii) are jointly called the PDL induction aziom. Together

with Axiom 7, they completely axiomatize the behavior of *. Intuitively, the induction axiom in the form of

Theorem 3(viii) says: if ¢ is true initially, and if the truth of ¢ is preserved by the program p, then ¢ will

be true after any number of iterations of p. It is very similar to the induction axiom of Peano arithmetic:
P(0) AVn (p(n) = e(n+1)) = VYn ¢(n).

Here ¢(0) is the basis of the induction and Vn (¢(n) = ¢(n + 1)) is the induction step, from which the
conclusion Vn ¢(n) may be drawn. In the PDL induction axiom, the basis is ¢ and the induction step is
[p*1(¢ = [ply), from which the conclusion [p*]y may be drawn.

The induction axiom is closely related to the reflexive-transitive closure rule (Theorem 4(iii)). The signif-
icance of this rule is best described in terms of its relationship to Axiom 7. This axiom is obtained by
substituting <p*>y for ¢ in the premise of the reflexive-transitive closure rule. Axiom 7 thus says that <p*>¢p
is a solution of

(pV<p>X) = X ; (2)

the reflexive-transitive closure rule says that it is the strongest solution to (2) (with respect to logical
implication) among all PDL propositions.

The relationship between the induction axiom (Axiom 8), the reflexive-transitive closure rule (Theorem
4(iii)), and the rule of loop invariance (Theorem 4(iv)) is summed up in the following proposition. We
emphasize that this result is purely proof-theoretic and is independent of the semantics of §1.2.

Proposition 6. In PDL without the induction axiom, the following axioms and rules are interderivable:

(i) the induction axiom (Aziom 8);
(ii) the loop invariance rule (Theorem j(iv));

(iii)  the reflexive-transitive closure rule (Theorem 4 (iii)).

Proof. First we show that the monotonicity rule (Theorem 4(ii)) is derivable in PDL without induction.
Assuming the premise ¢ = ¢ and applying modal generalization, we obtain [p]l(¢ = 1); the conclusion
[ple = [ply then follows from Theorem 3(ii) and modus ponens. The dual monotonicity rule (Theorem
4(i)) can be derived from this rule by pure propositional reasoning.

(i) = (ii): Assume the premise of (ii):
¢ = [ple.

By modal generalization,
[p*1(e = [ple)
thus

o = A 1(e= [ple)
= [p*le.

The first implication is by propositional reasoning, and the second is the box form of the induction axiom
(Theorem 3(viii)). By transitivity of implication, we obtain

e = e,
which is the conclusion of (ii).
(ii) = (iii): Dualizing the rule (iii) by purely propositional reasoning, we obtain a rule

Y = oA ply
v o= [p*ly



equipollent with (iii). It thus suffices to derive (3) from (ii). From the premise of (3), we obtain by
propositional reasoning the two formulas

Y= (4)
v = [pl. (5)
Applying (ii) to (5), we obtain
v = [ply,
which by (4) and monotonicity gives
v = [p*le.

This is the conclusion of (3).
(iii) = (i): By Axiom 3, propositional reasoning, and Axiom 7, we have

PV <p>(p V<p*>(mp A <p>p))

= @V <p>p V<p><p*>(—p A <p>p)

= @V (7 A <p>p) V <p><p™>(—p A <p>p)
= @V <p™>(mp A<p>p).

By transitivity of implication,
PV <p>(pV <p>(mp A<p>p)) = @V <P >(mp A <p>p).
Applying (iii), we obtain the induction axiom:

P> = @V <pT>(—p A <p>p). O
4 Encoding Hoare Logic

Dynamic Logic subsumes Hoare Logic. As an illustration, we show how to derive the Hoare while rule
(Theorem 4(vii)) in PDL. The other Hoare rules are also derivable.

Assume that the premise

{onvip{v} = (pAY) = [p1Y (6)
holds. We wish to derive the conclusion
{¢}while ¢ do p{-p A} =4 = [(p?p)"; 0?1 (~e A¥). (7)
Using Theorem 3(v,vi) and propositional reasoning, the right-hand-side of (6) is equivalent to
Y = Le?ply.

Applying the loop invariance rule (Theorem 4(iv)), we obtain

Y = e?p) Y.

By the monotonicity of [(¢?;p)*] (Theorem 4(ii)) and propositional reasoning,

Y = ehp) (e = ~pA).

Again by Theorem 3(v,vi) and propositional reasoning, we obtain the right-hand-side of (7).
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