
x Contents

III FIRST-ORDER DYNAMIC LOGIC

11 First-Order Dynamic Logic 283

11.1 Basic Syntax 283

11.2 Richer Programs 287

11.3 Semantics 291

11.4 Satisfiability and Validity 297

11.5 Bibliographical Notes 298

Exercises 298

12 Relationships with Static Logics 301

12.1 The Uninterpreted Level 301

12.2 The Interpreted Level 307

12.3 Bibliographical Notes 311

Exercises 311

13 Complexity 313

13.1 The Validity Problem 313

13.2 Spectral Complexity 317

13.3 Bibliographical Notes 324

Exercises 325

14 Axiomatization 327

14.1 The Uninterpreted Level 327

14.2 The Interpreted Level 333

14.3 Bibliographical Notes 341

Exercises 341

15 Expressive Power 343

15.1 The Unwind Property 344

15.2 Spectra and Expressive Power 347

15.3 Bounded Nondeterminism 355

MIT Press Math7X9/2010/08/25:15:15 Page 10

Contents xi

15.4 Unbounded Memory 369

15.5 The Power of a Boolean Stack 376

15.6 Unbounded Nondeterminism 377

15.7 Bibliographical Notes 378

Exercises 380

16 Variants of DL 383

16.1 Algorithmic Logic 383

16.2 Nonstandard Dynamic Logic 384

16.3 Well-Foundedness 386

16.4 Dynamic Algebra 389

16.5 Probabilistic Programs 391

16.6 Concurrency and Communication 393

16.7 Bibliographical Notes 394

17 Other Approaches 397

17.1 Logic of Effective Definitions 397

17.2 Temporal Logic 398

17.3 Process Logic 408

17.4 The μ-Calculus 415

17.5 Kleene Algebra 418

References 425

Notation and Abbreviations 439

Index 449

MIT Press Math7X9/2010/08/25:15:15 Page 11

11 First-Order Dynamic Logic

In this chapter we begin the study of first-order Dynamic Logic. The main difference

between first-order DL and the propositional version PDL discussed in Part II of the

book is the presence of a first-order structure A, called the domain of computation,

over which first-order quantification is allowed. States are no longer abstract points,

but valuations of a set of variables over A, the carrier of A. Atomic programs in

DL are no longer abstract binary relations, but assignment statements of various

forms, all based on assigning values to variables during the computation. The most

basic example of such an assignment is the simple assignment x := t, where x is

a variable and t is a term. The atomic formulas of DL are generally taken to be

atomic first-order formulas.

In addition to the constructs introduced in Part II, the basic DL syntax con-

tains individual variables ranging over A, function and predicate symbols for dis-

tinguished functions and predicates of A, and quantifiers ranging over A, exactly as

in classical first-order logic. More powerful versions of the logic contain array and

stack variables and other constructs, as well as primitive operations for manipulat-

ing them, and assignments for changing their values. Sometimes the introduction of

a new construct increases expressive power and sometimes not; sometimes it has an

effect on the complexity of deciding satisfiability and sometimes not. Indeed, one

of the central goals of Part III of the book is to classify these constructs in terms

of their relative expressive power and complexity.

In this chapter we lay the groundwork for this by defining the various logical

and programming constructs we shall be needing.

11.1 Basic Syntax

The language of first-order Dynamic Logic is built upon classical first-order logic

as described in Section 3.4. There is always an underlying first-order vocabulary Σ,

which involves a vocabulary of function symbols and predicate (or relation) symbols.

On top of this vocabulary, we define a set of programs and a set of formulas . These

two sets interact by means of the modal construct [] exactly as in the propositional

case. Programs and formulas are usually defined by mutual induction.

Let Σ = {f, g, . . . , p, r, . . .} be a finite first-order vocabulary. Here f and g

denote typical function symbols of Σ, and p and r denote typical relation symbols.

Associated with each function and relation symbol of Σ is a fixed arity (number

of arguments), although we do not represent the arity explicitly. We assume

MIT Press Math7X9/2010/08/25:15:15 Page 283

284 Chapter 11

that Σ always contains the equality symbol =, whose arity is 2. Functions and

relations of arity 0, 1, 2, 3 and n are called nullary, unary, binary, ternary, and n-

ary, respectively. Nullary functions are also called constants. We shall be using a

countable set of individual variables V = {x0, x1, . . .}.
The definitions of DL programs and formulas below depend on the vocabulary

Σ, but in general we shall not make this dependence explicit unless we have some

specific reason for doing so.

Atomic Formulas and Programs

In all versions of DL that we will consider, atomic formulas are atomic formulas of

the first-order vocabulary Σ; that is, formulas of the form

r(t1, . . . , tn),

where r is an n-ary relation symbol of Σ and t1, . . . , tn are terms of Σ.

As in PDL, programs are defined inductively from atomic programs using various

programming constructs. The meaning of a compound program is given inductively

in terms of the meanings of its constituent parts. Different classes of programs

are obtained by choosing different classes of atomic programs and programming

constructs.

In the basic version of DL, an atomic program is a simple assignment

x := t, (11.1.1)

where x ∈ V and t is a term of Σ. Intuitively, this program assigns the value of t

to the variable x. This is the same form of assignment found in most conventional

programming languages.

More powerful forms of assignment such as stack and array assignments and

nondeterministic “wildcard” assignments will be discussed later. The precise choice

of atomic programs will be made explicit when needed, but for now, we use the

term atomic program to cover all of these possibilities.

Tests

As in PDL, DL contains a test operator ?, which turns a formula into a program.

In most versions of DL that we shall discuss, we allow only quantifier-free first-

order formulas as tests. We sometimes call these versions poor test . Alternatively,

we might allow any first-order formula as a test. Most generally, we might place no

restrictions on the form of tests, allowing any DL formula whatsoever, including

those that contain other programs, perhaps containing other tests, etc. These

MIT Press Math7X9/2010/08/25:15:15 Page 284

First-Order Dynamic Logic 285

versions of DL are labeled rich test as in Section 10.2. Whereas programs can be

defined independently from formulas in poor test versions, rich test versions require

a mutually inductive definition of programs and formulas.

As with atomic programs, the precise logic we consider at any given time

depends on the choice of tests we allow. We will make this explicit when needed,

but for now, we use the term test to cover all possibilities.

Regular Programs

For a given set of atomic programs and tests, the set of regular programs is defined

as in PDL (see Section 5.1):

• any atomic program or test is a program;

• if α and β are programs, then α ; β is a program;

• if α and β are programs, then α ∪ β is a program;

• if α is a program then α∗ is a program.

While Programs

Some of the literature on DL is concerned with the class of while programs. This

class was defined formally in Section 10.1 for PDL (see also Section 5.1); the

definition is the same here.

Formally, deterministic while programs form the subclass of the regular pro-

grams in which the program operators ∪, ?, and ∗ are constrained to appear only

in the forms

skip
def
= 1?

fail
def
= 0?

if ϕ then α else β
def
= (ϕ?;α) ∪ (¬ϕ?;β) (11.1.2)

while ϕ do α
def
= (ϕ?;α)∗;¬ϕ? (11.1.3)

The class of nondeterministic while programs is the same, except that we allow

unrestricted use of the nondeterministic choice construct ∪. Of course, unrestricted

use of the sequential composition operator is allowed in both languages.

Restrictions on the form of atomic programs and tests apply as with regular

programs. For example, if we are allowing only poor tests, then the ϕ occurring in

the programs (11.1.2) and (11.1.3) must be a quantifier-free first-order formula.

The class of deterministic while programs is important because it captures the

basic programming constructs common to many real-life imperative programming

MIT Press Math7X9/2010/08/25:15:15 Page 285

286 Chapter 11

languages. Over the standard structure of the natural numbers N, deterministic

while programs are powerful enough to define all partial recursive functions, and

thus over N they are as as expressive as regular programs. A similar result holds

for a wide class of models similar to N, for a suitable definition of “partial recursive

functions” in these models. However, it is not true in general that while programs,

even nondeterministic ones, are universally expressive. We discuss these results in

Chapter 15.

Formulas

A formula of DL is defined in way similar to that of PDL, with the addition of a

rule for quantification. Equivalently, we might say that a formula of DL is defined

in a way similar to that of first-order logic, with the addition of a rule for modality.

The basic version of DL is defined with regular programs:

• the false formula 0 is a formula;

• any atomic formula is a formula;

• if ϕ and ψ are formulas, then ϕ→ ψ is a formula;

• if ϕ is a formula and x ∈ V , then ∀x ϕ is a formula;

• if ϕ is a formula and α is a program, then [α]ϕ is a formula.

The only missing rule in the definition of the syntax of DL are the tests. In our

basic version we would have:

• if ϕ is a quatifier-free first-order formula, then ϕ? is a test.

For the rich test version, the definitions of programs and formulas are mutually

dependent, and the rule defining tests is simply:

• if ϕ is a formula, then ϕ? is a test.

We will use the same notation as in propositional logic that ¬ϕ stands for

ϕ→ 0. As in first-order logic, the first-order existential quantifier ∃ is considered a

defined construct: ∃x ϕ abbreviates ¬∀x ¬ϕ. Similarly, the modal construct < > is

considered a defined construct as in Section 5.1, since it is the modal dual of [].

The other propositional constructs ∧, ∨,↔ are defined as in Section 3.2. Of course,

we use parentheses where necessary to ensure unique readability.

Note that the individual variables in V serve a dual purpose: they are both

program variables and logical variables.

MIT Press Math7X9/2010/08/25:15:15 Page 286

First-Order Dynamic Logic 287

11.2 Richer Programs

Seqs and R.E. Programs

Some classes of programs are most conveniently defined as certain sets of seqs. Recall

from Section 5.3 that a seq is a program of the form σ1; · · · ;σk, where each σi is an
assignment statement or a quantifier-free first-order test. Each regular program α

is associated with a unique set of seqs CS (α) (Section 5.3). These definitions were

made in the propositional context, but they apply equally well to the first-order

case; the only difference is in the form of atomic programs and tests.

Construing the word in the broadest possible sense, we can consider a program

to be an arbitrary set of seqs. Although this makes sense semantically—we can

assign an input/output relation to such a set in a meaningful way—such programs

can hardly be called executable. At the very least we should require that the set of

seqs be recursively enumerable, so that there will be some effective procedure that

can list all possible executions of a given program. However, there is a subtle issue

that arises with this notion. Consider the set of seqs

{xi := f i(c) | i ∈ N}.
This set satisfies the above restriction, yet it can hardly be called a program. It

uses infinitely many variables, and as a consequence it might change a valuation at

infinitely many places. Another pathological example is the set of seqs

{xi+1 := f(xi) | i ∈ N},
which not only could change a valuation at infinitely many locations, but also

depends on infinitely many locations of the input valuation.

In order to avoid such pathologies, we will require that each program use only

finitely many variables. This gives rise to the following definition of r.e. programs,

which is the most general family of programs we will consider. Specifically, an

r.e. program α is a Turing machine that enumerates a set of seqs over a finite set

of variables. The set of seqs enumerated will be called CS (α). By FV (α) we will

denote the finite set of variables that occur in seqs of CS (α).

An important issue connected with r.e. programs is that of bounded memory.

The assignment statements or tests in an r.e. program may have infinitely many

terms with increasingly deep nesting of function symbols (although, as discussed,

these terms only use finitely many variables), and these could require an unbounded

amount of memory to compute. We define a set of seqs to be bounded memory if the

depth of terms appearing in it is bounded. In fact, without sacrificing computational

MIT Press Math7X9/2010/08/25:15:15 Page 287

288 Chapter 11

power, we could require that all terms be of the form f(x1, . . . , xn) in a bounded-

memory set of seqs (Exercise 15.4).

Arrays and Stacks

Interesting variants of the programming language we use in DL arise from allowing

auxiliary data structures. We shall define versions with arrays and stacks , as well as

a version with a nondeterministic assignment statement called wildcard assignment .

Besides these, one can imagine augmenting while programs with many other

kinds of constructs such as blocks with declarations, recursive procedures with

various parameter passing mechanisms, higher-order procedures, concurrent pro-

cesses, etc. It is easy to arrive at a family consisting of thousands of programming

languages, giving rise to thousands of logics. Obviously, we have had to restrict our-

selves. It is worth mentioning, however, that certain kinds of recursive procedures

are captured by our stack operations, as explained below.

Arrays

To handle arrays, we include a countable set of array variables

Varray = {F0, F1, . . .}.
Each array variable has an associated arity, or number of arguments, which we do

not represent explicitly. We assume that there are countably many variables of each

arity n ≥ 0. In the presence of array variables, we equate the set V of individual

variables with the set of nullary array variables; thus V ⊆ Varray.

The variables in Varray of arity n will range over n-ary functions with arguments

and values in the domain of computation. In our exposition, elements of the domain

of computation play two roles: they are used both as indices into an array and as

values that can be stored in an array. One might equally well introduce a separate

sort for array indices; although conceptually simple, this would complicate the

notation and would give no new insight.

We extend the set of first-order terms to allow the unrestricted occurrence of

array variables, provided arities are respected.

The classes of regular programs with arrays and deterministic and nondeter-

ministic while programs with arrays are defined similarly to the classes without,

except that we allow array assignments in addition to simple assignments. Array

assignments are similar to simple assignments, but on the left-hand side we allow

a term in which the outermost symbol is an array variable:

F (t1, . . . , tn) := t.

MIT Press Math7X9/2010/08/25:15:15 Page 288

First-Order Dynamic Logic 289

Here F is an n-ary array variable and t1, . . . , tn, t are terms, possibly involving

other array variables. Note that when n = 0, this reduces to the ordinary simple

assignment.

Recursion via an Algebraic Stack

We now consider DL in which the programs can manipulate a stack. The literature in

automata theory and formal languages often distinguishes a stack from a pushdown

store. In the former, the automaton is allowed to inspect the contents of the stack

but to make changes only at the top. We shall use the term stack to denote the

more common pushdown store, where the only inspection allowed is at the top of

the stack.

The motivation for this extension is to be able to capture recursion. It is well

known that recursive procedures can be modeled using a stack, and for various

technical reasons we prefer to extend the data-manipulation capabilities of our

programs than to introduce new control constructs. When it encounters a recursive

call, the stack simulation of recursion will push the return location and values of

local variables and parameters on the stack. It will pop them upon completion of

the call. The LIFO (last-in-first-out) nature of stack storage fits the order in which

control executes recursive calls.

To handle the stack in our stack version of DL, we add two new atomic programs

push(t) and pop(y),

where t is a term and y ∈ V . Intuitively, push(t) pushes the current value of t onto

the top of the stack, and pop(y) pops the top value off the top of the stack and

assigns that value to the variable y. If the stack is empty, the pop operation does

not change anything. We could have added a test for stack emptiness, but it can be

shown to be redundant (Exercise 11.3). Formally, the stack is simply a finite string

of elements of the domain of computation.

The classes of regular programs with stack and deterministic and nondetermin-

istic while programs with stack are obtained by augmenting the respective classes

of programs with the push and pop operations as atomic programs in addition to

simple assignments.

In contrast to the case of arrays, here there is only a single stack. In fact, expres-

siveness changes dramatically when two or more stacks are allowed (Exercise 15.7).

Also, in order to be able to simulate recursion, the domain must have at least two

distinct elements so that return addresses can be properly encoded in the stack.

One way of doing this is to store the return address itself in unary using one ele-

MIT Press Math7X9/2010/08/25:15:15 Page 289

290 Chapter 11

ment of the domain, then store one occurrence of the second element as a delimiter

symbol, followed by domain elements constituting the current values of parameters

and local variables.

The kind of stack described here is often termed algebraic, since it contains

elements from the domain of computation. It should be contrasted with the Boolean

stack described next.

Parameterless Recursion via a Boolean Stack

An interesting special case is when the stack can contain only two distinct elements.

This version of our programming language can be shown to capture recursive

procedures without parameters or local variables. This is because we only need to

store return addresses, but no actual data items from the domain of computation.

This can be achieved using two values, as described above. We thus arrive at the

idea of a Boolean stack.

To handle such a stack in this version of DL, we add three new kinds of atomic

programs and one new test. The atomic programs are

push-1 push-0 pop,

and the test is simply

top?.

Intuitively, push-1 and push-0 push the corresponding distinct Boolean values on

the stack, pop removes the top element, and the test top? evaluates to true iff the

top element of the stack is 1, but with no side effect.

With the test top? only, there is no explicit operator that distinguishes a

stack with top element 0 from the empty stack. We might have defined such an

operator, and in a more realistic language we would certainly do so. However, it is

mathematically redundant, since it can be simulated with the operators we already

have (Exercise 11.1).

Wildcard Assignment

The nondeterministic assignment

x := ?

is a device that arises in the study of fairness; see Apt and Plotkin (1986). It has

often been called random assignment in the literature, although it has nothing to do

with randomness or probability. We shall call it wildcard assignment . Intuitively,

MIT Press Math7X9/2010/08/25:15:15 Page 290

First-Order Dynamic Logic 291

it operates by assigning a nondeterministically chosen element of the domain of

computation to the variable x. This construct together with the [] modality is

similar to the first-order universal quantifier, since it will follow from the semantics

that the two formulas

[x := ?]ϕ and ∀x ϕ
are equivalent. However, wildcard assignment may appear in programs and can

therefore be iterated.

11.3 Semantics

In this section we assign meanings to the syntactic constructs described in the

previous sections. We interpret programs and formulas over a first-order structure

A. Variables range over the carrier of this structure. We take an operational view of

program semantics: programs change the values of variables by sequences of simple

assignments x := t or other assignments, and flow of control is determined by the

truth values of tests performed at various times during the computation.

States as Valuations

An instantaneous snapshot of all relevant information at any moment during the

computation is determined by the values of the program variables. Thus our states

will be valuations u, v, . . . of the variables V over the carrier of the structure A. Our

formal definition will associate the pair (u, v) of such valuations with the program α

if it is possible to start in valuation u, execute the program α, and halt in valuation

v. In this case, we will call (u, v) an input/output pair of α and write (u, v) ∈ mA(α).

This will result in a Kripke frame exactly as in Chapter 5.

Let

A = (A, mA)

be a first-order structure for the vocabulary Σ as defined in Section 3.4. We call

A the domain of computation. Here A is a set, called the carrier of A, and mA

is a meaning function such that mA(f) is an n-ary function mA(f) : An → A

interpreting the n-ary function symbol f of Σ, and mA(r) is an n-ary relation

mA(r) ⊆ An interpreting the n-ary relation symbol r of Σ. The equality symbol =

is always interpreted as the identity relation.

For n ≥ 0, let An → A denote the set of all n-ary functions in A. By convention,

we take A0 → A = A. Let A∗ denote the set of all finite-length strings over A.

MIT Press Math7X9/2010/08/25:15:15 Page 291

292 Chapter 11

The structure A determines a Kripke frame, which we will also denote by A,

as follows. A valuation over A is a function u assigning an n-ary function over A

to each n-ary array variable. It also assigns meanings to the stacks as follows. We

shall use the two unique variable names STK and BSTK to denote the algebraic

stack and the Boolean stack, respectively. The valuation u assigns a finite-length

string of elements of A to STK and a finite-length string of Boolean values 1 and

0 to BSTK . Formally:

u(F) ∈ An → A, if F is an n-ary array variable,

u(STK) ∈ A∗,
u(BSTK) ∈ {1,0}∗.

By our convention A0 → A = A, and assuming that V ⊆ Varray, the individual

variables (that is, the nullary array variables) are assigned elements of A under this

definition:

u(x) ∈ A if x ∈ V.
The valuation u extends uniquely to terms t by induction. For an n-ary function

symbol f and an n-ary array variable F ,

u(f(t1, . . . , tn))
def
= mA(f)(u(t1), . . . , u(tn))

u(F (t1, . . . , tn))
def
= u(F)(u(t1), . . . , u(tn)).

Recall the function-patching operator defined in Section 1.3: if X and D are

sets, f : X → D is any function, x ∈ X , and d ∈ D, then f [x/d] : X → D is the

function defined by

f [x/d](y)
def
=

{
d, if x = y

f(y), otherwise.

We will be using this notation in several ways, both at the logical and metalogical

levels. For example:

• If u is a valuation, x is an individual variable, and a ∈ A, then u[x/a] is the new

valuation obtained from u by changing the value of x to a and leaving the values

of all other variables intact.

• If F is an n-ary array variable and f : An → A, then u[F/f] is the new valuation

that assigns the same value as u to the stack variables and to all array variables

other than F , and

u[F/f](F) = f.

MIT Press Math7X9/2010/08/25:15:15 Page 292

First-Order Dynamic Logic 293

• If f : An → A is an n-ary function and a1, . . . , an, a ∈ A, then the expression

f [a1, . . . , an/a] denotes the n-ary function that agrees with f everywhere except for

input a1, . . . , an, on which it takes the value a. More precisely,

f [a1, . . . , an/a](b1, . . . , bn) =

{
a, if bi = ai, 1 ≤ i ≤ n

f(b1, . . . , bn), otherwise.

We call valuations u and v finite variants of each other if

u(F)(a1, . . . , an) = v(F)(a1, . . . , an)

for all but finitely many array variables F and n-tuples a1, . . . , an ∈ An. In other

words, u and v differ on at most finitely many array variables, and for those F on

which they do differ, the functions u(F) and v(F) differ on at most finitely many

values.

The relation “is a finite variant of” is an equivalence relation on valuations. Since

a halting computation can run for only a finite amount of time, it can execute only

finitely many assignments. It will therefore not be able to cross equivalence class

boundaries; that is, in the binary relation semantics given below, if the pair (u, v)

is an input/output pair of the program α, then v is a finite variant of u.

We are now ready to define the states of our Kripke frame. For a ∈ A, let wa be

the valuation in which the stacks are empty and all array and individual variables

are interpreted as constant functions taking the value a everywhere. A state of A

is any finite variant of a valuation wa. The set of states of A is denoted SA.

Call a state initial if it differs from some wa only at the values of individual

variables.

It is meaningful, and indeed useful in some contexts, to take as states the set of

all valuations. Our purpose in restricting our attention to states as defined above

is to prevent arrays from being initialized with highly complex oracles that would

compromise the value of the relative expressiveness results of Chapter 15.

Assignment Statements

As in Section 5.2, with every program α we associate a binary relation

mA(α) ⊆ SA × SA

(called the input/output relation of p), and with every formula ϕ we associate a set

mA(ϕ) ⊆ SA.

MIT Press Math7X9/2010/08/25:15:15 Page 293

294 Chapter 11

The sets mA(α) and mA(ϕ) are defined by mutual induction on the structure of α

and ϕ.

For the basis of this inductive definition, we first give the semantics of all the

assignment statements discussed earlier.

• The array assignment F (t1, . . . , tn) := t is interpreted as the binary relation

mA(F (t1, . . . , tn) := t)
def
= {(u, u[F/u(F)[u(t1), . . . , u(tn)/u(t)]]) | u ∈ SA}.

In other words, starting in state u, the array assignment has the effect of changing

the value of F on input u(t1), . . . , u(tn) to u(t), and leaving the value of F on all

other inputs and the values of all other variables intact. For n = 0, this definition

reduces to the following definition of simple assignment:

mA(x := t)
def
= {(u, u[x/u(t)]) | u ∈ SA}.

• The push operations, push(t) for the algebraic stack and push-1 and push-0

for the Boolean stack, are interpreted as the binary relations

mA(push(t))
def
= {(u, u[STK/(u(t) · u(STK))]) | u ∈ SA}

mA(push-1)
def
= {(u, u[BSTK/(1 · u(BSTK))]) | u ∈ SA}

mA(push-0)
def
= {(u, u[BSTK/(0 · u(BSTK))]) | u ∈ SA},

respectively. In other words, push(t) changes the value of the algebraic stack

variable STK from u(STK) to the string u(t) · u(STK), the concatenation of the

value u(t) with the string u(STK), and everything else is left intact. The effects

of push-1 and push-0 are similar, except that the special constants 1 and 0 are

concatenated with u(BSTK) instead of u(t).

• The pop operations, pop(y) for the algebraic stack and pop for the Boolean

stack, are interpreted as the binary relations

mA(pop(y))
def
= {(u, u[STK/tail(u(STK))][y/head(u(STK), u(y))]) | u ∈ SA}

mA(pop)
def
= {(u, u[BSTK/tail(u(BSTK))]) | u ∈ SA},

MIT Press Math7X9/2010/08/25:15:15 Page 294

First-Order Dynamic Logic 295

respectively, where

tail(a · σ) def
= σ

tail(ε)
def
= ε

head(a · σ, b) def
= a

head(ε, b)
def
= b

and ε is the empty string. In other words, if u(STK)
= ε, this operation changes

the value of STK from u(STK) to the string obtained by deleting the first element

of u(STK) and assigns that element to the variable y. If u(STK) = ε, then nothing

is changed. Everything else is left intact. The Boolean stack operation pop changes

the value of BSTK only, with no additional changes. We do not include explicit

constructs to test whether the stacks are empty, since these can be simulated

(Exercise 11.3). However, we do need to be able to refer to the value of the top

element of the Boolean stack, hence we include the top? test.

• The Boolean test program top? is interpreted as the binary relation

mA(top?)
def
= {(u, u) | u ∈ SA, head(u(BSTK)) = 1}.

In other words, this test changes nothing at all, but allows control to proceed iff

the top of the Boolean stack contains 1.

• The wildcard assignment x := ? for x ∈ V is interpreted as the relation

mA(x := ?)
def
= {(u, u[x/a]) | u ∈ SA, a ∈ A}.

As a result of executing this statement, x will be assigned some arbitrary value of

the carrier set A, and the values of all other variables will remain unchanged.

Programs and Formulas

The meanings of compound programs and formulas are defined by mutual induction

on the structure of α and ϕ essentially as in the propositional case (see Section 5.2).

We include these definitions below for completeness.

MIT Press Math7X9/2010/08/25:15:15 Page 295

296 Chapter 11

Regular Programs and While Programs

Here are the semantic definitions for the four constructs of regular programs.

mA(α ; β)
def
= mA(α) ◦mA(β)

= {(u, v) | ∃w (u,w) ∈ mA(α) and (w, v) ∈ mA(β)} (11.3.1)

mA(α ∪ β) def
= mA(α) ∪mA(β) (11.3.2)

mA(α
∗) def

= mA(α)
∗ =

⋃
n≥0

mA(α)
n

mA(ϕ?)
def
= {(u, u) | u ∈ mA(ϕ)}. (11.3.3)

The semantics of defined constructs such as if-then-else and while-do are

obtained using their definitions exactly as in PDL.

Seqs and R.E. Programs

Recall that an r.e. program is a Turing machine enumerating a set CS (α) of seqs.

If α is an r.e. program, we define

mA(α)
def
=

⋃
σ∈CS(α)

mA(σ).

Thus, the meaning of α is defined to be the union of the meanings of the seqs in

CS (α). The meaning mA(σ) of a seq σ is determined by the meanings of atomic

programs and tests and the sequential composition operator.

There is an interesting point here regarding the translation of programs using

other programming constructs into r.e. programs. This can be done for arrays and

stacks (for Booleans stacks, even into r.e. programs with bounded memory), but

not for wildcard assignment. Since later in the book we shall be referring to the

r.e. set of seqs associated with such programs, it is important to be able to carry

out this translation. To see how this is done for the case of arrays, for example,

consider an algorithm for simulating the execution of a program by generating only

ordinary assignments and tests. It does not generate an array assignment of the form

F (t1, . . . , tn) := t, but rather “remembers” it and when it reaches an assignment of

the form x := F (t1, . . . , tn) it will aim at generating x := t instead. This requires

care, since we must keep track of changes in the variables inside t and t1, . . . , tn
and incorporate them into the generated assignments. We leave the details to the

reader (Exercises 11.5–11.7).

MIT Press Math7X9/2010/08/25:15:15 Page 296

First-Order Dynamic Logic 297

Formulas

Here are the semantic definitions for the constructs of formulas of DL. The reader

is referred to Section 3.4 for the semantic definitions of atomic first-order formulas.

mA(0)
def
= ∅ (11.3.4)

mA(ϕ→ ψ)
def
= {u | if u ∈ mA(ϕ) then u ∈ mA(ψ)} (11.3.5)

mA(∀x ϕ) def
= {u | ∀a ∈ A u[x/a] ∈ mA(ϕ)} (11.3.6)

mA([α]ϕ)
def
= {u | ∀v if (u, v) ∈ mA(α) then v ∈ mA(ϕ)}. (11.3.7)

Equivalently, we could define the first-order quantifiers ∀ and ∃ in terms of the

wildcard assignment:

∀x ϕ ↔ [x := ?]ϕ (11.3.8)

∃x ϕ ↔ <x := ?>ϕ. (11.3.9)

Note that for deterministic programs α (for example, those obtained by using

the while programming language instead of regular programs and disallowing

wildcard assignments), mA(α) is a partial function from states to states; that is,

for every state u, there is at most one v such that (u, v) ∈ mA(α). The partiality of

the function arises from the possibility that α may not halt when started in certain

states. For example, mA(while 1 do skip) is the empty relation. In general, the

relation mA(α) need not be single-valued.

If K is a given set of syntactic constructs, we refer to the version of Dynamic

Logic with programs built from these constructs as Dynamic Logic with K or

simply as DL(K). Thus, we have DL(r.e.), DL(array), DL(stk), DL(bstk), DL(wild),

and so on. As a default, these logics are the poor-test versions, in which only

quantifier-free first-order formulas may appear as tests. The unadorned DL is used

to abbreviate DL(reg), and we use DL(dreg) to denote DL with while programs,

which are really deterministic regular programs. Again, while programs use only

poor tests. Combinations such as DL(dreg+wild) are also allowed.

11.4 Satisfiability and Validity

The concepts of satisfiability, validity, etc. are defined as for PDL in Chapter 5 or

as for first-order logic in Section 3.4.

Let A = (A,mA) be a structure, and let u be a state in SA. For a formula ϕ, we

write A, u � ϕ if u ∈ mA(ϕ) and say that u satisfies ϕ in A. We sometimes write

u � ϕ when A is understood. We say that ϕ is A-valid and write A � ϕ if A, u � ϕ

MIT Press Math7X9/2010/08/25:15:15 Page 297

298 Chapter 11

for all u in A. We say that ϕ is valid and write � ϕ if A � ϕ for all A. We say that

ϕ is satisfiable if A, u � ϕ for some A, u.

For a set of formulas Δ, we write A � Δ if A � ϕ for all ϕ ∈ Δ.

Informally, A, u � [α]ϕ iff every terminating computation of α starting in state

u terminates in a state satisfying ϕ, and A, u � <α>ϕ iff there exists a computation

of α starting in state u and terminating in a state satisfying ϕ. For a pure first-order

formula ϕ, the metastatement A, u � ϕ has the same meaning as in first-order logic

(Section 3.4).

11.5 Bibliographical Notes

First-order DL was defined in Harel et al. (1977), where it was also first named

Dynamic Logic. That paper was carried out as a direct continuation of the original

work of Pratt (1976).

Many variants of DL were defined in Harel (1979). In particular, DL(stk) is very

close to the context-free Dynamic Logic investigated there.

Exercises

11.1. Show that in the presence of the Boolean stack operations push-1, push-0,

pop, and top?, there is no need for a Boolean stack operation that tests whether

the top element is 0.

11.2. Show how to write the recursive procedure appearing in Section 9.1 using a

Boolean stack.

11.3. Show that a test for stack emptiness is redundant in DL with an algebraic

stack.

11.4. Prove that the meaning of a regular program is the same as the meaning of

the corresponding (regular) r.e. program.

11.5. Show how to translate any regular program with array assignments into an

r.e. set of seqs with simple assignments only.

11.6. Show how to translate any regular program with an algebraic stack into an

r.e. set of seqs with simple assignments only.

MIT Press Math7X9/2010/08/25:15:15 Page 298

First-Order Dynamic Logic 299

11.7. Show how to translate any regular program with a Boolean stack into a

bounded-memory r.e. set of seqs with simple assignments only.

11.8. Define DL with integer counters. Show how to translate this logic into

bounded-memory DL(r.e.).

11.9. Prove the equivalences (11.3.8) and (11.3.9) for relating wildcard assignment

to quantification.

MIT Press Math7X9/2010/08/25:15:15 Page 299

300 Chapter 11

MIT Press Math7X9/2010/08/25:15:15 Page 300

12 Relationships with Static Logics

Reasoning in first-order Dynamic Logic can take two forms: uninterpreted and inter-

preted. The former involves properties expressible in the logic that are independent

of the domain of interpretation. The latter involves the use of the logic to reason

about computation over a particular domain or a limited class of domains. In this

chapter we discuss these two levels of reasoning and the relationships they engender

between DL and classical static logics.

12.1 The Uninterpreted Level

Uninterpreted Reasoning: Schematology

In contrast to the propositional version PDL discussed in Part II, DL formulas in-

volve variables, functions, predicates, and quantifiers, a state is a mapping from

variables to values in some domain, and atomic programs are assignment state-

ments. To give semantic meaning to these constructs requires a first-order structure

A over which to interpret the function and predicate symbols. Nevertheless, we are

not obliged to assume anything special about A or the nature of the interpretations

of the function and predicate symbols, except as dictated by first-order semantics.

Any conclusions we draw from this level of reasoning will be valid under all possible

interpretations. Uninterpreted reasoning refers to this style of reasoning.

For example, the formula

p(f(x), g(y, f(x))) → <z := f(x)>p(z, g(y, z))

is true over any domain, irrespective of the interpretations of p, f , and g.

Another example of a valid formula is

z = y ∧ ∀x f(g(x)) = x

→ [while p(y) do y := g(y)]<while y
= z do y := f(y)>1.

Note the use of [] applied to < >. This formula asserts that under the assumption

that f “undoes” g, any computation consisting of applying g some number of times

to z can be backtracked to the original z by applying f some number of times to

the result.

This level of reasoning is the most appropriate for comparing features of pro-

gramming languages, since we wish such comparisons not to be influenced by the

coding capabilities of a particular domain of interpretation. For example, if we aban-

MIT Press Math7X9/2010/08/25:15:15 Page 301

302 Chapter 12

don the uninterpreted level and assume the fixed domain N of the natural numbers

with zero, addition and multiplication, all reasonable programming languages are

equivalent in computation power—they all compute exactly the partial recursive

functions. In contrast, on the uninterpreted level, it can be shown that recursion is a

strictly more powerful programming construct than iteration. Research comparing

the expressive power of programming languages on the uninterpreted level is some-

times called schematology, and uninterpreted programs are often called program

schemes .

As an example, let us consider regular programs and nondeterministic while

programs. The former are as powerful as the latter, since every while program is

obviously regular, as can be seen by recalling the definitions from Section 11.1:

if ϕ then α else β
def
= (ϕ?;α) ∪ (¬ϕ?;β)

while ϕ do α
def
= (ϕ?;α)∗;¬ϕ?.

Conversely, over any structure, nondeterministic while programs are as powerful as

regular programs (Exercise 12.2). We define our logics using the regular operators

since they are simpler to manipulate in mathematical arguments, but the while

program operators are more natural for expressing algorithms.

If we do not allow nondeterminism in while programs, the situation is different.

We show in Chapter 15 that DL with deterministic while programs is strictly less

expressive than DL with regular programs when considered over all structures.

However, over N they are equivalent (Theorem 12.6).

Failure of Classical Theorems

We now show that three basic properties of classical (uninterpreted) first-order

logic, the Löwenheim–Skolem theorem, completeness, and compactness, fail for even

fairly weak versions of DL.

The Löwenheim–Skolem theorem (Theorem 3.59) states that if a formula ϕ

has an infinite model then it has models of all infinite cardinalities. Because of

this theorem, classical first-order logic cannot define the structure of elementary

arithmetic

N = (ω, +, ·, 0, 1, =)

up to isomorphism. That is, there is no first-order sentence that is true in a structure

A if and only if A is isomorphic to N. However, this can be done in DL.

Proposition 12.1: There exists a formula ΘN of DL(dreg) that defines N up to

isomorphism.

MIT Press Math7X9/2010/08/25:15:15 Page 302

Relationships with Static Logics 303

Proof Take as ΘN the conjunction of the following six first-order formulas:

• ∀x x+ 1
= 0

• ∀x ∀y x+ 1 = y + 1→ x = y

• ∀x x+ 0 = x

• ∀x ∀y x+ (y + 1) = (x + y) + 1

• ∀x x · 0 = 0

• ∀x ∀y x · (y + 1) = (x · y) + x,

plus the DL(dreg) formula

∀x <y := 0 ; while y
= x do y := y + 1>1. (12.1.1)

The sentence (12.1.1) says that the program inside the diamond halts for all

x; in other words, every element of the structure is obtained from 0 by adding 1

a finite number of times. This is inexpressible in first-order logic. A side effect of

(12.1.1) is that we may use the induction principle in all models of ΘN.

The first two of the above first-order formulas imply that every model of ΘN is

infinite. The remaining first-order formulas are the inductive definitions of addition

and multiplication. It follows that every model of ΘN is isomorphic to N.

The Löwenheim–Skolem theorem does not hold for DL, because ΘN has an

infinite model (namely N), but all models are isomorphic to N and are therefore

countable.

Besides the Löwenheim–Skolem Theorem, compactness fails in DL as well.

Consider the following countable set Γ of formulas:

{<while p(x) do x := f(x)>1} ∪ {p(fn(x)) | n ≥ 0}.
It is easy to see that Γ is not satisfiable, but it is finitely satisfiable, i.e. each finite

subset of it is satisfiable.

Worst of all, completeness cannot hold for any deductive system as we normally

think of it (a finite effective system of axioms schemes and finitary inference rules).

The set of theorems of such a system would be r.e., since they could be enumerated

by writing down the axioms and systematically applying the rules of inference in

all possible ways. However, the set of valid statements of DL is not r.e. (Exercise

12.1). In fact, we will show in Chapter 13 exactly how bad the situation is.

This is not to say that we cannot say anything meaningful about proofs and

deduction in DL. On the contrary, there is a wealth of interesting and practical

results on axiom systems for DL that we will cover in Chapter 14.

MIT Press Math7X9/2010/08/25:15:15 Page 303

304 Chapter 12

Expressive Power

In this section we investigate the power of DL relative to classical static logics on the

uninterpreted level. In particular, we will introduce rich test DL of r.e. programs

and show that it is equivalent to the infinitary language Lωck
1 ω

. Some consequences

of this fact are drawn in later sections.

First we introduce a definition that allows to compare different variants of DL.

Let us recall from Section 11.3 that a state is initial if it differs from a constant

state wa only at the values of individual variables. If DL1 and DL2 are two variants

of DL over the same vocabulary, we say that DL2 is as expressive as DL1 and write

DL1 ≤ DL2 if for each formula ϕ in DL1 there is a formula ψ in DL2 such that

A, u � ϕ↔ ψ for all structures A and initial states u. If DL2 is as expressive as DL1
but DL1 is not as expressive as DL2, we say that DL2 is strictly more expressive than

DL1, and write DL1 < DL2. If DL2 is as expressive as DL1 and DL1 is as expressive

as DL2, we say that DL1 and DL2 are of equal expressive power, or are simply

equivalent, and write DL1 ≡ DL2. We will also use these notions for comparing

versions of DL with static logics such as Lωω.

There is a technical reason for the restriction to initial states in the above

definition. If DL1 and DL2 have access to different sets of data types, then they

may be trivially incomparable for uninteresting reasons, unless we are careful to

limit the states on which they are compared. We shall see examples of this in

Chapter 15.

Also, in the definition ofDL(K) given in Section 11.4, the programming language

K is an explicit parameter. Actually, the particular first-order vocabulary Σ over

which DL(K) and K are considered should be treated as a parameter too. It turns

out that the relative expressiveness of versions of DL is sensitive not only to K, but

also to Σ. This second parameter is often ignored in the literature, creating a source

of potential misinterpretation of the results. For now, we assume a fixed first-order

vocabulary Σ.

Rich Test Dynamic Logic of R.E. Programs

We are about to introduce the most general version of DL we will ever consider.

This logic is called rich test Dynamic Logic of r.e. programs , and it will be denoted

DL(rich-test r.e.). Programs of DL(rich-test r.e.) are r.e. sets of seqs as defined

in Section 11.2, except that the seqs may contain tests ϕ? for any previously

constructed formula ϕ.

The formal definition is inductive. All atomic programs are programs and all

atomic formulas are formulas. If ϕ, ψ are formulas, α, β are programs, {αn | n ∈ ω}

MIT Press Math7X9/2010/08/25:15:15 Page 304

Relationships with Static Logics 305

is an r.e. set of programs over a finite set of variables (free or bound), and x is a

variable, then

• 0

• ϕ→ ψ

• [α]ϕ

• ∀x ϕ

are formulas and

• α ; β

• {αn | n ∈ ω}
• ϕ?

are programs. The set CS (α) of computation sequences of a rich test r.e. program

α is defined as usual.

Recall from Section 3.6 that Lω1ω is the language with the formation rules

of the first-order language Lωω, but in which countably infinite conjunctions and

disjunctions
∧
i∈I ϕi and

∨
i∈I ϕi are also allowed. In addition, if {ϕi | i ∈ I}

is recursively enumerable, then the resulting language is denoted Lωck
1 ω

and is

sometimes called constructive Lω1ω.

Proposition 12.2: DL(rich-test r.e.) ≡ Lωck
1 ω

.

Proof In the translations below, ϕ ranges over Lωck
1 ω

formulas, ψ ranges over

DL(rich-test r.e.) formulas, and α ranges over rich test r.e. programs. The trans-

lation from Lωck
1 ω

to DL(rich-test r.e.) is obtained via the mapping μ. The main

clause of its definition is given below. Recall that ¬ϕ stands for ϕ → 0 and <α>ϕ

stands for ¬[α]¬ϕ.

μ(
∨
i∈I

ϕi)
def
= <{μ(ϕi)? | i ∈ I}>1.

The reverse translation is obtained via a mapping ν with the help of a mapping

()α that tranforms Lωck
1 ω

formulas into Lωck
1 ω

formulas. Here α is an arbitrary rich

test r.e. program. The main clause of the definition of ν is

ν(<α>ψ)
def
= ν(ψ)α,

MIT Press Math7X9/2010/08/25:15:15 Page 305

306 Chapter 12

and the main defining clauses for ()α are as follows:

ϕx:=t
def
= ϕ[x/t]

ϕα ; β
def
= (ϕα)β

ϕ{αn|n∈ω}
def
=

∨
n∈ω

ϕαn

ϕψ?
def
= ϕ ∧ ν(ψ).

Since r.e. programs as defined in Section 11.2 are clearly a special case of general

rich-test r.e. programs, it follows that DL(rich-test r.e.) is as expressive as DL(r.e.).

In fact they are not of the same expressive power.

Theorem 12.3: DL(r.e.) < DL(rich-test r.e.).

Proof sketch. One can use an Ehrenfeucht–Fräıssé argument to show that DL(r.e.)

cannot distinguish between the recursive ordinals ωω and ωω · 2, whereas any re-

cursive ordinal can be defined by a formula of DL(rich-test r.e.) up to isomorphism.

Details can be found in Meyer and Parikh (1981).

Henceforth, we shall assume that the first-order vocabulary Σ contains at least

one function symbol of positive arity. Under this assumption, DL can easily be

shown to be strictly more expressive than Lωω:

Theorem 12.4: Lωω < DL.

Proof In Section 12.1 we saw how to construct an infinite model for Σ that is

uniquely definable in DL up to isomorphism. By the upward Löwenheim–Skolem

theorem, this is impossible in Lωω.

Corollary 12.5:

Lωω < DL ≤ DL(r.e.) < DL(rich-test r.e.) ≡ Lωck
1 ω
.

The situation with the intermediate versions of DL, e.g. DL(stk), DL(bstk),

DL(wild), etc., is of interest. We deal with the relative expressive power of these

in Chapter 15, where we also show that the second inequality in Corollary 12.5 is

strict.

MIT Press Math7X9/2010/08/25:15:15 Page 306

Relationships with Static Logics 307

12.2 The Interpreted Level

Interpreted Reasoning: Arithmetical Structures

This is the most detailed level we will consider. It is the closest to the actual process

of reasoning about concrete, fully specified programs. Syntactically, the programs

and formulas are as on the uninterpreted level, but here we assume a fixed structure

or class of structures.

In this framework, we can study programs whose computational behavior

depends on (sometimes deep) properties of the particular structures over which

they are interpreted. In fact, almost any task of verifying the correctness of an

actual program falls under the heading of interpreted reasoning.

One specific structure we will look at carefully is the natural numbers with the

usual arithemetic operations:

N = (ω, 0, 1, +, ·, =).

Let − denote the (first-order-definable) operation of subtraction and let gcd(x, y)

denote the first-order-definable operation giving the greatest common divisor of x

and y. The following formula of DL is N-valid, i.e., true in all states of N:

x = x′ ∧ y = y′ ∧ xy ≥ 1 → <α>(x = gcd(x′, y′)) (12.2.1)

where α is the while program of Example 4.1 or the regular program

(x
= y?; ((x > y?;x := x− y) ∪ (x < y?; y := y − x)))∗x = y?.

Formula (12.2.1) states the correctness and termination of an actual program over

N computing the greatest common divisor.

As another example, consider the following formula over N:

∀x ≥ 1 <(if even(x) then x := x/2 else x := 3x+ 1)∗>(x = 1).

Here / denotes integer division, and even() is the relation that tests if its argument

is even. Both of these are first-order definable. This innocent-looking formula asserts

that starting with an arbitrary positive integer and repeating the following two

operations, we will eventually reach 1:

• if the number is even, divide it by 2;

• if the number is odd, triple it and add 1.

The truth of this formula is as yet unknown, and it constitutes a problem in number

theory (dubbed “the 3x + 1 problem”) that has been open for over 60 years. The

MIT Press Math7X9/2010/08/25:15:15 Page 307

308 Chapter 12

formula ∀x ≥ 1 <α>1, where α is

while x
= 1 do if even(x) then x := x/2 else x := 3x+ 1,

says this in a slightly different way.

The specific structure N can be generalized, resulting in the class of arithmetical

structures . We shall not give a full definition here. Briefly, a structure A is arith-

metical if it contains a first-order-definable copy of N and has first-order definable

functions for coding finite sequences of elements of A into single elements and for

the corresponding decoding.

Arithmetical structures are important because (i) most structures arising nat-

urally in computer science (e.g., discrete structures with recursively defined data

types) are arithmetical, and (ii) any structure can be extended to an arithmetical

one by adding appropriate encoding and decoding capabilities. While most of the

results we present for the interpreted level are given in terms of N alone, many of

them hold for any arithmetical structure, so their significance is greater.

Expressive Power over N

The results of Section 12.1 establishing that

Lωω < DL ≤ DL(r.e.) < DL(rich-test r.e.)

were on the uninterpreted level, where all structures are taken into account.1 Thus

first-order logic, regular DL, and DL(rich-test r.e.) form a sequence of increasingly

more powerful logics when interpreted uniformly over all structures.

What happens if one fixes a structure, say N? Do these differences in expressive

power still hold? We now address these questions.

First, we introduce notation for comparing expressive power over N. If DL1 and

DL2 are variants of DL (or static logics, such as Lωω) and are defined over the

vocabulary of N, we write DL1 ≤N DL2 if for each ϕ ∈ DL1 there is ψ ∈ DL2 such

that N � ϕ ↔ ψ. We define <N and ≡N from ≤N the same way < and ≡ were

defined from ≤ in Section 12.1.

We now show that over N, DL is no more expressive than first-order logic Lωω.

This is true even for finite-test DL. The result is stated for N, but is actually true

for any arithmetical structure.

Theorem 12.6: Lωω ≡N DL ≡N DL(r.e.).

1 As mentioned, the second inequality is also strict.

MIT Press Math7X9/2010/08/25:15:15 Page 308

Relationships with Static Logics 309

Proof The direction ≤ of both equivalences is trivial. For the other direction, we

sketch the construction of a first-order formula ϕL for each ϕ ∈ DL(r.e.) such that

N � ϕ↔ ϕL.

The construction of ϕL is carried out by induction on the structure of ϕ. The

only nontrivial case is for ϕ of the form [α]ψ. For a formula of this form, suppose

ψL has been constructed. Let FV (α) ⊆ {x1, . . . , xk} for some k ≥ 0. Consider the

set of seqs σ over the vocabulary of arithmetic such that FV (σ) ⊆ {x1, . . . , xk}.
Every such σ is a finite expression, therefore can be encoded as a natural number

�σ�. Now consider the set

R
def
= {(�σ�, n1, . . . , nk,m1, . . . ,mk) ∈ N2k+1 | (n,m) ∈ mN(σ)},

where n is the state that assigns ni to xi for 1 ≤ i ≤ k and 0 to the remaining

variables. The state m is defined similarly. Clearly R is a recursive set and there is

first-order formula γ(y, x1, . . . , xk, z1, . . . , zk) that defines R in N. We can assume

that the variables y, z1, . . . , zk do not occur in ψL. Let ϕα(y) be a formula defining

the set {�σ� | σ ∈ CS (α)}. The desired formula ϕL is

∀y ∀z1 . . . ∀zk (ϕα(y) ∧ γ(y, x1, . . . , xk, z1, . . . , zk) → ψL[x1/z1, . . . , xk/zk]).

The remaining cases we leave as an exercise (Exercise 12.5).

The significance of this result is that in principle, one can carry out all reasoning

about programs interpreted over N in the first-order logic Lωω by translating each

DL formula into a first-order equivalent. The translation is effective, as this proof

shows. Moreover, Theorem 12.6 holds for any arithmetical structure containing the

requisite coding power. As mentioned earlier, every structure can be extended to

an arithmetical one.

However, the translation of Theorem 12.6 produces unwieldly formulas having

little resemblance to the original ones. This mechanism is thus somewhat unnatural

and does not correspond closely to the type of arguments one would find in practical

program verication. In Section 14.2, a remedy is provided that makes the process

more orderly.

We now show that over N, DL(rich-test r.e.) has considerably more power than

the equivalent logics of Theorem 12.6. This too is true for any arithmetical structure.

Theorem 12.7: Over N, DL(rich-test r.e.) defines precisely the Δ1
1 (hyperarith-

metic) sets.

MIT Press Math7X9/2010/08/25:15:15 Page 309

310 Chapter 12

Proof We will show in Theorem 13.6 that the set

{ψ ∈ DL(rich-test r.e.) | N � ψ} (12.2.2)

is hyperarithmetic. Any DL(rich-test r.e.)-definable set

{(a1, . . . , an) | N � ϕ[x1/a1, . . . , xn/an]} (12.2.3)

defined by a DL(rich-test r.e.) formula ϕ with free variables x1, . . . , xn reduces by

simple substitution2 to (12.2.2). The set (12.2.3) is therefore hyperarithmetic.

For the other direction, we use the characterization of Δ1
1 as the subsets of

N defined by total IND programs; equivalently, by IND programs that always halt

within “time” bounded by a recursive ordinal. This generalized notion of time is

defined formally by the ordinal mapping ord : T → Ord on recursive well-founded

trees as discussed in Section 2.2. The time of a halting IND computation is the

ordinal associated with the root of the computation tree.

Given an IND program π over N with program variables x1, . . . , xn and a

recursive ordinal represented by a well-founded recursive tree T ⊆ ω∗ as described

in Section 2.2, we define a family of DL(rich-test r.e.) formulas ϕw� with free

variables x1, . . . , xn, where w ∈ T and � is a statement label of π. The formula

ϕw� [x1/a1, . . . , xn/an] says that π halts and accepts in at most ord(w) steps when

started at statement � in a state in which xi has value ai, 1 ≤ i ≤ n.

The definition of ϕw� is inductive on the well-founded tree T . In the following

definition, c(�) refers to the continuation of statement � in π; that is, the first

statement of π if � is the last statement, otherwise the statement immediately

following �.

The formulas ϕw� are defined as follows. If � is the statement xi := ∃, define

ϕw�
def
= <{xi := m | m ∈ ω}><{ϕwnc(�)? | n ∈ ω, wn ∈ T }>1.

If � is the statement xi := ∀, define
ϕw�

def
= [{xi := m | m ∈ ω}]<{ϕwnc(�)? | n ∈ ω, wn ∈ T }>1.

If � is either accept or reject, define ϕw� to be 1 or 0, respectively. Finally, if � is

the statement if r then go to �′, define

ϕw�
def
= <if r then {ϕwn�′ ? | n ∈ ω, wn ∈ T } else {ϕwnc(�)? | n ∈ ω, wn ∈ T }>1.

The top-level statement asserting that π halts and accepts in ordinal time bounded

by ord(T) is ϕε�0 , where �0 is the first statement of π and ε is the null string.

2 We assume the coding scheme for DL(rich-test r.e.) formulas has been designed to permit
effective identification of and substitution for free variables.

MIT Press Math7X9/2010/08/25:15:15 Page 310

Relationships with Static Logics 311

Theorem 12.6 says that over N, the languages DL and DL(r.e.) each define

precisely the arithmetic (first-order definable) sets, and Theorem 12.7 says that

DL(rich-test r.e.) defines precisely the hyperarithmetic or Δ1
1 sets. Since the in-

clusion between these classes is strict—for example, first-order number theory is

hyperarithmetic but not arithmetic—we have

Corollary 12.8: DL(r.e.) <N DL(rich-test r.e.).

12.3 Bibliographical Notes

Uninterpreted reasoning in the form of program schematology has been a common

activity ever since the work of Ianov (1960). It was given considerable impetus

by the work of Luckham et al. (1970) and Paterson and Hewitt (1970); see also

Greibach (1975). The study of the correctness of interpreted programs goes back

to the work of Turing and von Neumann, but seems to have become a well-defined

area of research following Floyd (1967), Hoare (1969) and Manna (1974).

Embedding logics of programs in Lω1ω is based on observations of Engeler

(1967). Theorem 12.3 is from Meyer and Parikh (1981). Theorem 12.6 is from

Harel (1979) (see also Harel (1984) and Harel and Kozen (1984)); it is similar to

the expressiveness result of Cook (1978). Theorem 12.7 and Corollary 12.8 are from

Harel and Kozen (1984).

Arithmetical structures were first defined by Moschovakis (1974) under the

name acceptable structures . In the context of logics of programs, they were reintro-

duced and studied in Harel (1979).

Exercises

12.1. Consider DL with deterministic while programs over the first-order vocab-

ulary of N. Show that the set of valid DL formulas over this vocabulary is not

recursively enumerable. (Hint. Using the formula ΘN defined in Section 12.1 that

defines the natural numbers up to isomorphism, show that if the set of valid DL

formulas were r.e., then so would be the set of formulas true in N, thus contradicting
Gödel’s incompleteness theorem.)

12.2. Show that nondeterministic while programs and regular programs are equiv-

alent over any structure.

MIT Press Math7X9/2010/08/25:15:15 Page 311

312 Chapter 12

12.3. Show that in the uninterpreted sense, allowing only atomic formulas instead

of all quantifier-free formulas as tests does not diminish the expressive power of DL.

12.4. Argue by induction on the well-founded recursive tree T that the construction

of the DL(rich-test r.e.) formulas ϕw� in the proof of Theorem 12.7 is correct.

12.5. Fill in the missing cases in the proof of Theorem 12.6.

12.6. Give a precise definition of an arithmetical structure. Let L1 ≤A L2 denote

relative expressibility in arithmetical structures; that is, L1 ≤A L2 holds if for any

arithmetical structure A and any formula ϕ in L1, there is a formula ψ in L2 such

that A � ϕ ↔ ψ. Define L1 ≡A L2 accordingly. Show that Theorem 12.6 holds for

arithmetical structures; that is,

Lωω ≡A DL ≡A DL(r.e.).

MIT Press Math7X9/2010/08/25:15:15 Page 312

13 Complexity

This chapter addresses the complexity of first-order Dynamic Logic.

Section 13.1 discusses the difficulty of establishing validity in DL. As in Chapter

12, we divide the question into uninterpreted and interpreted versions. On the

uninterpreted level, we deal with the complexity of deciding validity of a given

formula of an arbitrary signature over all interpretations for that signature. On

the interpreted level, we are interested in the truth in N of a number-theoretic DL

formula or validity over arithmetical structures.

In Section 13.2 we turn our attention to some of the programming languages

defined in Chapter 11 and analyze their spectral complexity, a notion that measures

the difficulty of the halting problem over finite structures. Spectral complexity will

become useful in comparing the expressive power of variants of DL in Chapter 15.

13.1 The Validity Problem

Since all versions of DL subsume first-order logic, truth can be no easier to establish

than in Lωω. Also, since DL(r.e.) is subsumed by Lωck
1 ω

, truth will be no harder to

establish than in Lωck
1 ω

. These bounds hold for both uninterpreted and interpreted

levels of reasoning.

The Uninterpreted Level: Validity

In this section we discuss the complexity of the validity problem for DL. By the

remarks above and Theorems 3.60 and 3.67, this problem is between Σ0
1 and Π1

1.

That is, as a lower bound it is undecidable and can be no better than recursively

enumerable, and as an upper bound it is in Π1
1. This is a rather large gap, so

we are still interested in determining more precise complexity bounds for DL and

its variants. An interesting related question is whether there is some nontrivial1

fragment of DL that is in Σ0
1, since this would allow a complete axiomatization.

In the following, we consider these questions for full DL(reg), but we also

consider two important subclasses of formulas for which better upper bounds are

derivable:

• partial correctness assertions of the form ψ → [α]ϕ, and

• termination or total correctness assertions of the form ψ → <α>ϕ,

1 Nontrivial here means containing Lωω and allowing programs with iteration. The reason for
this requirement is that loop-free programs add no expressive power over first-order logic.

MIT Press Math7X9/2010/08/25:15:15 Page 313

314 Chapter 13

where ϕ and ψ are first-order formulas. The results are stated for regular programs,

but they remain true for the more powerful programming languages too. They also

hold for deterministic while programs (Exercises 13.3 and 13.4).

We state the results without mentioning the underlying first-order vocabulary

Σ. For the upper bounds this is irrelevant. For the lower bounds, we assume the Σ

contains a unary function symbol and ternary predicate symbols to accommodate

the proofs.

Theorem 13.1: The validity problem for DL is Π1
1-hard, even for formulas of the

form ∃x [α]ϕ, where α is a regular program and ϕ is first-order.

Proof For convenience, we phrase the proof in terms of satisfiablity instead of

validity, carrying out a reduction from the Σ1
1-complete tiling problem of Proposi-

tion 2.22: Given a finite set T of tile types, can the infinite ω × ω grid with blue

south and west boundaries be tiled so that the color red occurs infinitely often?

We will adapt the encoding of Theorem 3.67 to our needs. Let us recall that

the vocabulary contains one constant symbol a, one unary function symbol f , and

four ternary relation symbols South, North, West and East.

As in the proof of Theorem 3.67, define the formula

red(x, y)
def⇐⇒ North(x, y, f red(a)) ∨ South(x, y, f red(a))

∨ East(x, y, f red(a)) ∨West(x, y, f red(a)),

which says intuitively that the tile at position x, y has a red side. Let ψT be the

conjunction of the five formulas (3.4.3)–(3.4.7) used in the proof of Theorem 3.60

and the formula

∀x <y := x; z := x; (y := f(y))∗; (z := f(z))∗>red(y, z). (13.1.1)

The claim is that ψT is satisfiable iff T can tile the ω × ω grid so that the

color red occurs infinitely often. The explanations of the encoding in the proof of

Theorem 3.60 apply here. Clause (13.1.1) forces the red to appear infinitely often

in the tiling. It asserts that no matter how far we go, we always find at least one

point with a tile containing red.

As for the required form of the DL formulas, note that the first five clauses can

be “pushed under” the diamond and attached as conjuncts to red(x, y). Negating

the resulting formula in order to accommodate the phrasing of the theorem in terms

of validity yields the desired result.

The following is an immediate corollary of Theorem 13.1:

MIT Press Math7X9/2010/08/25:15:15 Page 314

Complexity 315

Theorem 13.2: The validity problem for DL and DL(rich-test r.e.), as well as

all intermediate versions, is Π1
1-complete.

To soften the negative flavor of these results, we now show that the special

cases of unquantified one-program DL(r.e.) formulas have easier validity problems

(though, as mentioned, they are still undecidable). We first need a lemma.

Lemma 13.3: For every r.e. program α and for every first-order formula ϕ, there

exists an r.e. set {ϕσ | σ ∈ CS (α)} of first-order formulas such that

|= [α]ϕ ↔
∧

σ∈CS(α)

ϕσ.

Proof For every seq σ, we define a mapping ()σ that transforms first-order

formulas into first-order formulas as follows:2

ϕε
def
= ϕ, where ε is the null seq;

ϕx:=t ; σ
def
= ϕσ[x/t];

ϕψ? ; σ
def
= ψ → ϕσ.

Verification of the conclusion of the lemma is left to the reader.

Theorem 13.4: The validity problem for the sublanguage of DL(r.e.) consisting

of formulas of the form <α>ϕ, where ϕ is first-order and α is an r.e. program, is

Σ0
1-complete.

Proof It suffices to show that the problem is in Σ0
1, since the sublanguage Lωω

is already Σ0
1-complete. By Lemma 13.3, <α>ϕ is equivalent to

∨
σ∈CS(α) ϕσ, and

all the ϕσ are first-order. By the compactness of first-order logic, there is some

finite subset Γ ⊆ {ϕσ | σ ∈ CS (α)} such that � <α>ϕ iff �
∨
Γ. Each such finite

disjunction is a first-order formula, hence the finite subsets Γ can be generated and

checked for validity in a recursively enumerable manner.

It is easy to see that the result holds for formulas of the form ψ → <α>ϕ, where ψ

is also first-order (Exercise 13.1). Thus, termination assertions for nondeterministic

programs with first-order tests (or total correctness assertions for deterministic

programs), on the uninterpreted level of reasoning, are recursively enumerable and

2 The reader may wish to compare this mapping with the mapping defined in the proof of
Proposition 12.2.

MIT Press Math7X9/2010/08/25:15:15 Page 315

316 Chapter 13

therefore axiomatizable. We shall give an explicit axiomatization in Chapter 14.

We now turn to partial correctness.

Theorem 13.5: The validity problem for the sublanguage of DL(r.e.) consisting

of formulas of the form [α]ϕ, where ϕ is first-order and α is an r.e. program, is

Π0
2-complete. The Π0

2-completeness property holds even if we restrict α to range

over deterministic while programs.

Proof For the upper bound, we have by Lemma 13.3 that � [α]ϕ iff �∧
σ∈CS(α) ϕσ. It follows that the validity of the latter is co-r.e. in the r.e. prob-

lem of validity of first-order formulas, hence it is in Π0
2.

For the lower bound, we carry out a reduction (to the dual satisfiability problem)

from the Σ0
2-complete tiling problem of Proposition 2.21. Let us recall that this

problem calls for a finite set T of tile types to tile the positive quadrant of the

integer grid in such a way that the colors on the south boundary form a finite

sequence of colors followed by an infinite sequence of blue.

For our encoding, we again adapt the proof of Theorem 3.60.We use the notation

from that proof. We take ψ′
T to be the conjunction of the clauses (3.4.3), (3.4.6),

and (3.4.7) used in the proof of Theorem 3.60 together with the clause

∀x South(x, a, fblue(a)) → South(f(x), a, fblue(a)).

This clause expresses the property that the color blue, when occurring on the south

boundary, remains there from the first occurrence on. Now we can combine ψ′
T

with the requirement that blue actually occurs on the south boundary to obtain

the formula

ψT
def
= <x := a;while ¬South(x, a, fblue(a)) do x := f(x)>ψ′

T .

The claim is that ψT is satisfiable iff T can tile the grid with the additional

constraint on the colors of south boundary. We leave the verification of this claim

to the reader.

Theorem 13.5 extends easily to partial correctness assertions; that is, to formulas

of the form ψ → [α]ϕ, where ψ is also first-order (Exercise 13.2). Thus, while Π0
2

is obviously better than Π1
1, it is noteworthy that on the uninterpreted level of

reasoning, the truth of even simple correctness assertions for simple programs is not

r.e., so that no finitary complete axiomatization for such validities can be given.

MIT Press Math7X9/2010/08/25:15:15 Page 316

Complexity 317

The Interpreted Level: Validity over N

The characterizations of the various versions of DL in terms of classical static logics

established in Section 12.2 provide us with the precise complexity of the validity

problem over N.

Theorem 13.6: The N-validity problem for DL(dreg) and DL(rich-test r.e.),

as well as all intermediate versions, when defined over the vocabulary of N, is

hyperarithmetic (Δ1
1) but not arithmetic.

Proof Let

X
def
= {ϕ ∈ DL(rich-test r.e.) | N |= ϕ}.

Let ΘN be the DL(dreg) formula that defines N up to isomorphism (see Proposi-

tion 12.1). Since for every ϕ ∈ DL(rich-test r.e.) we have

ϕ ∈ X ⇐⇒ |= ΘN → ϕ,

by Theorem 13.2 we have that X is in Π1
1. On the other hand, since for every

sentence ϕ we have ϕ
∈ X iff ¬ϕ ∈ X , it follows that X is also in Σ1
1, hence it is in

Δ1
1.

That N-validity for any of the intermediate versions is not arithmetic follows

from the fact that the first-order theory of N is already not arithmetic.

13.2 Spectral Complexity

We now introduce the spectral complexity of a programming language. As men-

tioned, this notion provides a measure of the complexity of the halting problem for

programs over finite interpretations.

Recall that a state is a finite variant of a constant valuation wa for some a ∈ A
(see Section 11.3), and a state w is initial if it differs from wa for individual variables

only. Thus, an initial state can be uniquely defined by specifying its relevant portion

of values on individual variables. For m ∈ N, we call an initial state w an m-state

if for some a ∈ A and for all i ≥ m, w(xi) = a. An m-state can be specified by an

(m + 1)-tuple of values (a0, . . . , am) that represent values of w for the first m + 1

individual variables x0, . . . , xm. Call an m-state w = (a0, . . . , am) Herbrand-like if

the set {a0, . . . , am} generates A; that is, if every element of A can be obtained as

a value of a term in the state w.

MIT Press Math7X9/2010/08/25:15:15 Page 317

318 Chapter 13

Coding Finite Structures

Let Σ be a finite first-order vocabulary, and assume that the symbols of Σ are

linearly ordered as follows. Function symbols are smaller in the order than predicate

symbols. Function symbols are ordered according to arity; that is, symbols of smaller

arity are smaller than symbols of larger arity. Function symbols of the same arity

are ordered in an arbitrary but fixed way. Predicate symbols are ordered similarly.

Let A be a structure for Σ. We define a natural chain in A as a particular way

of linearly ordering all elements in the substructure of A generated by the empty

set. A natural chain is a partial function CA : N→ A defined for k ∈ N as follows:

CA(k)
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

fA
i (CA(i1), . . . , CA(in)), if (i, i1, . . . , in) is the first vector in lexi-

cographic order such that fi is an n-ary

function symbol in Σ, i1, . . . , in < k,

and fA
i (CA(i1), . . . , CA(in))
∈ {CA(j) |

j < k};
undefined, otherwise.

Observe that if Σ has no constant symbols, then CA = ∅. From now on, we

assume that Σ has at least one constant symbol.

Let Σ be a first-order vocabulary and let c0, . . . , cm be symbols not occurring in

Σ. An expanded vocabulary Σ∪{c0, . . . , cm} is obtained from Σ by adding c0, . . . , cm
as constant symbols. If the symbols of Σ were linearly ordered in some way, then

assuming a linear order on the new constants, the symbols of Σ ∪ {c0, . . . , cm} are

ordered as in Σ, except that the new constants come just after the old constants

and before the function symbols of Σ.

Let Σ′ = Σ ∪ {c0, . . . , cm}. For every Σ-structure A and for every m-state

w = (a0, . . . , am) in A, we expand A into a Σ′-structure Aw by interpreting each ci
by ai and leaving the interpretation of the old symbols unchanged.

The next result shows that the natural chain in Aw can be uniformly computed

by a deterministic program with an algebraic stack.

Proposition 13.7: For every m > 0, there exists a deterministic program

Nextm with an algebraic stack such that for every Σ-structure A, m-state w in A,

and b ∈ A,
A, w[xm+1/b] � <Nextm>1 ⇐⇒ b ∈ CAw (N).

Moreover, if b = CAw (k) for some k, then Nextm terminates for the input

w[xm+1/b] in some state in which xm+1 has value CAw (k + 1) if CAw (k + 1) is

defined, b if not.

MIT Press Math7X9/2010/08/25:15:15 Page 318

Complexity 319

Proof Following the recursive definition of CA, it is easy to write a recursive

procedure that computes the successor of b ∈ A with respect to the natural chain

in Aw. This procedure is further translated into the desired deterministic program

with an algebraic stack (see Section 11.2).

It follows that for every structure A and input w that is an m-state, there is a

canonical way of computing a successor function on the elements generated by the

input.

Proposition 13.8: Let A1 and A2 be Σ-structures on the same carrier generated

by the empty set (that is, every element is named by a ground term), and assume

that CA1 = CA2 . Then A1 and A2 are isomorphic iff A1 = A2.

Proof Let f : A1 → A2 be an isomorphism. One proves by a straightforward

induction on k in the domain of CA1 that f(CA1(k)) = CA2(k). Thus f is the

identity and A1 = A2.

Let Σ be a first-order vocabulary. Recall that we assume that Σ contains at

least one function symbol of positive arity. In this section we actually assume that

Σ is rich; that is, either it contains at least one predicate symbol3 or the sum of

arities of the function symbols is at least two. Examples of rich vocabularies are:

two unary function symbols, or one binary function symbol, or one unary function

symbol and one unary predicate symbol. A vocabulary that is not rich will be called

poor . Hence a poor vocabulary has just one unary function symbol and possibly

some constants, but no relation symbols other than equality. The main difference

between rich and poor vocabularies is that the former admit exponentially many

pairwise non-isomorphic structures of a given finite cardinality, whereas the latter

admit only polynomially many. In this section we will cover rich vocabularies. The

case of poor vocabularies will be covered in the exercises (Exercises 13.9, 13.13, and

13.14).

We say that the vocabulary Σ is mono-unary if it contains no function symbols

other than a single unary one. It may contain constants and predicate symbols.

Let A be a Σ-structure generated by the empty set and let #A = n. Without

loss of generality, we can assume that A = {0, 1, . . . , n − 1} and that CA(k) = k

for all k < n. Every structure can be transformed into one satisfying this property

by renaming elements if necessary. Let Sn be the set of all such structures over

a fixed vocabulary Σ. Clearly, the set Sn depends on the vocabulary Σ. We shall

3 The equality symbol is not counted here.

MIT Press Math7X9/2010/08/25:15:15 Page 319

320 Chapter 13

write SLn when we want to make the dependence on Σ explicit. It follows from

Proposition 13.8 that if A,B ∈ Sn are different, then they are not isomorphic. Also

every n-element Σ-structure with no proper substructures is isomorphic to precisely

one element of Sn.

We encode every element A of Sn by a binary string �A� ∈ {0, 1}∗ as follows.

All elements of {0, . . . , n − 1} are encoded in binary using the same length,

#log(n− 1)$+ 1. The code of A consists of concatenating the values of consecutive

symbols of Σ in the order in which they occur in Σ, where the values of any function

or predicate4 in A are listed for consecutive arguments in lexicographic order with

respect to the natural order in {0, . . . , n−1}. It is easy to see that for every A ∈ Sn,
the length of �A� is polynomial in n.5

Let us illustrate the coding technique with an example.

Example 13.9: Let A = ({0, 1, 2}, c, f, ≤), where c is a constant that denotes 1,

f is the binary operation of addition modulo 3, and ≤ is the linear order 0 ≤ 1 ≤ 2.

Clearly, A is generated by the empty set. The natural chain in A is 1, 2, 0, thus

A
∈ S3. However, A is isomorphic to A′ = ({0, 1, 2}, c′, f ′, ≤′), where c′ denotes 0,
f ′(x, y) = x + y + 1 (mod 3), and ≤′ is the linear order 2 ≤′ 0 ≤′ 1. The natural

chain in A′ is 0, 1, 2, therefore A′ ∈ S3. In order to help read off the code of A′, we
abbreviate 00 by 0, 01 by 1, and 10 by 2. The code of A′ is given below.

0 1 2 0 2 0 1 0 1 2︸ ︷︷ ︸
code of f ′

1 1 0 0 1 0 1 1 1︸ ︷︷ ︸
code of ≤′

Spectra

We are now ready to define the notion of a spectrum of a programming language.

Let K be a programming language and let α ∈ K and m ≥ 0. The mth spectrum

of α is the set

SPm(α)
def
= {�Aw� | A is a finite Σ-structure, w is an m-state in A, and A, w � <α>1}.

The spectrum of K is the set

SP (K)
def
= {SPm(α) | α ∈ K, m ∈ N}.

4 Truth values of a predicate are represented using the correspondence 0 for 0 and 1 for 1.

5 However, this polynomial depends on Σ.

MIT Press Math7X9/2010/08/25:15:15 Page 320

Complexity 321

Givenm ≥ 0, observe that structures in S
Σ∪{c0,...,cm}
n can be viewed as structures of

the form Aw for a certain Σ-structure A and an m-state w in A. This representation

is unique.

In this section we establish the complexity of spectra; that is, the complexity

of the halting problem in finite interpretations. Let us fix m ≥ 0, a rich vocabulary

Σ, and new constants c0, . . . , cm. Since not every binary string is of the form �A�
for some Σ-structure A and m-state w in A, we will restrict our attention to strings

that are of this form. Let

HΣ
m

def
= {�A� | A ∈ SΣ∪{c0,...,cm}

n for some n ≥ 1}.
It is easy to show that the language HΣ

m is in LOGSPACE for every vocabulary

Σ and m ≥ 0. Later, we shall need the following result.

Lemma 13.10: Let m ≥ 0 and let L be a rich vocabulary. For every language

X ⊆ {0, 1}∗, there is a language Y ⊆ HΣ
m such that

X ≤log Y ≤log X.

Proof The proof is structured according to the symbols that belong to Σ. Let

us consider the case in which Σ contains a unary relation symbol r and a unary

function symbol f . The other cases are dealt with similarly, and we leave them to

the reader.

Let x ∈ {0, 1}∗. We define a Σ-structure Bx and an Herbrand-like m-state u.

Let n = |x| be the length of x. The carrier of Bx is the set U = {0, 1, . . . , n}. The
interpretation of f in Bx is the successor function modulo n+1. The interpretation

of r is as follows. For i ∈ U , we let rBx(i) hold iff 1 ≤ i ≤ n and the ith bit in x is

1.

All other function symbols, including constants, are interpreted as functions

constantly equal to 0. All other relation symbols are interpreted as empty relations.

The state u assigns 0 to every variable. We leave it to the reader to show that

there is a LOGSPACE -computable function Θ : {0, 1}∗ → {0, 1}∗ such that

Θ(x) = �Bx, u�. Since Bx and By are not isomorphic for x
= y, it follows that Θ

is one-to-one.

Let us describe a computation of another function Ψ : {0, 1}∗ → {0, 1}∗. Given

an input y ∈ {0, 1}∗, it checks whether y ∈ HΣ
m. If so, it finds the cardinality (in

binary) of a structure A whose code is y. It then reads off from the code whether

fA is the successor, whether all other operations of A are constantly equal to 0,

and whether all relations besides rA are empty. If so, it reads off from the code

MIT Press Math7X9/2010/08/25:15:15 Page 321

322 Chapter 13

of rA the bits of a string x such that �Bx, u� = y. If on any of these tests the

machine computing Ψ should fail, the computation is aborted and the value of

Ψ(y) is the empty string. The reader can easily check that Ψ is indeed computable

by a LOGSPACE transducer and that

Ψ(Θ(x)) = x for all x ∈ {0, 1}∗,
Θ(Ψ(y)) = y for all y ∈ Θ({0, 1}∗).

Given X ⊆ {0, 1}∗, let Y = Θ(X). It follows that Θ establishes the reduction

X ≤log Y , while Ψ establishes the reduction Y ≤log X .

We are now ready to connect complexity classes with spectra. Let K be any

programming language and let C ⊆ 2{0,1}
∗
be a family of sets. We say that SP (K)

captures C, denoted SP (K) ≈ C, if

• SP (K) ⊆ C, and

• for every X ∈ C and m ≥ 0, if X ⊆ HΣ
m, then there is a program α ∈ K such

that SPm(α) = X .

For example, if C is the class of all sets recognizable in polynomial time, then

SP (K) ≈ P means that

• the halting problem over finite interpretations for programs from K is decidable

in polynomial time, and

• every polynomial-time-recognizable set of codes of finite interpretations is the

spectrum of some program from K.

We conclude this section by establishing the spectral complexity of some of the

programming languages introduced in Chapter 11.

Theorem 13.11: Let Σ be a rich vocabulary. Then

(i) SP(dreg) ⊆ LOGSPACE .

(ii) SP(reg) ⊆ NLOGSPACE .

Moreover, if Σ is mono-unary, then SP(dreg) captures LOGSPACE and SP(reg)

captures NLOGSPACE .

Proof We first show (i). Let α be a deterministic regular program and let m ≥ 0.

A deterministic off-line O(log n)-space-bounded Turing machine Mα that accepts

SPm(α) can be constructed as follows. For a given input string z ∈ {0, 1}∗, it checks

MIT Press Math7X9/2010/08/25:15:15 Page 322

Complexity 323

whether z is the code of an expanded structure Aw ∈ SΣ∪{c0,...,cm}
n for some n ≥ 1.

This can be done in O(log n) space. If so, it starts a simulation of a computation

of α in A, taking the values given by w as initial values for the registers of α. At

any stage of the simulation, the current values of the registers of α are stored on

the work tape of Mα using their binary representations of length O(log n). The

necessary tests and updates of values of the registers of α can be read off from the

input string z. The machine Mα halts iff α halts for (A, w).

The proof of (ii) is essentially the same, except thatMα will be nondeterministic.

For the second part of the theorem, assume that Σ is mono-unary. We show

that SP(dreg) captures LOGSPACE . The argument for SP(reg) is similar and

is omitted. Let X ∈ LOGSPACE and X ⊆ HΣ
m for some m ≥ 0. We describe

a deterministic regular program α such that for every n ≥ 1 and every Aw ∈
S
Σ∪{c0,...,cm}
n ,

A, w � <α>1 ⇐⇒ �Aw� ∈ X.

First, let us consider the case in which the carrier of A has only one element.

There are only finitely many pairwise nonisomorphic structures over a one-element

carrier. They differ only by different interpretations of the predicate symbols. Let

A1, . . . ,Ak all be one-element structures such that �Aiw� ∈ X . Since Ai has only

one element, it follows that w is uniquely determined.

The program α first checks whether the structure generated by the input has

exactly one element. If so, it checks whether this structure is one of the Ai listed

above, in which case it halts. Otherwise it diverges.

From now on, we assume that A has more than one element. Let M be

a deterministic off-line O(log n)-space-bounded Turing machine that accepts X .

Without loss of generality, we can assume that M ’s tape alphabet is {0, 1}.
Moreover, since the length of the input �Aw� for M is polynomial in #A = n,

we can assume without loss of generality that the work tape of M has length

k#logn$, where k is constant. Hence, the contents of this tape can be stored by α

in k registers, each holding a value a ∈ A whose binary expansion represents the

relevant portion of the work tape.

In order to store head positions of M , the program α uses counters, which are

simulated as follows. Since Σ is mono-unary, one can define a deterministic regular

program that plays the role of the program Nextm of Proposition 13.7. This is the

only place where we crucially use the assumption about Σ. Hence, α can compute

the successor function that counts up to n − 1 in an n-element structure. Using

several registers, α can thus count up to a polynomial number of steps.

MIT Press Math7X9/2010/08/25:15:15 Page 323

324 Chapter 13

The bits of the code �Aw� can be read off directly from A and the first m + 1

registers x0, . . . , xm, which store the initial values of w. For this it is enough to have

polynomial-size arithmetic on counters, as explained above.

Now α can simulate the computation of M step by step, updating the contents

of M ’s work tape and M ’s head positions. It halts if and only if M eventually

reaches an accepting state.

Theorem 13.12: Over a rich vocabulary Σ, SP(dstk) and SP(stk) capture P .

Proof The proof is very similar to the proof of Theorem 13.11. Instead of mutual

simulation with O(log n)-space-bounded Turing machines, we work with Cook’s

O(log n) auxiliary pushdown automata (APDAs); see Chapter 14 of Hopcroft and

Ullman (1979) for the definition. The pushdown store of the APDA directly simu-

lates the algebraic stack of a regular program. It follows from Cook’s theorem (see

Theorem 14.1 of Hopcroft and Ullman (1979)) that languages accepted by deter-

ministic/nondeterministic O(log n) APDAs coincide with P . The program Nextm

of Proposition 13.7 is used to simulate counters as in the proof of Theorem 13.11.

Theorem 13.13: If Σ is a rich vocabulary, then SP(darray) and SP(array)

capture PSPACE .

Proof Again, the proof is very similar to that of Theorem 13.11. This time we

mutually simulate deterministic/nondeterministic regular programs with arrays and

deterministic/nondeterministic polynomial space Turing machines. By Savitch’s

theorem (Hopcroft and Ullman, 1979, Theorem 12.11) it follows that both models of

Turing machines accept the same class of languages, namely PSPACE . To simulate

counters for the backwards reduction, we need a deterministic regular program with

arrays that performs the same function as the program Nextm of Proposition 13.7.

The easy details are left to the reader.

13.3 Bibliographical Notes

The Π1
1-completeness of DL was first proved by Meyer, and Theorem 13.1 appears

in Harel et al. (1977). The proof given here is from Harel (1985). Theorem 13.4 is

from Meyer and Halpern (1982). That the fragment of DL considered in Theorem

13.5 is not r.e., was proved by Pratt (1976). Theorem 13.6 follows from Harel and

Kozen (1984).

MIT Press Math7X9/2010/08/25:15:15 Page 324

Complexity 325

The name “spectral complexity” was proposed by Tiuryn (1986), although

the main ideas and many results concerning this notion were already present

in Tiuryn and Urzyczyn (1983); the reader may consult Tiuryn and Urzyczyn

(1988) for the full version. This notion is an instance of the so-called second-

order spectrum of a formula. First-order spectra were investigated by Sholz (1952),

from which originates the well known Spectralproblem. The reader can find more

about this problem and related results in the survey paper by Börger (1984).

Proposition 13.7 and the notion of a natural chain is from Urzyczyn (1983a).

The results of Section 13.2 are from Tiuryn and Urzyczyn (1983, 1988); see the

latter for the complete version. A result similar to Theorem 13.12 in the area

of finite model theory was obtained by Sazonov (1980) and independently by

Gurevich (1983). Higher-order stacks were introduced in Engelfriet (1983) to study

complexity classes. Higher-order arrays and stacks in DL were considered by Tiuryn

(1986), where a strict hierarchy within the class of elementary recursive sets was

established. The main tool used in the proof of the strictness of this hierarchy is

a generalization of Cook’s auxiliary pushdown automata theorem for higher-order

stacks, which is due to Kowalczyk et al. (1987).

Exercises

13.1. Prove Theorem 13.4 for termination or total correctness formulas of the form

ψ → <α>ϕ.

13.2. Prove Theorem 13.5 for partial correctness assertions of the form ψ → [α]ϕ.

13.3. Prove Theorem 13.2 for DL(dreg).

13.4. Prove Theorem 13.5 for DL(dreg).

13.5. Show that for every structure A, the image CA(N) is the substructure of A

generated by the empty set; that is, the least substructure of A.

13.6. Write a recursive procedure that computes the successor function with respect

to the natural chain in Aw (see Proposition 13.7).

13.7. Show that if a vocabulary Σ contains no function symbols of positive arity,

then DL(r.e.) reduces to first-order logic over all structures.

MIT Press Math7X9/2010/08/25:15:15 Page 325

326 Chapter 13

13.8. Show that for a rich vocabulary Σ and a given n > 0, there are exponentially

many (in n) pairwise nonisomorphic Σ-structures A such that #A = n and A is

generated by the empty set.

13.9. Show that for a poor vocabulary Σ and for a given n > 0, there are

polynomially many (in n) pairwise nonisomorphic Σ-structures A such that #A = n

and A is generated by the empty set.

13.10. Let Σ be a rich vocabulary. Show that for every A ∈ Sn, the length of �A�
is polynomial in n.

13.11. Show that for every rich vocabulary Σ and m ≥ 0, the language HΣ
m is in

LOGSPACE .

13.12. (Tiuryn (1986)) Show that if the vocabulary Σ is rich, then the spectra of

deterministic/nondeterministic regular programs with an algebraic stack and arrays

capture EXPTIME .

13.13. Let Σ be a poor vocabulary. Give an encoding ��A�� ∈ {0, 1}∗ of finite

structures A ∈ Sn such that the length of ��A�� is O(log n).

13.14. Let Σ be a poor vocabulary. Redefine the notion of a spectrum following the

encoding of structures for poor vocabularies, and show that the complexity classes

thus captured by spectra become exponentially higher. For example:

• spectra of deterministic regular programs capture DSPACE (n);

• spectra of nondeterministic regular programs capture NSPACE(n);

• spectra of regular programs with an algebraic stack capture DTIME (2O(n));

• spectra of regular programs with arrays capture DSPACE (2O(n)) (see Tiuryn

and Urzyczyn (1988)).

MIT Press Math7X9/2010/08/25:15:15 Page 326

14 Axiomatization

This chapter deals with axiomatizing first-order Dynamic Logic. We divide our

treatment along the same lines taken in Chapters 12 and 13, dealing with the

uninterpreted and interpreted cases separately. We must remember, though, that

in both cases the relevant validity problems are highly undecidable, something we

will have to find a way around.

14.1 The Uninterpreted Level

Recall from Section 13.1 that validity in DL is Π1
1-complete, but only r.e. when

restricted to simple termination assertions. This means that termination (or total

correctness when the programs are deterministic) can be fully axiomatized in the

standard sense. This we do first, and we then turn to the problem of axiomatizing

full DL.

Completeness for Termination Assertions

Although the reader may feel happy with Theorem 13.4, it should be stressed that

only very simple computations are captured by valid termination assertions:

Proposition 14.1: Let ϕ→ <α>ψ be a valid formula of DL, where ϕ and ψ are

first-order and α contains first-order tests only. There exists a constant k ≥ 0 such

that for every structure A and state u, if A, u � ϕ, there is a computation sequence

σ ∈ CS (α) of length at most k such that A, u � <σ>ψ.

Proof The proof is left as an exercise (Exercise 14.1).

Nevertheless, since the validity problem for such termination assertions is r.e.,

it is of interest to find a nicely-structured complete axiom system. We propose the

following.

Axiom System 14.2:

Axiom Schemes

• all instances of valid first-order formulas;

• all instances of valid formulas of PDL;

• ϕ[x/t]→ <x := t>ϕ, where ϕ is a first-order formula.

MIT Press Math7X9/2010/08/25:15:15 Page 327

328 Chapter 14

Inference Rules

• modus ponens:

ϕ, ϕ→ ψ

ψ

We denote provability in Axiom System 14.2 by �
S1
.

Lemma 14.3: For every first-order formula ψ and for every sequence σ of atomic

assignments and atomic tests, there is a first-order formula ψσ such that

� ψσ ↔ <σ>ψ.

Proof The proof is left as an exercise (Exercise 14.2).

Theorem 14.4: For any DL formula of the form ϕ→ <α>ψ, for first-order ϕ and

ψ and program α containing first-order tests only,

� ϕ→ <α>ψ ⇐⇒ �S1 ϕ→ <α>ψ.

Proof Soundness (⇐=) is obvious. The proof of completeness (=⇒) proceeds by

induction on the structure of α and makes heavy use of the compactness of first-

order logic. We present the case for ϕ→ <β ∪ γ>ψ.
By assumption, � ϕ → <β ∪ γ>ψ, therefore � ϕ → ∨

σ∈CS(β∪γ) ψσ, where ψσ
is the first-order equivalent to <σ>ψ from Lemma 14.3. By the compactness of

first-order logic, � ϕ → ∨
σ∈C ψσ for some finite set of seqs C ⊆ CS (β ∪ γ) =

CS (β) ∪ CS (γ). This can be written

� ϕ → (
∨
σ∈C1

ψσ ∨
∨
τ∈C2

ψτ)

for some finite sets C1 ⊆ CS (β) and C2 ⊆ CS (γ). Since the last formula is first-

order and valid, by the completeness of first-order logic we have

�
S1

ϕ → (
∨
σ∈C1

ψσ ∨
∨
τ∈C2

ψτ). (14.1.1)

However, since C1 ⊆ CS (β) and C2 ⊆ CS (γ), we have �
∨
σ∈C1

ψσ → <β>ψ

and �
∨
τ∈C2

ψτ → <γ>ψ. Applying the inductive hypothesis to each yields �
S1∨

σ∈C1
ψσ → <β>ψ and �

S1

∨
τ∈C2

ψτ → <γ>ψ. By (14.1.1) and propositional

MIT Press Math7X9/2010/08/25:15:15 Page 328

Axiomatization 329

reasoning, we obtain

�
S1

ϕ → (<β>ψ ∨ <γ>ψ),

which together with an instance of the PDL tautology <β>ψ ∨ <γ>ψ → <β ∪ γ>ψ
yields �S1 ϕ→ <β ∪ γ>ψ.

Remark 14.5: The result also holds if α is allowed to involve tests that are

themselves formulas as defined in the theorem.

Infinitary Completeness for the General Case

Given the high undecidability of validity in DL, we cannot hope for a complete

axiom system in the usual sense. Nevertheless, we do want to provide an orderly

axiomatization of valid DL formulas, even if this means that we have to give up the

finitary nature of standard axiom systems.

In this section, we present a complete infinitary axiomatization of DL that

includes an inference rule with infinitely many premises. Before doing so, however,

we must get a certain technical complication out of the way. We would like to be able

to consider valid first-order formulas as axiom schemes, but instantiated by general

formulas of DL. In order to make formulas amenable to first-order manipulation, we

must be able to make sense of such notions as “a free occurrence of x in ϕ” and the

substitution ϕ[x/t]. For example, we would like to be able to use the axiom scheme

of the predicate calculus ∀x ϕ→ ϕ[x/t], even if ϕ contains programs.

The problem arises because the dynamic nature of the semantics of DL may

cause a single occurrence of a variable in a DL formula to act as both a free and

bound occurrence. For example, in the formula <while x ≤ 99 do x := x+ 1>1,

the occurrence of x in the expression x + 1 acts as both a free occurrence (for the

first assignment) and as a bound occurrence (for subsequent assignments).

There are several reasonable ways to deal with this, and we present one for

definiteness. Without loss of generality, we assume that whenever required, all

programs appear in the special form

<z := x ; α ; x := z>ϕ (14.1.2)

where x = (x1, . . . , xn) and z = (z1, . . . , zn) are tuples of variables, z := x stands

for

z1 := x1 ; · · · ; zn := xn

(and similarly for x := z), the xi do not appear in α, and the zi are new variables

MIT Press Math7X9/2010/08/25:15:15 Page 329

330 Chapter 14

appearing nowhere in the relevant context outside of the program α. The idea is

to make programs act on the “local” variables zi by first copying the values of

the xi into the zi, thus freezing the xi, executing the program with the zi, and

then restoring the xi. This form can be easily obtained from any DL formula by

consistently changing all variables of any program to new ones and adding the

appropriate assignments that copy and then restore the values. Clearly, the new

formula is equivalent to the old. Given a DL formula in this form, the following are

bound occurrences of variables:

• all occurrences of x in a subformula of the form ∃x ϕ;
• all occurrences of zi in a subformula of the form (14.1.2) (note, though, that zi
does not occur in ϕ at all);

• all occurrences of xi in a subformula of the form (14.1.2) except for its occurrence

in the assignment zi := xi.

Every occurrence of a variable that is not bound is free. Our axiom system will

have an axiom that enables free translation into the special form discussed, and in

the sequel we assume that the special form is used whenever required (for example,

in the assignment axiom scheme below).

As an example, consider the formula:

∀x (<y := f(x); x := g(y, x)>p(x, y))

→ <z1 := h(z); z2 := y; z2 := f(z1); z1 := g(z2, z1); x := z1; y := z2>p(x, y).

Denoting <y := f(x);x := g(y, x)>p(x, y) by ϕ, the conclusion of the implication is

just ϕ[x/h(z)] according to the convention above; that is, the result of replacing all

free occurrences of x in ϕ by h(z) after ϕ has been transformed into special form.

We want the above formula to be considered a legal instance of the assignment

axiom scheme below.

Now consider the following axiom system.

Axiom System 14.6:

Axiom Schemes

• all instances of valid first-order formulas;

• all instances of valid formulas of PDL;

• <x := t>ϕ↔ ϕ[x/t];

• ϕ↔ ϕ̂, where ϕ̂ is ϕ in which some occurrence of a program α has been replaced

MIT Press Math7X9/2010/08/25:15:15 Page 330

Axiomatization 331

by the program z := x; α′; x := z for z not appearing in ϕ, and where α′ is α with

all occurrences of x replaced by z.

Inference Rules

• modus ponens:

ϕ, ϕ→ ψ

ψ

• generalization:

ϕ

[α]ϕ
and

ϕ

∀xϕ
• infinitary convergence:

ϕ→ [αn]ψ, n ∈ ω
ϕ→ [α∗]ψ

Provability in Axiom System 14.6, denoted by �
S2
, is the usual concept for

systems with infinitary rules of inference; that is, deriving a formula using the

infinitary rule requires infinitely many premises to have been previously derived.

Axiom System 14.6 consists of an axiom for assignment, facilities for proposi-

tional reasoning about programs and first-order reasoning with no programs (but

with programs possibly appearing in instantiated first-order formulas), and an in-

finitary rule for [α∗]. The dual construct, <α∗>, is taken care of by the “unfolding”

validity of PDL:

<α∗>ϕ ↔ (ϕ ∨ <α;α∗>ϕ).
See Example 14.8 below.

The main result here is:

Theorem 14.7: For any formula ϕ of DL,

� ϕ ⇐⇒ �
S2
ϕ.

Proof sketch. Soundness is straightforward. Completeness can be proved by adapt-

ing any one of the many known completeness proofs for the classical infinitary logic,

Lω1ω . Algebraic methods are used in Mirkowska (1971), whereas Harel (1984) uses

Henkin’s method. For definiteness, we sketch an adaptation of the proof given in

Keisler (1971).

MIT Press Math7X9/2010/08/25:15:15 Page 331

332 Chapter 14

Take the set At of atoms to consist of all consistent finite sets of formulas

possibly involving elements from among a countable set G of new constant symbols.

By an atom A being consistent, we mean that it is not the case that �
S2
¬Â, where

Â =
∧
ϕ∈A ϕ. It is now shown how to construct a model for any A ∈ At. The result

will then follow from the fact that for any consistent formula ϕ, {ϕ} ∈ At.
Given an atom A, we define its closure CL(A) to be the least set of formulas

containing all formulas ofA and their subformulas, exactly as is done for the Fischer-

Ladner closure FL(ϕ) in Section 6.1, but which is also closed under substitution of

constants from G for arbitrary terms, and which contains c = d for each c, d ∈ G.
An infinite sequence of atoms A = A0 ⊆ A1 ⊆ A2 ⊆ · · · is now constructed.

Given Ai ∈ At, Ai+1 is constructed by considering ϕi, the i
th closed formula of

CL(A) in some fixed ordering, and checking whether Ai ∪ {ϕi} ∈ At. If so, certain
formulas are added to Ai to produce Ai+1, depending on the form of ϕi.

A typical rule of this kind is the following. If ϕi = <α∗>ψ, then we claim that

there must be some n such that Âi ∨ <αn>ψ is consistent; then we take Ai+1 to be

Ai ∪ {ϕi, <αn>ψ, ti = c}, where ti is the ith item in some fixed enumeration of

the basic terms over the current vocabulary, but with constants from G, and where

c ∈ G does not occur in Ai. To see that such an n exists, assume to the contrary

that �
S2
¬(Âi ∧ <αn>ψ) for every n. Then �

S2
Âi → [αn]¬ψ for each n. By the

infinitary convergence rule, �
S2
Âi → [α∗]ψ, which is �

S2
¬(Âi ∧ <α∗>ψ). But this

contradicts the fact that Ai ∪ {ϕi} ∈ At.
Now let A∞ =

⋃
iAi and let ĉ = {d ∈ G | (c = d) ∈ A∞}. The structure

A = (D,mA) is obtained by taking the carrier to beD = {ĉ | c ∈ G} and for example

setting mA(p)(ĉ1, . . . , ĉk) to be true iff p(c1, . . . , ck) ∈ A∞. A straightforward

induction on the complexity of formulas shows that all formulas of A∞ are true

in A.

Example 14.8: We use Axiom System 14.6 to prove the validity of the following

formula:

x = y → [(x := f(f(x)))∗]<(y := f(y))∗>x = y.

To that end, we show that for every n,

�
S2

x = y → [(x := f(f(x)))n]<(y := f(y))∗>x = y

and then apply the infinitary convergence rule to obtain the result. Let n be fixed.

MIT Press Math7X9/2010/08/25:15:15 Page 332

Axiomatization 333

We first prove

�
S2

x = y → [x := f(f(x))][x := f(f(x))] . . . [x := f(f(x))]

<y := f(y)><y := f(y)> . . . <y := f(y)> x = y (14.1.3)

with n occurrences of [x := f(f(x))] and 2n occurrences of of <y := f(y)>. This is

done by starting with the first-order validity �S2 x = y → f2n(x) = f2n(y) (where

f2n(·) abbreviates f(f(· · · (·) · · ·) with 2n occurrences of f), and then using the

assignment axiom with propositional manipulation n times to obtain

�
S2

x = y → [x := f(f(x))] . . . [x := f(f(x))]x = f2n(y),

and again 2n times to obtain (14.1.3). Having proved (14.1.3), we use the PDL

validity ϕ → <α∗>ϕ with ϕ taken to be x = y and α taken to be y := f(y), then

apply the PDL validity <α><α∗>ϕ → <α∗>ϕ 2n times with the same instantiation,

using the monotonicity rules

ϕ→ ψ

<α>ϕ→ <α>ψ

ϕ→ ψ

[α]ϕ→ [α]ψ

to obtain

�
S2

x = y → [x := f(f(x))] . . . [x := f(f(x))]<(y := f(y))∗>x = y.

Now n − 1 applications of the PDL validity [α][β]ϕ → [α;β]ϕ yield the desired

result.

14.2 The Interpreted Level

Proving properties of real programs very often involves reasoning on the interpreted

level, where one is interested in A-validity for a particular structure A. A typical

proof might use induction on the length of the computation to establish an invariant

for partial correctness or to exhibit a decreasing value in some well-founded set for

termination. In each case, the problem is reduced to the problem of verifying some

domain-dependent facts, sometimes called verification conditions . Mathematically

speaking, this kind of activity is really an effective transformation of assertions

about programs into ones about the underlying structure.

In this section, we show how for DL this transformation can be guided by a direct

induction on program structure using an axiom system that is complete relative to

any given arithmetical structure A. The essential idea is to exploit the existence, for

any given DL formula, of a first-order equivalent in A, as guaranteed by Theorem

MIT Press Math7X9/2010/08/25:15:15 Page 333

334 Chapter 14

12.6. In the axiom systems we construct, instead of dealing with the Π1
1-hardness

of the validity problem by an infinitary rule, we take all A-valid first-order formulas

as additional axioms. Relative to this set of axioms, proofs are finite and effective.

In Section 14.2 we take advantage of the fact that for partial correctness

assertions of the form ϕ → [α]ψ with ϕ and ψ first-order and α containing

first-order tests, it suffices to show that DL reduces to the first-order logic Lωω,

and there is no need for the natural numbers to be present. Thus, the system we

present in Section 14.2 works for finite structures too. In Section 14.2, we present

an arithmetically complete system for full DL that does make explicit use of natural

numbers.

Relative Completeness for Correctness Assertions

It follows from Theorem 13.5 that for partial correctness formulas we cannot hope

to obtain a completeness result similar to the one proved in Theorem 14.4 for

termination formulas. A way around this difficulty is to consider only expressive

structures.

A structure A for the first-order vocabulary Σ is said to be expressive for a

programming language K if for every α ∈ K and for every first-order formula

ϕ, there exists a first-order formula ψL such that A � ψL ↔ [α]ϕ. Examples of

structures that are expressive for most programming languages are finite structures

and arithmetical structures.

Consider the following axiom system:

Axiom System 14.9:

Axiom Schemes

• all instances of valid formulas of PDL;

• <x := t>ϕ↔ ϕ[x/t] for first-order ϕ.

Inference Rules

• modus ponens:

ϕ, ϕ→ ψ

ψ

• generalization:

ϕ

[α]ϕ
.

MIT Press Math7X9/2010/08/25:15:15 Page 334

Axiomatization 335

Note that Axiom System 14.9 is really the axiom system for PDL from Chapter 7

with the addition of the assignment axiom. Given a DL formula ϕ and a structure

A, denote by A �
S3
ϕ provability of ϕ in the system obtained from Axiom System

14.9 by adding the following set of axioms:

• all A-valid first-order sentences.

Theorem 14.10: For every expressive structure A and for every formula ξ of DL

of the form ϕ→ [α]ψ, where ϕ and ψ are first-order and α involves only first-order

tests, we have

A � ξ ⇐⇒ A �
S3
ξ.

Proof Soundness is trivial. For completeness, one proceeds by induction on the

structure of α. We present the case for α = β∗.
By the assumption, A � ϕ→ [β∗]ψ. Consider the first-order formula ([β∗]ψ)L,

which exists by the expressiveness of A, and denote it by χ. Clearly, A � ϕ → χ

and A � χ→ ψ. Since both these formulas are first-order and are A-valid, they are

axioms, so we have:

A �
S3

ϕ → χ (14.2.1)

A �S3 χ → ψ. (14.2.2)

However, by the semantics of β∗ we also have A � χ → [β]χ, from which the

inductive hypothesis yields A �S3 χ→ [β]χ. Applying the generalization rule with

[β∗] and using modus ponens with the PDL induction axiom of Chapter 7 yields

A �S3 χ → [β∗]χ. This together with (14.2.1), (14.2.2), and PDL manipulation

yields A �
S3
ϕ→ [β∗]ψ.

Remark 14.11: The theorem holds also if α is allowed to involve tests of the

form <α>χ, where χ is first-order and α is constructed inductively in the same way.

Arithmetical Completeness for the General Case

In this section we prove the completeness of an axiom system for full DL. It is similar

in spirit to the system of the previous section in that it is complete relative to the

formulas valid in the structure under consideration. However, this system works

for arithmetical structures only. It is not tailored to deal with other expressive

structures, notably finite ones, since it requires the use of the natural numbers. The

kind of completeness result proved here is thus termed arithmetical.

MIT Press Math7X9/2010/08/25:15:15 Page 335

336 Chapter 14

As in Section 12.2, we will prove the results for the special structure N, omitting

the technicalities needed to deal with general arithmetical structures, a task we leave

to the exercises. The main difference in the proofs is that in N we can use variables

n, m, etc., knowing that their values will be natural numbers. We can thus write

n + 1, for example, assuming the standard interpretation. When working in an

unspecified arithmetical structure, we have to precede such usage with appropriate

predicates that guarantee that we are indeed talking about that part of the domain

that is isomorphic to the natural numbers. For example, we would often have to

use the first-order formula, call it nat(n), which is true precisely for the elements

representing natural numbers, and which exists by the definition of an arithmetical

structure.

Consider the following axiom system:

Axiom System 14.12:

Axiom Schemes

• all instances of valid first-order formulas;

• all instances of valid formulas of PDL;

• <x := t>ϕ↔ ϕ[x/t] for first-order ϕ.

Inference Rules

• modus ponens:

ϕ, ϕ→ ψ

ψ

• generalization:

ϕ

[α]ϕ
and

ϕ

∀xϕ
• convergence:

ϕ(n+ 1)→ <α>ϕ(n)

ϕ(n)→ <α∗>ϕ(0)
for first order ϕ and variable n not appearing in α.

Remark 14.13: For general arithmetical structures, the +1 and 0 in the rule of

convergence denote suitable first-order definitions.

MIT Press Math7X9/2010/08/25:15:15 Page 336

Axiomatization 337

As in Axiom System 14.9, denote by A �
S4

ϕ provability of ϕ in the system

obtained from Axiom System 14.12 by adding all A-valid first-order sentences as

axioms.

Interestingly, the infinitary system 14.6 and the arithmetical system 14.12 deal

with α∗ in dual ways. Here we have the arithmetical convergence rule for <α∗>,
and [α∗] is dealt with by the PDL induction axiom, whereas in 14.6 we have the

infinitary rule for [α∗], and <α∗> is dealt with by the PDL unfolding axiom.

Before we address arithmetical completeness, we prove a slightly more specific

version of the expressiveness result of Theorem 12.6. Again, we state it for N, but
an appropriately generalized version of it holds for any arithmetical structure.

Lemma 14.14: For any DL formula ϕ and program α, there is a first-order

formula χ(n) with a free variable n such that for any state u in the structure

N, we have

N, u � χ(n) ⇐⇒ N, u � <αu(n)>ϕ.

(Recall that u(n) is the value of variable n in state u.)

Proof The result is obtained as in the proof of Theorem 12.6 in the following way:

χ(n) will be constructed just as (<α>ϕ)L in that proof. Instead of taking ϕα(y)

which defines the set {�σ� | σ ∈ CS (α)}, we take a formula ϕα(n, y) defining the

r.e. set

{(n, �σ1 · · ·σn�) ∈ N2 | σ1, . . . , σn ∈ CS (α)}.
The rest of the proof is as in Theorem 12.6.

We first show that Axiom System 14.12 is arithmetically complete for first-order

termination assertions.

Theorem 14.15: For every formula ξ of DL of the form ϕ→ <α>ψ, for first-order

formulas ϕ and ψ and program α involving only first-order tests,

N � ξ ⇐⇒ N �
S4
ξ.

Proof Soundness is trivial. For completeness, we proceed by induction on the

structure of α. As in Theorem 14.10, we present the case for α = β∗.
By assumption, N � ϕ → <β∗>ψ. Consider the first-order formula χ(n) of

Lemma 14.14 for ψ and α. Clearly N � ϕ → ∃n χ(n) for n not appearing in ϕ, ψ

MIT Press Math7X9/2010/08/25:15:15 Page 337

338 Chapter 14

or α, and N � χ(0)→ ψ. Hence, these being first-order, we have

N �S4 ϕ → ∃n χ(n),
N �

S4
χ(0) → ψ.

However, from the meaning of χ(n), we also have N � χ(n + 1) → <β>χ(n). By

the inductive hypothesis, we obtain N �
S4
χ(n + 1) → <β>χ(n). The convergence

rule now yields N �
S4
χ(n) → <β∗>χ(0). Applying the generalization rule with ∀n

and using first-order manipulation, we obtain N �
S4
∃n χ(n) → <β∗>χ(0), which

together with the two formulas above gives the result.

The main result here is the following, which holds for any arithmetical structure

(see Exercise 14.6):

Theorem 14.16: For every formula ξ of DL,

N � ξ ⇐⇒ N �
S4
ξ.

Proof Soundness is obvious. For completeness, let N � ξ. Define kξ to be the sum

of the number of programs in ξ and the number of quantifiers prefixing non-first-

order formulas in ξ. (Of course, we also count those quantifiers and programs that

appear within tests.) We proceed by induction on kξ.

If kξ = 0, ξ must be first-order, so that N �
S4
ξ. For kξ > 0, we can assume

that ξ is in conjunctive normal form and then deal with each conjunct separately.

Without loss of generality (see Exercise 14.7), it suffices to deal with formulas of

the form ϕ→ op ψ, where op ∈ {∀x, ∃x, <α>, [α]} for some x or α, and where op ψ

is not first-order. This way, we have kϕ, kψ < kξ.

Now consider the first-order formulas ϕL and ψL, which exist by the expres-

siveness of N. Clearly, since N � ϕ→ op ψ, we also have N � ϕL → op ψL. We now

claim that this implication is in fact provable:

N �
S4

ϕL → op ψL. (14.2.3)

For op ∈ {∀x, ∃x}, the claim is trivial, since the formula is first-order. For the

cases [α] and <α>, the proof proceeds by induction on α exactly as in the proofs

of Theorems 14.10 and 14.15, respectively. The only difference is that the main

inductive hypothesis of the present proof is employed in dealing with non-first-

order tests.

Now, from N � ϕ → ϕL and N � ψL → ψ, we deduce N �
S4

ϕ → ϕL and

N �
S4
ψL → ψ by the inductive hypothesis, since kϕ, kψ < kξ. These combine with

MIT Press Math7X9/2010/08/25:15:15 Page 338

Axiomatization 339

(14.2.3) and some PDL and first-order manipulation to yield N �
S4
ϕ → op ψ, as

desired.

The use of the natural numbers as a device for counting down to 0 in the

convergence rule of Axiom System 14.12 can be relaxed. In fact, any well-founded

set suitably expressible in any given arithmetical structure suffices. Also, it is not

necessary to require that an execution of α causes the truth of the parameterized

ϕ(n) in that rule to decrease exactly by 1; it suffices that the decrease is positive

at each iteration.

Example 14.17: Consider the following program for computing vw for natural

numbers v and w.

(z, x, y) := (1, v, w);

while y > 0 do

if even(y)

then (x, y) := (x2, y/2)

else (z, y) := (zx, y − 1)

We shall prove using Axiom System 14.12 that this program terminates and

correctly computes vw in z. Specifically, we show

N �
S4

(z = 1 ∧ x = v ∧ y = w)

→ <(((y > 0 ∧ even(y))?; x := x2; y := y/2)

∪ (odd(y)?; z := z · x; y := y − 1))∗> (y = 0 ∧ z = vw).

Consider the formula above as ϕ→ <(α∪β)∗>ψ. We construct a first-order formula

χ(n), for which we show

(i) N �
S4
ϕ→ ∃n χ(n)

(ii) N �
S4
χ(0)→ ψ

(iii) N �
S4
χ(n+ 1)→ <α ∪ β>χ(n).

Application of the convergence rule to (iii) and further manipulation yields the

result.

Let

χ(n)
def
= zxy = vw ∧ n = #log2 y$+ 1bin(y).

Here 1bin(y) is the function yielding the number of 1’s in the binary representation

of y. Clearly, 1bin(y), even(y), odd(y) and #log2 y$ are all computable, hence they

MIT Press Math7X9/2010/08/25:15:15 Page 339

340 Chapter 14

are first-order definable in N. We consider their appearance in χ(n) as abbreviations.

Also, consider y := y/2 as an abbreviation for the obvious equivalent program over

N, which need be defined only for even y.

To prove (i) and (iii), all we need to show is that the formulas therein are N-
valid, since they are first-order and will thus be axioms. For example, χ(0) → ψ

is

(zxy = vw ∧ 0 = #log2 y$+ 1bin(y)) → (y = 0 ∧ z = vw),

which is clearly N-valid, since 1bin(y) = 0 implies y = 0, which in turn implies

zxy = z.

To prove (iii), we show

N �
S4

(χ(n+ 1) ∧ y > 0 ∧ even(y)) → <α>χ(n) (14.2.4)

and

N �
S4

(χ(n+ 1) ∧ odd(y)) → <β>χ(n). (14.2.5)

PDL and first-order reasoning will then yield the desired (iii). Indeed, (14.2.4) is

obtained by applying the assignment axiom and the PDL axiom for tests to the

following formula:

(zxy = vw ∧ n+ 1 = #log2 y$+ 1bin(y) ∧ y > 0 ∧ even(y))

→ (y > 0 ∧ even(y) ∧ z = (x2)y/2 = vw ∧ n = #log2(y/2)$+ 1bin(y/2)).

This formula is N-valid (and hence an axiom), since for any even y, 1bin(y) =

1bin(y/2) and #log2(y)$ = 1 + #log2(y/2)$.
Similarly, (14.2.5) is obtained from the formula:

(zxy = vw ∧ n+ 1 = #log2 y$+ 1bin(y) ∧ odd(y))

→ (odd(y) ∧ zxxy−1 = vw ∧ n = #log2(y − 1)$+ 1bin(y − 1)).

This formula is also N-valid, since for odd y, 1bin(y) = 1 + 1bin(y − 1) and

#log2 y$ = #log2(y − 1)$.
Note that the proof would have been easier if the truth of χ(n) were allowed to

“decrease” by more than 1 each time around the loop. In such a case, and with a

more liberal rule of convergence (see Exercise 14.8), we would not have had to be

so pedantic about finding the exact quantity that decreases by 1. In fact, we could

have taken χ(n) to be simply zxy = vw ∧ n = y. The example was chosen in its

present form to illustrate the fact (which follows from the completeness result) that

in principle the strict convergence rule can always be used.

MIT Press Math7X9/2010/08/25:15:15 Page 340

Axiomatization 341

In closing, we note that appropriately restricted versions of all axiom systems of

this chapter are complete for DL(dreg). In particular, as pointed out in Section 5.7,

the Hoare while-rule

ϕ ∧ ξ → [α]ϕ

ϕ→ [while ξ do α](ϕ ∧ ¬ξ)
results from combining the generalization rule with the induction and test axioms

of PDL, when ∗ is restricted to appear only in the context of a while statement;

that is, only in the form (ξ?; p)∗; (¬ξ)?.

14.3 Bibliographical Notes

Completeness for termination assertions (Theorem 14.4) is from Meyer and Halpern

(1982). Infinitary completeness for DL (Theorem 14.7) is based upon a similar result

for Algorithmic Logic (see Section 16.1) by Mirkowska (1971). The proof sketch

presented here is an adaptation of Henkin’s proof for Lω1ω appearing in Keisler

(1971).

The notion of relative completeness and Theorem 14.10 are due to Cook (1978).

The notion of arithmetical completeness and Theorems 14.15 and 14.16 are from

Harel (1979).

The use of invariants to prove partial correctness and of well-founded sets to

prove termination are due to Floyd (1967). An excellent survey of such methods

and the corresponding completeness results appears in Apt (1981).

Some contrasting negative results are contained in Clarke (1979), Lipton (1977),

and Wand (1978).

Exercises

14.1. Prove Proposition 14.1.

14.2. Prove Lemma 14.3.

14.3. Complete the proof of Theorem 14.4.

14.4. Show that every finite structure is expressive for the regular programs of DL.

14.5. Complete the proof of Theorem 14.10.

MIT Press Math7X9/2010/08/25:15:15 Page 341

342 Chapter 14

14.6. Phrase and prove Theorems 14.15 and 14.16 for general arithmetical struc-

tures.

14.7. Justify the special form of formulas that is used in the proof of Theorem

14.16.

14.8. Formulate a more liberal rule of convergence as in the discussion following

Theorem 14.16. Prove that if the convergence rule of Axiom System 14.12 is replaced

with the new one, the resulting system is arithmetically complete.

14.9. Extend Axiom Systems 14.6 and 14.12 to handle array assignments, and prove

the infinitary and arithmetical completeness, respectively, of the resulting systems.

MIT Press Math7X9/2010/08/25:15:15 Page 342

15 Expressive Power

The subject of study in this chapter is the relative expressive power of languages.We

will be primarily interested in comparing, on the uninterpreted level, the expressive

power of various versions of DL. That is, for programming languages P1 and P2 we

will study whether DL(P1) ≤ DL(P2) holds. Recall from Chapter 12 (Section 12.1)

that the latter relation means that for each formula ϕ in DL(P1), there is a formula

ψ in DL(P2) such that A, u � ϕ↔ ψ for all structures A and initial states u.

Before describing the contents of this chapter, we pause to make two comments.

The first is that by studying the expressive power of logics, rather than the com-

putational power of programs, we are able to compare, for example, deterministic

and nondeterministic programming languages. More on this will appear in Sec-

tion 15.2. The second comment is that the answer to the fundamental question

“DL(P1) ≤ DL(P2)?” may depend crucially on the vocabulary over which we con-

sider logics and programs. Indeed, as we will see later, the answer may change from

“yes” to “no” as we move from one vocabulary to another. For this reason we always

make clear in the theorems of this chapter our assumptions on the vocabulary.

Section 15.1 introduces the very useful concept of the unwinding of a program.

Some basic properties of this notion are proved there. Section 15.2 establishes the

fundamental connection between spectra of formulas (i.e. codes of finite interpreta-

tions in which a given formula holds) and the relative expressive power of logics of

programs. This section also makes some connections with computational complexity

theory.

Section 15.3 studies the important question of the role nondeterminism plays

in the expressive power of logic. We discuss separately the case of regular programs

(Section 15.3) and regular programs with a Boolean stack (Section 15.3). The more

powerful programs are discussed in Section 15.3.

In Section 15.4 we study the question of the impact on the expressive power

of bounded vs. unbounded memory. We discuss separately the cases of a polyadic

vocabulary (Section 15.4) and a monadic vocabulary (Section 15.4).

The power of a Boolean stack vs. an algebraic stack and vs. pure regular

programs is discussed in Section 15.5. Finally, in Section 15.6 we discuss some

of the aspects of adding wildcard assignment to other programming constructs.

For now, we adopt a very liberal notion of a program. Let Σ be a finite

vocabulary. All we assume about the programming language is that for every

program α we have a set CS (α) of seqs that describe the semantics of α in all

structures of the same signature. Hence, for every Σ-structure A we have a binary

MIT Press Math7X9/2010/08/25:15:15 Page 343

344 Chapter 15

input/output relation mA(α) ⊆ SA × SA defined by the equation

mA(α) =
⋃
{mA(σ) | σ ∈ CS (α)}.

We assume that with each program α ∈ K there is associated a finite set of

individual variables FV (α) ⊆ V that occur in α. The property that we need

is that for all u, v ∈ SA, if (u, v) ∈ mA(α) then u(x) = v(x) for all x ∈ V − FV (α);

that is, α does not change the values of individual variables that are not in FV (α).

15.1 The Unwind Property

We present a powerful technique that can be sometimes used to establish that one

logic is strictly less expressive than another. This technique is based on the notion

of the unwind property. We say that α unwinds in a structure A if there exists

m ∈ N and seqs σ1, . . . , σm ∈ CS (α) such that

mA(α) = mA(σ1) ∪ · · · ∪mA(σm).

The next result says that the unwind property is invariant under elementary

equivalence of structures.

Proposition 15.1: The unwind property is invariant under elementary equiv-

alence of structures. That is, for every program α and for all structures A and B

that are elementarily equivalent,

mA(α) = mA(σ1) ∪ · · · ∪mA(σm) =⇒ mB(α) = mB(σ1) ∪ · · · ∪mB(σm),

where σ1, . . . , σm ∈ CS (α).

Proof Assume that α unwinds in A; that is, there are m ∈ N and σ1, . . . , σm ∈
CS (α) such that

mA(α) = mA(σ1) ∪ · · · ∪mA(σm). (15.1.1)

For each i ∈ N, let ϕi be a first-order formula describing the input-output

relation of σi; that is, if x1, . . . , xn are all registers of α and y1, . . . , yn are new

variables, then

|= ϕi ↔ <σi>(x1 = y1 ∧ · · · ∧ xn = yn).

By Lemma 14.3, we know that there exists such a formula.

MIT Press Math7X9/2010/08/25:15:15 Page 344

Expressive Power 345

It follows from (15.1.1) that for all i ∈ N, the formula

∀x1 . . . ∀xn ∀y1 . . . ∀yn (ϕi → (ϕ1 ∨ · · · ∨ ϕn))

holds in A. Thus, it holds in B as well, therefore

mB(α) ⊆ mB(σ1) ∪ · · · ∪mB(σm).

Since the opposite inclusion always holds, it follows that α unwinds in B.

Lemma 15.2: If ϕ is a DL formula over a programming language P and A is

a structure such that all programs that occur in ϕ unwind in A, then there is a

first-order formula ϕ such that

ThA |= ϕ ↔ ϕ.

Proof The proof is by induction on ϕ. The only non-trivial step is when ϕ is

[α]ϕ′. If the program α unwinds in A, then for some m ∈ N and for some

σ1, . . . , σm ∈ CS (α), the programs α and σ1 ∪ · · · ∪ σm are equivalent in A, and by

Proposition 15.1 they are equivalent in all models of Th(A). By Lemma 14.3, there

is a first-order formula ψα that in all models describes the input-output relation of

σ1 ∪ · · · ∪ σm; that is,

|= ψα ↔ <σ1 ∪ · · · ∪ σm>(x1 = y1 ∧ · · · ∧ xn = yn),

where x1, . . . , xn are all the registers of α and y1, . . . , yn are fresh variables. By the

inductive hypothesis, there is a first-order formula ϕ′ such that

ThA |= ϕ′ ↔ ϕ′.

Assuming that y1, . . . , yn do not occur free in ϕ′, we have

ThA |= [α]ϕ′ ↔ ∀y1 . . . ∀yn (ψα → ϕ′[x1/y1, . . . , xn/yn]),

which completes the proof.

Lemma 15.2 gives a useful method for showing that some programs do not

unwind. We illustrate it with the program Next0 of Proposition 13.7.

Proposition 15.3: If A is an infinite structure without proper substructures,

then Next0 does not unwind in A.

MIT Press Math7X9/2010/08/25:15:15 Page 345

346 Chapter 15

Proof Observe that the formula

∀x0 ∀x1 <Next0>1

holds in a structure A iff A has no proper substructures. Now, take an infinite struc-

ture A without proper substructures. If Next0 unwinds in A, then by Lemma 15.2

there is a first-order formula ϕ such that

ThA |= ϕ ↔ ∀x0∀x1 <Next0>1.

This contradicts the upward Löwenheim–Skolem theorem (Theorem 3.59) since

ThA contains uncountable models.

The following result shows that the unwind property can be used to separate

the expressive power of logics of programs.

Theorem 15.4: Let P1 and P2 be two programming languages over the same

first-order vocabulary, and assume that there is a program α ∈ P1 such that for an

arbitrary finite set {β1, . . . , βm} ⊆ P2 there exists a structure A with the property

that all the β1, . . . , βm unwind in A but α does not. Then DL(P2) is not reducible

to DL(P1).

Proof Let CS (α) = {σi | i ≥ 0}. Let FV (α) = {x1, . . . , xn} be all the input

registers of α. Let y1, . . . , yn be new variables. We prove that the formula

ψ = <α>(x1 = y1 ∧ · · · ∧ xn = yn)

is equivalent to no formula of DL(P2). Indeed, assume that ψ is equivalent to a

formula ϕ of DL(P2). Let β1, . . . , βm be all the programs occurring in ϕ, and take

a structure A in which each βi unwinds and α does not. The latter property means

that the set

{ψ} ∪ {¬<σ0 ∪ · · · ∪ σk>(x1 = y1 ∧ · · · ∧ xn = yn) | k ≥ 0}

is finitely satisfiable in A.

For k ≥ 0, let ψk be a first-order formula that is equivalent to

¬<σ0 ∪ · · · ∪ σk>(x1 = y1 ∧ · · · ∧ xn = yn)

in all models (see Lemma 14.3).

By Lemma 15.2, there is a first-order formula ϕ that is equivalent to ϕ over all

MIT Press Math7X9/2010/08/25:15:15 Page 346

Expressive Power 347

structures elementarily equivalent to A; that is,

ThA |= ϕ ↔ ϕ.

Since ϕ is equivalent to ψ, it follows that the set

ThA ∪ {ϕ} ∪ {ψk | k ≥ 0}
is finitely satisfiable. By the compactness property for predicate logic (Theo-

rem 3.57), it has a model B. This model is such that ϕ holds but ψ does not.

This contradiction completes the proof.

15.2 Spectra and Expressive Power

The goal of the present section is to relate the question of comparing the expressive

power of Dynamic Logic over various programming languages to the complexity

of spectra of the corresponding programming languages. As we will see later, for

sufficiently powerful programming languages, the only way to distinguish between

the corresponding logics is by investigating the behavior of the programs over finite

interpretations.

An important notion often studied in the area of comparative schematology is

that of translatability of one programming language into another. Let K1 and K2

be programming languages. We say that a program β ∈ K2 simulates a program

α ∈ K1 if for every Σ-structure A the following holds:

{(u, v �FV (α)) | (u, v) ∈ mA(α), u is initial}
= {(u, v �FV (α)) | (u, v) ∈ mA(β), u is initial}.

The reason for restricting v in the above formula to FV (α) is to allow β to use

auxiliary variables and perhaps some other data types. We say that a program

α ∈ K1 is translatable into K2, if there exists β ∈ K2 that simulates α. Finally, K1

is translatable into K2, denoted K1 ≤ K2, if every program of K1 is translatable

into K2.

A programming language K is said to be admissible if:

(i) it is translatable into the class of r.e. programs;

(ii) all atomic regular programs and all tests are translatable into K;

(iii) K is semantically closed under composition, if-then-else and while-do; e.g.,

closure under composition means that if α, β ∈ K, then there is γ ∈ K such that

for every A, mA(γ) = mA(α) ◦mA(β), and similarly for the other constructs.

MIT Press Math7X9/2010/08/25:15:15 Page 347

348 Chapter 15

Thus, if K is admissible, we will treat it as being syntactically closed under the

above constructs. This will allow us to write expressions like if ϕ then α else β,

where ϕ is a quantifier free formula and α, β ∈ K. Such expressions, even though

they do not necessarily belong to K, are semantically equivalent to programs in K.

This convention will simplify notation and should never lead to confusion.

The relation of translatability can be further weakened if all we care about

is the expressive power of the logic. For example, as we will see later, there are

programming languages K1 and K2 such that DL(K1) ≤ DL(K2) holds, even

though K1 contains nondeterministic programs and K2 contains only deterministic

programs, so that K1 ≤ K2 is impossible. It follows from the next result that all

that really matters for the expressive power of the relevant logic are the termination

properties of programs in the programming language.

Proposition 15.5: Let K be admissible. For every formula ϕ of DL(K) there is

a formula ϕ′ of DL(K) that is equivalent in all interpretations to ϕ and such that

for every program α that occurs in ϕ′, if α occurs in the context [α]ψ, then ψ = 0.

Proof If α occurs in ϕ in the context [α]ψ with ψ
= 0, then we replace [α]ψ with

∀y1 . . . ∀ym (¬[α; (x1 = y1 ∧ · · · ∧ xm = ym)?]0 → ψ[x1/y1, . . . , xm/ym]),

where x1, . . . , xm are all variables that occur freely in α and y1, . . . , ym are fresh

variables that occur neither in α nor in ψ. Since K is admissible, it follows that

α; (x1 = y1 ∧ · · · ∧ xm = ym)? belongs to K. After a finite number of steps we

transform ϕ into the desired formula ϕ′.

The above comments motivate the following definition.K2 is said to termination-

subsume K1, denoted K1 %T K2, if for every α ∈ K1 there is β ∈ K2 such that for

every Σ-structure A and for every state u ∈ SA, we have

A, u � <α>1 ⇐⇒ A, u � <β>1.

Notice that the above is equivalent to

A, u � [α]0 ⇐⇒ A, u � [β]0.

Proposition 15.6: Let K1 and K2 be admissible programming languages.

(i) If K1 ≤ K2, then K1 %T K2.

(ii) If K1 %T K2, then DL(K1) ≤ DL(K2).

MIT Press Math7X9/2010/08/25:15:15 Page 348

Expressive Power 349

Proof The first part is immediate. The second follows immediately from Proposi-

tion 15.5.

An admissible programming languageK is said to be semi-universal if for every

m > 0, the program Nextm of Proposition 13.7 is translatable into K.

Examples of semi-universal programming languages include r.e. programs, regu-

lar programs with an algebraic stack, and regular programs with arrays. A corollary

of the following result is that the expressive power of DL over a semi-universal pro-

gramming language can be determined by investigating finite interpretations only.

Recall that a state u is Herbrand-like (see the beginning of Section 13.2) if the

values assigned by u to the individual variables (there are finitely many of them)

generate the structure.

Proposition 15.7: If K is semi-universal, then for every r.e. program α there

is β ∈ K such that α and β have the same termination properties over all infinite

interpretations; that is, for every infinite Σ-structure A and for every Herbrand-like

state u in A,

A, u � <α>1 ⇐⇒ A, u � <β>1.

Proof sketch. We sketch the proof, leaving the details to the reader. Let α be an

arbitrary r.e. program and let FV (α) ⊆ {x0, . . . , xm}. Clearly, the termination of

α in any interpretation depends only on the values of variables in FV (α) and on

the substructure generated by these values. Thus, we can assume that the state

u in the conclusion of the proposition is an Herbrand-like m-state. Let us start

by observing that using Nextm and working in an infinite interpretation gives

us counters, with a successor function that corresponds to the particular order in

which all elements of the substructure generated by the input occur in the natural

chain. Zero is represented here as the first element of the natural chain; testing for

zero and testing the equality of counters can be done easily. The control structure

of a deterministic regular program with these counters is strong enough to compute

every partial recursive function.

Now, we can use counters to simulate the Turing machine that computes

CS (α) = {σn | n ∈ N}. The regular program β that will simulate α searches

through all seqs σn starting with σ0, trying to find the first one that terminates. It

halts as soon as it finds one such σn.

In order to simulate the computation of σn, β has to be able to compute the

value of any term t with variables in {x0, . . . , xm}. This can be done as follows.

Given t, the program β computes the value of t with respect to the actual values

MIT Press Math7X9/2010/08/25:15:15 Page 349

350 Chapter 15

stored in x0, . . . , xm by first computing the values for subterms of t of depth 1, then

of depth 2, etc. Of course, in order to do this, β has to store the intermediate values.

For this we use the power of counters and the program Nextm. Using counters, β

can encode arbitrary finite sequences of natural numbers. Using Nextm gives β a

natural encoding of all the elements of the substructure generated by the input.

Now, it should be clear that being able to compute the value of any term with

variables in {x0, . . . , xm}, the program β can perform the computation of every σn.

Since K is admissible, it follows that the program described above is equivalent to

a program in K.

An admissible programming language K is divergence-closed if for every α ∈ K
there exists β ∈ K and two variables x, y ∈ V such that for every finite Herbrand-

like interpretation (A, u) with A having at least two elements,

A, u � <α>1 ⇐⇒ A, u � <β>(x = y),

A, u � [α]0 ⇐⇒ A, u � <β>(x
= y).

Informally, β decides without diverging whether α possibly terminates.

Lemma 15.8: If K is divergence-closed, then for every α ∈ K there exists γ ∈ K
such that for every finite Herbrand-like interpretation (A, u) with A having at least

two elements, we have both

A, u � <α>1 ⇐⇒ A, u � [γ]0

A, u � [α]0 ⇐⇒ A, u � <γ>1.

Proof Take as γ the program β; (x
= y)?, where β is a program that corresponds

to α by the definition of K being divergence-closed. Since K is admissible, it follows

that γ (semantically) belongs to K.

We now list some languages that are semi-universal and divergence-closed. In

some cases this depends on the vocabulary Σ.

Proposition 15.9: The following programming languages are semi-universal

and divergence-closed:

(i) For every Σ containing at least one function symbol of arity at least two, or at

least two unary function symbols:

• (deterministic/nondeterministic) regular programs with algebraic stack;

MIT Press Math7X9/2010/08/25:15:15 Page 350

Expressive Power 351

• (deterministic/nondeterministic) regular programs with arrays.

(ii) For every mono-unary Σ:

• deterministic regular programs;

• deterministic regular programs with a Boolean stack.

Proof sketch. First, we sketch the proof of (i). In the proof of Theorem 13.12 there

is a sketch of a mutual simulation between Cook’s logn-APDA’s and deterministic

regular programs with an algebraic stack. It follows from the proof of Cook’s

theorem (see Chapter 14 of Hopcroft and Ullman (1979)) that we can assume

without loss of generality that deterministic log n-APDA’s halt for every input.

Since the simulation of a deterministic logn-APDA by a deterministic regular

program α with algebraic stack is step by step, it follows that α can find out

in a finite number of steps whether the logn-APDA accepts or rejects the input.

Then α halts, assigning the same value to the special variables x and y if the input

is accepted, and assigning two different values to x and y otherwise. The same

remarks hold for nondeterministic regular programs with an algebraic stack.

The same argument applies to regular programs with arrays. Here the mutual

simulation is with polynomial-space bounded Turing machines, and without loss of

generality we may assume that these Turing machines halt for every input. This

proves (i).

For part (ii), we use an argument similar to the one used above, except that

now we work with log-space bounded Turing machines (see Theorem 13.11). This

proves the result for deterministic regular programs. The second part of (ii) follows

immediately from (i) and from the fact that over a mono-unary vocabulary regular

programs with a Boolean stack are computationally equivalent to regular programs

with an algebraic stack (Exercise 15.10).

It is not known whether the class of all regular programs is divergence-closed

for vocabularies richer than mono-unary.

It turns out that for semi-universal and divergence-closed programming lan-

guages, the DL theory of finite interpretations reduces to termination properties.

Proposition 15.10: If K is semi-universal and divergence-closed, then for every

formula ϕ of DL(K) there exists a program αϕ ∈ K such that for every finite Σ-

structure A, for every m ≥ 0, and for every Herbrand-like m-state w in A, we

have

A, w � ϕ ↔ <αϕ>1.

MIT Press Math7X9/2010/08/25:15:15 Page 351

352 Chapter 15

Proof Let us fix m ≥ 0. We first prove the conclusion of the proposition by

induction on ϕ, assuming that A has at least two elements. For the case when ϕ is

of the form ϕ1 → ϕ2, we use the divergence tests for the programs obtained by the

induction hypothesis. For the case when ϕ is of the form ∀z ϕ1, in addition to using

the divergence test for the program corresponding to ϕ1, we have to use Nextm to

search A; that is, the structure generated by the input. Finally, for the case when

ϕ is of the form [α]ψ, we find by the inductive hypothesis βψ such <βψ>1 and ψ

are equivalent over all finite Herbrand-like interpretations. For βψ , we find γψ such

that <βψ>1 and [γ]ψ0 are equivalent over all finite Herbrand-like interpretations

with at least two elements (we apply Lemma 15.8 here). Thus, it follows that ϕ and

[α; γψ]0 are equivalent over all finite Herbrand-like interpretations with at least

two elements. Applying Lemma 15.8 again to the program α; γψ yields the desired

αϕ.

In order to extend the result to one element structures, we have to perform a

test to see whether the structure is indeed of one element only. For this, denote by

ψ the conjunction of the following formulas:

• xi = xj , for 0 ≤ i, j ≤ m,

• f(x0, . . . , x0) = x0, where f ranges over all function symbols of Σ.

The next observation we need for the case of one element structures is that

there are at most 2k different isomorphism types of such structures, where k is

the number of relation symbols in the vocabulary. Each such structure is uniquely

determined by a conjunction of formulas of the form r(x0, . . . , x0) or ¬r(x0, . . . , x0),
where r ranges over all relation symbols of Σ.

Now, given ϕ, let γ1, . . . , γn be all the formulas that describe the one element

structures in which ϕ holds. Let α′ be the program found for ϕ in the first part of

the proof; that is, the one that works correctly in structures containing at least two

different elements. The program α we are looking for is:

if ψ

then if γ1 ∨ · · · ∨ γn
then skip

else fail

else α′

This completes the proof.

Observe that the above proof does not give an effective construction of the

program α from ϕ. The reason is that in general there is no effective procedure to

MIT Press Math7X9/2010/08/25:15:15 Page 352

Expressive Power 353

determine whether a given formula of DL(K) holds in a one-element structure. For

example, for an r.e. program α, it is undecidable whether α terminates in a given

one-element interpretation.

We are now ready to present the main result of this section. It relates complexity

classes and spectra to the expressive power of Dynamic Logic. This result proves

to be a strong tool for establishing relative expressive power of several logics of

programs. We will use it in a number of places in the present chapter.

Theorem 15.11 (Spectral Theorem): Let Σ be a rich vocabulary. Let K1

and K2 be programming languages over Σ such that K1 is acceptable and K2 is

semi-universal and divergence-closed. Let C1, C2 ⊆ 2{0,1}
∗
denote families of sets

that are downward closed under logarithmic space reductions. Let SP(Ki) ≈ Ci for

i = 1, 2. The following statements are equivalent:

(i) DL(K1) ≤ DL(K2);

(ii) SPm(K1) ⊆ SPm(K2) for all m ≥ 0;

(iii) C1 ⊆ C2;

(iv) K1 %T K2.

Proof For the implication (i) =⇒ (ii), consider any m ≥ 0 and any α ∈ K1. It

follows from (i) that there exists a formula ϕ of DL(K2) such that <α>1 and ϕ are

equivalent in all interpretations. By Proposition 15.10, there is a β ∈ K2 such that

A, w � <β>1 ↔ ϕ

holds for every finite Σ-stucture A and every Herbrand-like m-state w. Thus

SP (α) = SP (β), which proves (ii).

Now for (ii) =⇒ (iii). Consider anyX ∈ C1. By Lemma 13.10, there is a language

Y ⊆ HL
0 such that

X ≤log Y ≤log X. (15.2.1)

Hence Y ∈ C1, and since SP (K1) captures C1, it follows that there exists α ∈ K1

such that Y = SP0(α). By (ii), there is β ∈ K2 such that SP0(α) = SP0(β),

therefore Y ∈ C2. Since C2 is downward closed under log-space reductions, it follows

from (15.2.1) that X ∈ C2. This proves (iii).

For the proof of (iii) =⇒ (iv), consider any α ∈ K1. We describe a program

β ∈ K2 such that for all Σ-structures A and states w, we have

A, w � <α>1 ⇐⇒ A, w � <β>1.

MIT Press Math7X9/2010/08/25:15:15 Page 353

354 Chapter 15

Let FV (α) ⊆ {x0, . . . , xm} and let γ ∈ K2 be such that SPm(α) = SPm(γ).

Since K1 is admissible, it follows that there is an r.e. program α′ that is equivalent
to α in all interpretations. Let β′ ∈ K2 be the program of Proposition 15.7, which

has the same termination properties as α′ in all infinite interpretations.

In the first phase of the simulation of α by β, the latter runs β′ to find out

whether α′, and therefore α, has terminated. The simulation is performed under

the assumption that the substructure A′ of A generated by {w(x0), . . . , w(xm)}
is infinite. Either the simulation succeeds with α terminating, in which case β

terminates too, or else β′ discovers that A′ is finite. The finiteness of A′ is discovered
by finding out that the value of xm+1 returned by Nextm equals the previous value

of xm+1. Having discovered this, β aborts the simulation and runs the program γ

on the restored initial valuation of x0, . . . , xm. If γ uses any variable xn with n > m,

then prior to running γ, β resets its value by the assignment xn := xm. Since A′ is
finite, γ terminates iff α terminates. This proves K1 %T K2.

The implication (iv) =⇒ (i) is just Proposition 15.6.

We conclude this section with an example of how the Spectral Theorem can be

applied. We will see more applications of this theorem later in the book.

Theorem 15.12: Let Σ be a rich vocabulary. Then

(i) DL(stk) ≤ DL(array).

(ii) DL(stk) ≡ DL(array) iff P = PSPACE .

Moreover, the same holds for deterministic regular programs with an algebraic

stack and deterministic regular programs with arrays.

Proof The result follows immediately from Theorem 15.11, Proposition 15.9,

Theorem 13.12, and Theorem 13.13.

A similar result can be proved for poor vocabularies. The complexity classes

change, though. This is treated in the exercises (Exercise 15.12).

We remark that part (i) of Theorem 15.12 can be proved directly by showing

that (deterministic) regular programs with an algebraic stack are translatable into

(deterministic) regular programs with arrays.

MIT Press Math7X9/2010/08/25:15:15 Page 354

Expressive Power 355

15.3 Bounded Nondeterminism

In this section we investigate the role that nondeterminism plays in the expressive

power of logics of programs. As we shall see, the general conclusion is that for a

programming language of sufficient computational power, nondeterminism does not

increase the expressive power of the logic.

Regular Programs

We start our discussion of the role of nondeterminism with the basic case of regular

programs. Recall that DL and DDL denote the logics of nondeterministic and

deterministic regular programs, respectively.

For the purpose of this subsection, fix the vocabulary to consist of two unary

function symbols f and g. Any given nonempty prefix-closed subset A ⊆ {0, 1}∗
determines a structure A = (A, fA, gA), where

fA(w) =

{
w · 0, if w · 0 ∈ A
w, otherwise.

In the above definition, w · 0 denotes the result of concatenating 0 at the right end

of word w. The definition of gA is similar with 1 replacing 0. Such structures are

called treelike structures .

Throughout this subsection, we will be referring to the algebra A by indicating

its carrier A. This will not lead to confusion. In particular, we will be interested in

the algebras Tn = {w ∈ {0, 1}∗ | |w| ≤ n} for n ∈ N. The main combinatorial part

of our proof demonstrates that the number of elements of Tn that a deterministic

regular program can visit is at most polynomial in n. Thus, for sufficiently large

n, there will be elements in Tn that are not visited during a computation starting

from the root of Tn. This bound depends on the program—the larger the program,

the larger n will be.

On the other hand, the following simple nondeterministic regular program visits

all the elements of any Tn:

while x
= y? do (x := f(x) ∪ x := g(x)).

Thus, the formula

ϕ = ∃x ∀y <while x
= y? do (x := f(x) ∪ x := g(x))>1 (15.3.1)

states that there is an element from which every element of the domain is reachable

by a finite number of applications of the operations f and g. It can be shown that

this formula is equivalent to no formula of DDL.

MIT Press Math7X9/2010/08/25:15:15 Page 355

356 Chapter 15

For technical reasons, we represent while programs here as consisting of labeled

statements. Thus, deterministic while programs contain the following three kinds

of statements:

• � : xi := ξ(xj), where ξ(xj) is either xj , f(xj), or g(xj);

• � : halt;

• � : if xi = xj then �′ else �′′.

The computational behavior of a program α in a structure A ⊆ {0, 1}∗ is

represented by a sequence of states π = (�1, a
1), . . . , (�i, a

i), . . ., where �i is a label

of the statement to be executed at the ith step and ai is the vector of current values

stored in the registers of α. To represent a computation of α, π must satisfy the

following properties:

• (�1, a
1) is the initial state; that is, �1 is the label of the first statement to be

executed by α, and a1 represents the input.

• To move from (�i, a
i) to (�i+1, a

i+1), the statement labeled �i is executed, which

determines the next statement �i+1, and a
i+1 is the vector of the new values after

executing �i. If �i is a label of halt, then there is no next state.

By an L-trace of a computation π we mean the sequence Ltr(π) = �1, . . . , �n, . . .

of labels of the consecutive statements of π.

Let Cmp(α,A) denote the set of all computations of α in A. Call a computation

π terminating if it is finite and the last pair of π contains the halt statement.

Since we are dealing with deterministic programs, every nonterminating finite

computation can be uniquely extended to a longer computation. The length of

a computation is the number of pairs in it. Let LtrCmp(α,A, n) denote the set of

all L-traces of computations of α in A whose length is at most n.

Let L = �1, �2, . . . be a sequence of labels. We define a formal computation

of α along L as a sequence t0, t1, . . . of k-tuples of terms, where k is the number

of registers of α. This sequence represents a history of values that are stored in

registers, assuming that the computation followed the sequence L of labels. The

values are terms. They depend on the input, which is represented by variables1

1 We do not make a clear distinction between registers of a program and variables. We usually
think of registers as part of the computer on which the program is being executed, while variables
are part of a formal language (usually they appear in terms) that is used to describe properties
of a computation.

MIT Press Math7X9/2010/08/25:15:15 Page 356

Expressive Power 357

x1, . . . , xk. Let 1 ≤ i ≤ k and 0 ≤ m < |L|. We define tmi by induction on m:

t0i
def
= xi

tm+1
i

def
=

{
ξ(tmj), if �m is a label of xi := ξ(xj)

tmi , otherwise.

In the above formula, we use the abbreviation ξ(x) to denote one of x, f(x) or g(x).

Take any sequence L = �1, �2, . . . of labels and a formal computation t0, t1, . . .

of α along L. For registers xi and xj of α, we say that xi and xj witness a left turn

at the mth step of L and write WL(i, j) = m if m > 0 is the smallest number such

that �m−1 is a label of a statement if xp = xq then �m else �′, the element tmp
contains the variable xi, and t

m
q contains the variable xj (or conversely). If there is

no such m, then we say that xi and xj do not witness a left turn, and in that case

we let WL(i, j) = 0.

The general form of a term is ξ1 · · · ξm(x), where each ξi is either f or g. Taking

into account the interpretation of function symbols in A, we can represent such a

term by the word xwm · · ·w1, where wi ∈ {0, 1}∗ is 0 if ξi is f and to 1 if ξi is g.

This representation of a term supports the intuition that, given a value for x as a

word u ∈ A, the result of evaluating this term is obtained from u by traveling along

the path w = wm · · ·w1. Of course, we apply here our convention that we follow

the path w as long as we stay within the elements of A, i.e. the “true” result is

uwn · · ·w1, where wn · · ·w1 is the longest prefix of w such that uwn · · ·w1 ∈ A.

Lemma 15.13: Let α be a deterministic while program, and let π, π′ ∈
Cmp(α, Tn) be computations with input values a and a′, respectively. Let L =

Ltr(π) and L′ = Ltr(π′) be the L-traces of the corresponding computations. As-

sume that

(i) |L| = |L′|,
(ii) For all 1 ≤ i, j ≤ k, WL(i, j) =WL′(i, j),

(iii) For all 1 ≤ i ≤ k, |ai| = |a′i|.
Then L = L′.

Proof Let L = �1, �2, . . . and L
′ = �′1, �

′
2, We prove by induction on 0 < m <

|L| that �m = �′m for all m.

For m = 1, this is obvious, since �1 = �′1 is the label of the start statement of

α. Let 1 < m < |L| and assume that �r = �′r for all r < m. Consider the statement

labeled �m−1 = �′m−1. If this is an assignment statement, then the next statement

MIT Press Math7X9/2010/08/25:15:15 Page 357

358 Chapter 15

is uniquely determined by α, hence �m = �′m.

Assume now that �m−1 labels if xp = xq then � else �′ and �m = �, �′m = �′,
�
= �′. If there exist 1 ≤ i, j ≤ k such that WL(i, j) = m, then WL′(i, j) = m and

�m = �′m. So assume now that

WL(i, j)
= m, 1 ≤ i, j ≤ k. (15.3.2)

Consider a formal computation t0, t1, . . . , tm−1 of α along �1, . . . , �m−1. Let t
m−1
p =

xiw and tm−1
q = xjw

′, for some 1 ≤ i, j ≤ k, and let w,w′ ∈ Tn. Thus, we have

Tn |= aiw = ajw
′ (15.3.3)

Tn |= a′iw
= a′jw
′. (15.3.4)

Letm0 =WL(i, j). It follows from (15.3.3) thatm0 > 0, and by (15.3.2) we conclude

that m0 < m. It also follows from (15.3.3) that ai is a prefix of aj , or conversely,

aj is a prefix of ai. Without loss of generality we may assume the former. Hence,

for some ξ ∈ {0, 1}∗, we have

Tn |= aj = aiξ. (15.3.5)

By (15.3.4) and (iii), we have

Tn |= a′j
= a′iξ. (15.3.6)

Since at step m0 both computations run through the “yes”-branch of some

if-then-else statement, it follows that for some u, u′ ∈ {0, 1}∗ we have

Tn |= ai = aju
′ and Tn |= a′iu = a′ju

′. (15.3.7)

Again, by (iii) and (15.3.7) it follows that there is a common ξ′ ∈ {0, 1}∗ such

that

Tn |= aj = aiξ
′ and a′j = a′iξ

′.

Thus, by (15.3.5) we have ξ = ξ′, which yields a contradiction with (15.3.6). This

completes the proof.

Lemma 15.14: Let α be a deterministic while program with k registers. Then

for all n, p ∈ N we have

#LtrCmp(α, Tn, p) ≤ nkpk
2

.

Proof It follows from Lemma 15.13 that an L-trace L of a given length r ≤ p is

MIT Press Math7X9/2010/08/25:15:15 Page 358

Expressive Power 359

uniquely determined by the left-turn-witness function WL and the length of the

input data. The number of possible functions WL is rk
2 ≤ pk

2

, and the number of

possible lengths of values for k input variables in Tn is nk. Thus the total number

of all L-traces of length at most p is no greater than nk · pk2 .

Lemma 15.14 fails for nondeterministic programs. It holds for programs that

are more powerful than while programs, though they still have to be deterministic.

For every 1 ≤ i ≤ k, we define a function Gi : N → N as follows. For

n ∈ N, Gi(n) is the maximum number m ∈ N such that there is a computation

π ∈ Cmp(α, Tn) and an i-element set B ⊆ Tn such that for m consecutive steps of

π (not necessarily starting at the beginning of the computation), some registers of

α store all the elements of B. Moreover, we require that no state in π repeats.

Observe now that the number of states of the program α is at most 2c·n
k

, where

c > 0 depends on |α|. Thus

Gi(n) ≤ 2cn
k

holds for all 1 ≤ i ≤ k. We show that the Gi can in fact be bounded by a polynomial

in n. Clearly, Gk(n) ≤ |α| for all n ∈ N.

Lemma 15.15: For every 1 ≤ i < k and n ≥ 1,

Gi(n) ≤ (n+ 1)Gi+1(n) + |α|k+1nk
3+k2 .

Proof Take any 1 ≤ i < k and n ≥ 1. Let B ⊆ Tn be an i-element set. Let

π ∈ Cmp(α, Tn) be a computation without repeating states. Moreover, assume

that starting from step p ≥ 1, the values from B occur in every state after the pth

state.

For any q ≥ 0, let V (B, q) be the set of values obtainable from B within q steps

of π. The precise definition is by induction on q:

• V (B, 0) = B,

• w ∈ V (B, q + 1) iff either w ∈ V (B, q) or there exist r > p, registers xj1 , xj2 of

α, and a value u ∈ V (B, q) such that w = u · 0 or w = u · 1, u occurs in the rth step

of π in register xj1 , and the rth statement of π is xj2 := f(xj1) or xj2 := g(xj1),

depending on whether w = u · 0 or w = u · 1.

Take any state (�, a) that occurs in π at position q > p. Let m ≤ n, and assume

that q + (m + 1)Gi+1(n) < |π|. Let (�′, b) be a state that occurs in π at position

MIT Press Math7X9/2010/08/25:15:15 Page 359

360 Chapter 15

q + (m+ 1)Gi+1(n). We prove the following property:

For all 1 ≤ j ≤ k, (|bj | = m =⇒ bj ∈ V (B,m)). (15.3.8)

The proof is by induction on 0 ≤ m ≤ n. Let m = 0, and assume that |bj | = 0.

Since there is no way to set a register to value ε other than by assigning to it the

contents of another register containing ε, it follows that ε must have been stored

in registers throughout π. If ε
∈ B, then B ∪ {ε} has been stored in states of π

from the pth step on. There are more than Gi+1(n) steps in π after the pth (since

p+Gi+1(n) < q+Gi+1(n) < |π|), and we obtain a contradiction. Hence, ε ∈ B and

bj ∈ V (B, 0).

For the induction step, let 0 < r ≤ n, and assume that (15.3.8) holds for all

m < r. Assume that q + (r + 1)Gi+1(n) < |π| and let (�′, b) be a state that occurs

in π in position q + (r + 1)Gi+1(n). Let 1 ≤ j ≤ k be such that |bj | = r. If bj
∈ B,

then bj must have been created sometime after step q + rGi+1(n). Thus, there is

a state (�′′, b′) at a position later than q + rGi+1(n) such that the value bj was

obtained in a certain register x from a certain b′j1 via an assignment of the form

x := f(xj1) or x := g(xj1). Thus |b′j1 | = r−1. By the inductive hypothesis, we have

b′j1 ∈ V (B, r − 1), therefore bj ∈ V (B, r) as required. This proves (15.3.8).

It follows from (15.3.8) that all values occurring in π after step p+(n+1)Gi+1(n)

belong to V (B, n). Thus, after p+ (n+ 1)Gi+1(n) + |α| ·#V (B, n)k steps of π, at

least one state must repeat. Therefore,

Gi(n) ≤ (n+ 1)Gi+1(n) + |α| ·#V (B, n)k.

By Lemma 15.14, we have that the number of possible L-traces of fragments of

computations of α of length at most n is no greater than |α|nknk2 . Thus

#V (B, n) ≤ |α|nk2+k.

From this we obtain

Gi(n) ≤ (n+ 1)Gi+1(n) + |α|k+1nk
3+k2 ,

which completes the proof.

Let Moves(α, Tn) be the set of all words w ∈ {0, 1}∗ such that there is a

terminating computation π ∈ Cmp(α, Tn) and a variable x such that xw occurs in

the formal computation along Ltr(π). Thus, Moves(α, Tn) is the set of all possible

moves that α can perform on one of its inputs in a terminating computation. It

turns out that this set is polynomially bounded.

MIT Press Math7X9/2010/08/25:15:15 Page 360

Expressive Power 361

Proposition 15.16: For every deterministic while-program α there is a con-

stant c > 0 such that

#Moves(α, Tn) ≤ (|α|n)ck5 .

Proof It follows from Lemma 15.15 that G0(n), the maximum number of steps α

makes in Tn before terminating or repeating a state, is at most

k · |α|k+1(n+ 1)knk
3+k2 ≤ (|α|n)c′k3

for some c′ > 0, which depends on α. Thus, by Lemma 15.14, the number of different

L-traces of terminating computations in Tn is at most (|α|n)c′′k5 for some c′′ > 0.

Since an L-trace L of length p brings at most kp terms in the formal computation

along L, it follows that

#Moves(α, Tn) ≤ k(|α|n)c′k3 (|α|n)c′′k5 ≤ (|α|n)ck5

for a suitable c > 0. This completes the proof.

For a word w ∈ {0, 1}∗, let

T ∗(w) def
= {wnu | n ∈ N, u ∈ {0, 1}∗, and |u| ≤ |w|}.

This set can be viewed as an infinite sequence of the trees T|w| connected along the

path w.

Proposition 15.17: Let α be a deterministic while program with k registers,

and let w ∈ {0, 1}∗ be a word of length n ≥ 2k. If w
∈ Moves(α, Tn), then α

unwinds in T ∗(w).

Proof Let α have registers x1, . . . , xk, and choose n with n ≥ 2k. We shall describe

a deterministic while program β whose computation in Tn for a specially chosen

input will simulate the computation of α in T ∗(w) for every w with |w| = n. In

fact, β will not depend on w; the correctness of the simulation will follow from

the choice of a suitable input for β. If we view T ∗(w) as consisting of an infinite

number of copies of Tn, each connected along w to the next copy, then β will be

doing the same in one block of Tn as α does in T ∗(w). Obviously, β has to remember

when values stored in the registers of α enter the same block. The assumption that

w
∈Moves(α, Tn) implies that no value of α can be moved all the way along w.

The program β has k registers x1, . . . , xk that will hold the values of the registers

of α truncated to a single Tn. It has two registers b and e, which will be initialized

MIT Press Math7X9/2010/08/25:15:15 Page 361

362 Chapter 15

to the root of Tn and the node w, respectively.2 In addition, the program β has

k registers z1, . . . , zk, where zi stores the name of the block in which α has the

value stored in xi. These names are represented by words of the form 0m, where

1 ≤ m ≤ 2k. The essential information, sufficient to carry out the simulation, is

whether two variables store a value from the same block or from adjacent blocks.

Two values that are at least one block apart are not accessible from each other.

For each statement in α of the form

� : xi := ξxj , ξ ∈ {0, 1, ε},
the program β will have the corresponding statement

� : xi := ξxj ; if xi = e then zi := 0 · zi;xi := b else zi := zj.

Each statement of α of the form

� : if xi = xj then �′ else �′′

is replaced in β by

� : if xi = xj ∧ zi = zj then �′ else �′′.

Let us now take any w ∈ {0, 1}∗ with |w| = n. Every value a ∈ T ∗(w) can be

uniquely represented as a = wmu, where m ≥ 0, |u| ≤ n, and u
= w. Given an

initial valuation v for α in T ∗(w), where v(xi) = wmiui (with |ui| ≤ n and ui
= w),

we define an initial valuation v for β in Tn as follows:

v(xi) = ui

v(b) = ε

v(e) = w

v(zi) = 0p,

where p in the above definition is the position of mi in the set

{mj | j = 1, · · · , k} ∪ {mj + 1 | j = 1, · · · , k},
counting from the smallest to the largest element starting from 1. The above

enumeration of blocks takes into account whether two values are in the same block

or in adjacent blocks or whether they are at least one full block apart. Now, if

w
∈ Moves(α, Tn), then α terminates in T ∗(w) for the initial evaluation v iff β

terminates in Tn for the corresponding evaluation v. (An easy proof of this is left

2 We do not fix the word w at this stage—it will be introduced via a suitable valuation.

MIT Press Math7X9/2010/08/25:15:15 Page 362

Expressive Power 363

to the reader.) Morever, the simulation of α by β is faithful, in the sense that for

every step of α there are at most 4 steps of β after which the above described

correspondence [v �→ v] between valuations is maintained. Thus, α terminates in

T ∗(w) for an input v iff it terminates in at most |β| ·n2·k+2 steps. Hence α unwinds

in T ∗(w).

Proposition 15.18: For every finite set {α1, . . . , αp} of deterministic while

programs over the vocabulary containing two unary function symbols, there is a

word w ∈ {0, 1} such that each αi unwinds in T
∗(w).

Proof Take n sufficiently large that

{0, 1}n −
p⋃
i=1

Moves(αi, Tn)
= ∅.

By Proposition 15.16, there is such an n. Then by Proposition 15.17, each αi
unwinds in T ∗(w), where w ∈ {0, 1}n −⋃p

i=1 Moves(αi, Tn).

Observe that the infinite structure T ∗(w) is constructed separately for each

finite set {α1, . . . , αp} of deterministicwhile programs. That is, we do not construct

one structure in which all deterministic while programs unwind. Still, it is enough

for our purposes in this section. In fact, a stronger result can be shown.

Theorem 15.19: There exists an infinite treelike structure A in which all deter-

ministic while programs unwind.

We do not prove this result here, since the proof is quite complicated and

technical. The main idea is to build an infinite treelike structure A as a limit of

a sequence of finite treelike structures. This sequence is constructed inductively in

such a way that if a deterministic while program tries to follow one of the very few

infinite paths in A, then it must exhibit a periodic behavior. The interested reader

is referred to Urzyczyn (1983b) for details.

We can now state the main result that separates the expressive power of

deterministic and nondeterministic while programs.

Theorem 15.20: For every vocabulary containing at least two unary function

symbols or at least one function symbol of arity greater than one, DDL is strictly

less expressive than DL; that is, DDL < DL.

MIT Press Math7X9/2010/08/25:15:15 Page 363

364 Chapter 15

Proof For the vocabulary containing two unary function symbols, the theorem

is an immediate corollary of Proposition 15.18 and Theorem 15.4. The case of a

vocabulary containing a function symbol of arity greater than one is easily reducible

to the former case. We leave the details as an exercise (Exercise 15.3).

It turns out that Theorem 15.20 cannot be extended to vocabularies containing

just one unary function symbol without solving a well known open problem in

complexity theory.

Theorem 15.21: For every rich mono-unary vocabulary, the statement “DDL is

strictly less expressive than DL” is equivalent to LOGSPACE
= NLOGSPACE .

Proof This follows immediately from the Spectral Theorem (Theorem 15.11),

Proposition 15.9 (ii), and Theorem 13.11.

Boolean Stacks

We now turn our attention to the discussion of the role non-determinism plays in

the expressive power of regular programs with a Boolean stack. We will show that

for a vocabulary containing at least two unary function symbols, nondeterminism

increases the expressive power of DL over regular programs with a Boolean stack.

There are two known approaches to proving this result. These are similar in

terms of the methods they use—they both construct an infinite treelike algebra in

which deterministic regular programs with a Boolean stack unwind. This property is

achieved by exhibiting a periodic behavior of deterministic regular programs with

a Boolean stack. We sketch the main steps of both approaches, leaving out the

technical details that prove the periodicity.

For the rest of this section, we let the vocabulary contain two unary function

symbols. The main result of the section is the following.

Theorem 15.22: For a vocabulary containing at least two unary function sym-

bols or a function symbol of arity greater than two, DL(dbstk) < DL(bstk).

For the purpose of this section, we augment the deterministic while programs

of Section 15.3 with instructions to manipulate the Boolean stack. Thus, a compu-

tation of a program α with a Boolean stack is a sequence of the form

(�1, a
1, σ1), . . . , (�i, a

i, σi), . . .

where �i is a label of the statement to be executed at the ith step, ai is a vector of

MIT Press Math7X9/2010/08/25:15:15 Page 364

Expressive Power 365

current values stored in the registers of α prior to the ith step and σi ∈ {0, 1}∗ is

the contents of the Boolean stack prior to the ith step. We do not assume here that

�1 is the label of the first instruction of α, nor that σ1 is empty.

If for every n ≥ 0 the number of push statements is greater than or equal to

the number of pop statements during the first n steps

(�1, a
1, σ1), . . . , (�n, a

n, σn),

then such a computation will be called legal .

Let A be a Σ-structure, let r > 0, and let α be a deterministic while program

with a Boolean stack. A computation

(�1, a
1, σ1), . . . , (�i, a

i, σi), . . .

of α in A is said to be strongly r-periodic if there is n < r such that for all i ∈ N,

�n+i = �n+r+i and an+i = an+r+i.

A program α is said to be uniformly periodic in A if for every σ ∈ {0, 1}∗ there

exists r > 0 such that for every label � and every vector a of values, the computation

that starts from (�, a, σ) is strongly r-periodic.

Let m ≥ 2. A computation

(�1, a
1, σ1), . . . , (�i, a

i, σi), . . .

is said to be upward periodic for m-periods if there exist r > 0 and n < r such that

for all 0 ≤ i < (m− 1)r,

�n+i = �n+r+i,

and moreover, the computation

(�n, a
n, σn), . . . , (�n+r−1, a

n+r−1, σn+r−1)

is legal. Hence, the sequence of labels repeats for m times, and each of the m cycles

is legal, i.e. it never inspects the contents of the Boolean stack with which the cycle

started.

Adian Structures

Adian structures arise from the well known solution to the Burnside problem in

group theory. In 1979, S. I. Adian proved that for every odd n ≥ 665 there exists

an infinite group Gn generated by two elements satisfying the identity xn = 1,

where 1 is the unit of the group (Adian (1979)).

MIT Press Math7X9/2010/08/25:15:15 Page 365

366 Chapter 15

Every such group Gn induces in a natural way a Σ-algebra Gn = <Gn, f, g>,

where f and g are unary functions defined by

f(x) = ax, g(x) = bx,

where a and b are the generators of Gn.

Since in Gn we have a−1 = an−1 and b−1 = bn−1, it follows that every term

over Gn can be represented by a string in {a, b}∗, assuming that the unit 1 is

represented by the empty string ε. Thus Gn induces an equivalence relation on

{0, 1}∗: for u,w ∈ {0, 1}∗, u ≡ w iff the terms obtained from u and w by replacing

0 with a and 1 with b are equal in Gn. The quotient {0, 1}∗/ ≡ can be viewed as

an infinite directed graph in which every node is of out-degree 2. This graph is not

a treelike structure, since it contains loops of length greater than 1. It might also

be possible that for paths u,w ∈ {0, 1}∗ we have 0u ≡ 1w.

Cyclicity of Gn implies periodic behavior of deterministic while programs with

a Boolean stack. The reader interested in the details of the proof of the following

result is referred to Stolboushkin (1983).

Theorem 15.23: For every odd n ≥ 665, any deterministic while program with

a Boolean stack is uniformly periodic in Gn.

It follows immediately from Theorem 15.23 that every deterministic while

program with a Boolean stack unwinds in Gn. On the other hand, the ordinary

non-deterministic regular program

x := ε ; x := g(x)∗

does not unwind in Gn. Hence, Theorem 15.22 follows immediately from Theo-

rem 15.4.

Traps

The method of trapping programs from a given class K of programs consists of

building a treelike structure A satisfying the following two properties:

• Programs from K, when computing in A, exhibit some form of limited periodic

behavior.

• The structure A contains only one infinite path, and this path has the property

that there are very few repetitions of subwords on that path.

MIT Press Math7X9/2010/08/25:15:15 Page 366

Expressive Power 367

As a result of these two properties, no computation in A can stay for a

sufficiently long time on that infinite path. This yields the unwind property in A of

programs from K. Of course, in this section we are only interested in deterministic

regular programs with a Boolean stack.

Let m ≥ 2, and let T be a class of treelike structures. We say that a program

α exhibits m repetitions in T if there exists n ∈ N such that for every A ∈ T, each

legal fragment of length n of any computation of α in A is upward periodic for m

periods. We stress that the bound n is uniform for all structures in T.

Let A be a treelike structure and let n ≥ 0. We say that level n is incomplete

in A if there is w ∈ A such that |w| = n and either w0
∈ A or w1
∈ A. Otherwise,

level n in A is said to be complete.

The treelike structure A is called p-sparse if every two incomplete levels in A

are separated by at least p complete levels.

The following theorem is the main tool used in establishing limited periodic

behavior of deterministic while programs with a Boolean stack when the programs

are run over certain treelike structures.

Theorem 15.24: For every deterministic while program α with a Boolean stack

and for every m ≥ 2, there exists p ∈ N such that α exhibits m repetitions over the

class of all p-sparse structures.

We are now ready to build a trap.

Theorem 15.25: For every finite set {α1, . . . , αn} of deterministic while pro-

grams with a Boolean stack, there is an infinite treelike structure A such that every

αi unwinds in A.

Proof Let W be an infinite cube-free string; that is, no finite non-empty string of

the form uuu is a substring of W . It is known that such strings exist (see Salomaa

(1981)). Let k be an upper bound on the number of registers used by each αi. It

is not hard to prove that there exists a number r ∈ N such that for every function

f : {1, . . . , k} → {1, . . . , k}, the rth power f r of f is idempotent; that is, f rf r = f r.

We fix such an r and let m = 4r. We now apply Theorem 15.24 to m and to each

αi. Let pi ∈ N be such that αi exhibits m repetitions over the class of pi-sparse

structures. Clearly, we can choose a common p by taking the largest pi.

We now cut W into pieces, each of length p; that is, W = w1w2 · · · , where

MIT Press Math7X9/2010/08/25:15:15 Page 367

368 Chapter 15

|wi| = p for all i ≥ 1. Our trap structure is defined as follows.

A
def
= {u ∈ {0, 1}∗ | ∃j ≥ 0 ∃u′ ∈ {0, 1}∗ u = w1w2 · · ·wju′ and |u′| < p}.

The set A can be viewed as sequence of blocks of full binary trees of depth p

connected along the infinite path W . Since A is p-sparse, it follows that every

αi exhibits m repetitions in A. Let q ≥ 0 be such that every legal fragment of

length q of any computation of αi in A is upward periodic for m-periods. Take any

computation of αi that starts with an empty stack and any initial valuation in A.

Assume that the computation is of length at least q, and consider the first q steps

in this computation. Thus, this fragment is upward periodic for m periods.

Consider the first period. After it has been completed, the value of any register,

say xj , depends on the value of a certain register xj′ at the entering point of this

period. That is, upon completing the first period, xj is equal to ξxj′ for a certain

ξ ∈ {0, 1}∗. This gives rise to a function f : {1, . . . , k} → {1, . . . , k} whose value at

j is f(j) = j′. Thus, after r periods, the contents of register xj depends on the value

stored in register xfr(j) at the beginning of the first period. By the same argument,

it follows that after 2r periods, the contents of xj depends on the value stored in

register xfr(j) at the beginning of the (r+1)st period. The latter value depends on

the contents stored in register xfrfr(j) = xfr(j) at the beginning of the first period.

It follows that after 4r periods, the value stored in xj is obtained from the value

stored in xfr(j) at the beginning of the first period by applying a term of the form

ξ1ξ2ξ2ξ2.

We have shown that after 4r periods, all values stored in registers of every αi
are outside the path W . Therefore, the computation cannot proceed to the next

block, which implies that every program αi unwinds in A.

We now derive Theorem 15.22 from Theorem 15.25 in exactly the same way as

in the case of Adian structures and Theorem 15.23.

Algebraic Stacks and Beyond

It turns out that for programming languages that use sufficiently strong data types,

nondeterminism does not increase the expressive power of Dynamic Logic.

Theorem 15.26: For every vocabulary,

(i) DL(dstk) ≡ DL(stk).

(ii) DL(darray) ≡ DL(array).

MIT Press Math7X9/2010/08/25:15:15 Page 368

Expressive Power 369

Proof Both parts follow immediately from the Spectral Theorem (Theorem 15.11),

Proposition 15.9, and either Theorem 13.12 for case (i) or Theorem 13.13 for case

(ii).

It can be shown that even though r.e. programs are not divergence closed,

nondeterminism does not increase the expressive power. We leave this as an exercise

(see Exercise 15.2).

15.4 Unbounded Memory

In this section we show that allowing unbounded memory increases the expressive

power of the corresponding logic. However, this result depends on assumptions

about the vocabulary Σ.

Recall from Section 11.2 that an r.e. program α has bounded memory if the

set CS (α) contains only finitely many distinct variables from V , and if in addition

the nesting of function symbols in terms that occur in seqs of CS (α) is bounded.

This restriction implies that such a program can be simulated in all interpretations

by a device that uses a fixed finite number of registers, say x1, . . . , xn, and all its

elementary steps consist of either performing a test of the form

r(xi1 , . . . , xim)?,

where r is anm-ary relation symbol of Σ, or executing a simple assignment of either

of the following two forms:

xi := f(xi1 , . . . , xik) xi := xj .

In general, however, such a device may need a very powerful control (that of a

Turing machine) to decide which elementary step to take next.

An example of a programming language with bounded memory is the class

of regular programs with a Boolean stack. Indeed, the Boolean stack strengthens

the control structure of a regular program without introducing extra registers for

storing algebraic elements. We leave it as an exercise (Exercise 15.5) to prove that

regular programs with a Boolean stack have bounded memory. On the other hand,

regular programs with an algebraic stack or with arrays are programming languages

with unbounded memory.

It turns out that the results on expressive power depend on assumptions on the

vocabulary. Recall that a vocabulary Σ is polyadic if it contains a function symbol

of arity greater than one. Vocabularies whose function symbols are all unary are

called monadic. We begin our discussion with polyadic vocabularies and then move

to the more difficult case of monadic ones.

MIT Press Math7X9/2010/08/25:15:15 Page 369

370 Chapter 15

Polyadic Vocabulary

We need some technical machinery for the proof of the main result of this section.

We first discuss pebble games on dags, then exhibit a dag that is hard to pebble.

The technical results will be used in the proof of Proposition 15.29.

A Pebble Game on Dags

Let D = (D,→D) be a dag, and let n ≥ 1. We describe a game on D involving n

pebbles. The game starts with some of the pebbles, perhaps all of them, placed on

vertices ofD, at most one pebble on each vertex. A move consists of either removing

pebbles from the graph or placing a free pebble on some vertex d. The latter move

is allowed only if all direct predecessors of d (vertices c such that c →D d) are

pebbled, i.e., are occupied by pebbles. We also allow a pebble to be moved from a

predecessor of d directly to d, provided all predecessors of d are pebbled.

The rules of the n-pebble game can be expressed more precisely by introducing

the notion of an n-configuration and the relation of succession on the set of n-

configurations. An n-configuration C is any subset of D of cardinality at most n.

For n-configurations C and C′, we say that C′ n-succeeds C if either of the following

two conditions hold:

(i) C′ ⊆ C; or

(ii) for some d, C′ − C = {d} and {c ∈ D | c→D d} ⊆ C.

A sequence of n-configurations C0, C1, . . . , Cm is called an n-pebble game if Ci+1

n-succeeds Ci for 0 ≤ i ≤ m− 1.

The following lemma is useful for transforming an n-pebble game into an (n−1)-

pebble game. It will be applied to a special dag constructed in the next section.

Lemma 15.27: Let D = (D,→D) be a dag, and let a ∈ D. Define

A
def
= {d | a→∗D d},

where →∗D is the reflexive transitive closure of→D. Let C0, . . . , Cm be an n-pebble

game in D, n ≥ 2. Suppose that for every 0 ≤ i ≤ m, A∩Ci
= ∅. Then there is an

(n− 1)-pebble game B0, . . . , Bm such that

m⋃
i=0

Ci ⊆ A ∪
m⋃
i=0

Bi. (15.4.1)

Proof For each 0 ≤ i ≤ m, let Bi = Ci − A. Surely, (15.4.1) holds. Since A and

MIT Press Math7X9/2010/08/25:15:15 Page 370

Expressive Power 371

Ci intersect, Bi is an (n− 1)-configuration. It remains to show that Bi+1 (n− 1)-

succeeds Bi for 0 ≤ i ≤ m−1. In case (i), we have Ci+1 ⊆ Ci, so that Bi+1 ⊆ Bi as

well. In case (ii), we have Ci+1−Ci = {d}. Either d ∈ A, in which case Bi+1 ⊆ Bi;

or d
∈ A, in which case Bi+1−Bi = {d}. However, if d
∈ A, then no predecessor of

d is in A, and since {c | c→D d} ⊆ Ci, we must have {c | c→D d} ⊆ Bi too.

A Hard Dag

In this section we describe a dag that cannot be pebbled with finitely many pebbles.

Let

A
def
= (N, →A)

be a dag defined as follows.

→A
def
= {(n, n+ 1) | n ∈ N} ∪ {(n, 2n+ 1) | n ∈ N} ∪ {(n, 2n+ 2) | n ∈ N}.

The dag A can be viewed as a union of the chain of successive natural numbers and

the infinite binary tree that has 0 as its root and for each n has 2n+ 1 as the left

child and 2n+ 2 as the right child. A parent of the node n is #(n− 1)/2$ (we will

call it a tree-parent of n).

Observe that

n→∗A m ⇐⇒ n ≤ m.

Let C ⊆ N and k ∈ N. We define the k-neighborhood of C, denoted N(C, k),

by

N(C, k)
def
= {j ∈ N | (∃i ∈ C ∪ {0}) i ≤ j ≤ i+ k}.

Finally, define a function f : N → N inductively, by

f(0)
def
= 0,

f(n+ 1)
def
= 4(n+ 1)(f(n) + 1).

The following lemma shows that A cannot be pebbled with finitely many

pebbles.

Lemma 15.28: For every n ≥ 1 and for every n-configuration C of A, if

C,C1, . . . , Cr is an n-pebble game in A, then Cr ⊆ N(C, f(n)).

Proof We prove the result by induction on n. For n = 1, the result is obvious.

MIT Press Math7X9/2010/08/25:15:15 Page 371

372 Chapter 15

For n > 1, assume that there is an n-configuration C of A and an n-pebble game

C,C1, . . . , Cr in A such that for some k ∈ Cr, k
∈ N(C, f(n)). We will find an

(n− 1)-configuration and an (n− 1)-pebble game that contradict the conclusion of

the lemma.

Let j ∈ C ∪ {0} be the largest element such that j < k. It follows that

f(n) < k − j. Let m = &(k − j + 1)/2' + j + 1, which is roughly the middle of

the interval between j and k. Observe that this interval does not contain any node

from C. In order to move a pebble from j to k, the n-game C,C1, . . . , Cr must

have moved at least one pebble through all the intermediate nodes. Let i0 be the

smallest number such that m ∈ Ci0 and each configuration after Ci0 contains a

node between m and k. In order to move a pebble through all these nodes, we must

also move a pebble through the tree-parents of these nodes. Call these tree-parent

nodes red.

Since the tree-parent of a node i > 0 is #(i− 1)/2$, it follows that all red nodes

are smaller than or equal to #(k − 1)/2$. On the other hand we have

&(k − j + 1)/2'+ j + 1 ≥ k + j + 3

2
> #k/2$,

thus m > #k/2$, so every red node is smaller than m. We can now apply

Lemma 15.27 to A, the node m, and the n-pebble game Ci0 , . . . , Cr. We obtain

an (n− 1)-pebble game B1, . . . , Bp such that every red node is in
⋃p
i=1Bi. By the

inductive hypothesis, we have

#
⋃p
i=1 Bi ≤ #N(B1, f(n− 1)) ≤ n(f(n− 1) + 1). (15.4.2)

On the other hand, the number of red nodes is half the number of nodes in the

interval m through k; that is, it is at least (k − j)/2. We thus have

k − j
2

>
f(n)

2
= 2n(f(n− 1) + 1).

Thus, the number of red nodes is larger than n(f(n − 1) + 1), which contradicts

(15.4.2). This completes the induction step.

The Unwind Property

We first define a structure

A
def
= (N, g, 0)

MIT Press Math7X9/2010/08/25:15:15 Page 372

Expressive Power 373

over the vocabulary that consists of one constant symbol 0 and one binary function

symbol g : N2 → N defined as follows:

g(m,n)
def
=

{
n+ 1, if n > 0 and m = #(n− 1)/2$
0, otherwise.

We can now prove the main technical result of this section.

Proposition 15.29: Every r.e. program with bounded memory unwinds in A.

Proof Let α be an r.e. program with bounded memory, and let CS (α) = {σi | i ∈
N}. Let x1, . . . , xn be all the variables that occur in seqs of CS (α). We claim that

each seq σi ∈ CS (α) can be viewed as a simultaneous assignment

(x1, . . . , xn) := (t1,i, . . . , tn,i),

which is performed subject to the satisfiability of a quantifier-free condition (guard)

ϕi. In other words, σi is equivalent to

ϕi? ; (x1, . . . , xn) := (t1,i, . . . , tn,i).

This claim can be proved by a routine induction on the number of steps in σi, and

we leave it to the reader.

From now on, we assume that the seqs in CS (α) are of the above form. Let

T (α) be the least set of terms that contains all terms occurring in CS (α) and that

is closed under subterms. For every a1, . . . , an ∈ N, let

TA(a1, . . . , an)
def
= {tA(a1, . . . , an) | t ∈ T (α)}.

Observe that every element in b ∈ TA(a1, . . . , an) can be computed by simple

assignments using only n variables. Hence b can be viewed as being reachable

by an n-pebble game from the initial configuration {a1, . . . , an}. It follows from

Lemma 15.28 that

TA(a1, . . . , an) ⊆ N({a1, . . . , an}, f(n)),
thus

#TA(a1, . . . , an) ≤ (n+ 1) · (f(n) + 1). (15.4.3)

We can conclude that the computation starting from any given input lies in the

partial subalgebra of A of cardinality (n+ 1) · (f(n) + 1).

Since the number of pairwise non-isomorphic partial subalgebras of A of

MIT Press Math7X9/2010/08/25:15:15 Page 373

374 Chapter 15

bounded cardinality is finite, it follows that there exists m ≥ 0 such that α and

σ1 ∪ · · · ∪ σm represent the same input-output relation in A. To see this, suppose

that we have two isomorphic partial subalgebras of A, say (B1, a1, . . . , an) and

(B2, b1, . . . , bn). Moreover, assume that the computation of α for input a1, . . . , an
lies in B1, and similarly that the computation of α for input b1, . . . , bn lies in B2.

Then

{i ∈ N | B1 |= ϕi(a1, . . . , an)} = {i ∈ N | B2 |= ϕi(b1, . . . , bn)}.
Let I denote this set. It follows from (15.4.3) that the set

{(tA1,i(a1, . . . , an), . . . , tAn,i(a1, . . . , an)) | i ∈ I}
is finite. Let m ∈ N be such that

{(tA1,i(a1, . . . , an), . . . , tAn,i(a1, . . . , an)) | i ∈ I}
= {(tA1,i(a1, . . . , an), . . . , tAn,i(a1, . . . , an)) | i ∈ I, i ≤ m}.
It follows that the number m depends only on the isomorphism class of

(B1, a1, . . . , an), not on the particular choice of this subalgebra. Since there are

only finitely many isomorphism classes of bounded cardinality, it suffices to take

the largest such m. Then

αA = σA
1 ∪ · · · ∪ σA

m,

which completes the proof.

Theorem 15.30: For every vocabulary containing at least one function symbol of

arity greater than one, no DL over a programming language with bounded memory

is reducible to any DL over a programming language that contains a program

equivalent to Next0.

Proof For a vocabulary containing a binary function symbol, the result follows

immediately from Proposition 15.29, Theorem 15.4, and Proposition 15.3. The case

of a vocabulary containing only function symbols of arity greater than two we leave

as an exercise (Exercise 15.8).

Theorem 15.31: For every vocabulary containing a function symbol of arity

greater than one, DL(dbstk) < DL(dstk) and DL(bstk) < DL(stk).

Proof This is an immediate corollary of Theorem 15.30 and the fact that regular

MIT Press Math7X9/2010/08/25:15:15 Page 374

Expressive Power 375

programs with a Boolean stack have bounded memory (see Exercise 15.5).

Monadic Vocabulary

For monadic vocabularies the situation is much less clear. The method of pebbling,

which is applicable to polyadic vocabularies, does not work for monadic vocabu-

laries, since every term (viewed as a dag) can be pebbled with a single pebble. For

this reason, formally speaking, the issue of unbounded memory in programs over

a monadic vocabulary disappears. Nevertheless, it makes sense to compare the ex-

pressive power of regular programs with or without a Boolean stack and programs

equipped with an algebraic stack.

It is not known whether DL(reg) < DL(stk) holds for monadic vocabularies. For

deterministic regular programs, however, we have the following result.

Theorem 15.32: Let the vocabulary be rich and mono-unary. Then

DL(dreg) ≡ DL(dstk) ⇐⇒ LOGSPACE = P .

Proof Since deterministic regular programs over mono-unary vocabularies are

semi-universal and divergence closed (see Proposition 15.9), the result follows

immediately from Theorem 15.11, Theorem 13.12 and Theorem 13.11.

The case of poor vocabularies is treated in Exercise 15.12.

For monadic vocabularies, the class of nondeterministic regular programs with a

Boolean stack is computationally equivalent to the class of nondeterministic regular

programs with an algebraic stack (see Exercise 15.11). Hence, we have:

Theorem 15.33: For all monadic vocabularies, DL(bstk) ≡ DL(stk).

For deterministic programs, the situation is slightly different.

Theorem 15.34:

(i) For all mono-unary vocabularies, DL(dbstk) ≡ DL(dstk).

(ii) For all monadic vocabularies containing at least two function symbols,

DL(dbstk) < DL(dstk).

Proof Part (i) follows from Exercise 15.10. For part (ii), we observe that

DL(bstk) ≤ DL(stk); hence, the result follows immediately from Theorem 15.22

and Theorem 15.26.

MIT Press Math7X9/2010/08/25:15:15 Page 375

376 Chapter 15

It is not known whether DL(bstk) < DL(stk) holds for monadic vocabularies.

The case of poor vocabularies is treated in the exercises (Exercise 15.12).

15.5 The Power of a Boolean Stack

Regular programs with a Boolean stack are situated between pure regular programs

and regular programs with an algebraic stack. We start our discussion by comparing

the expressive power of regular programs with and without a Boolean stack. The

only known definite answer to this problem is given in the following result, which

covers the case of deterministic programs only.

Theorem 15.35: If the vocabulary contains at least one function symbol of

arity greater than one or at least two unary function symbols, then DL(dreg) <

DL(dbstk).

Proof sketch. The main idea of the proof is as follows. We start with an infi-

nite treelike structure A in which all deterministic while programs unwind. The-

orem 15.19 provides such structures. Next, we pick up an infinite path in A, cut

it into finite pieces, and separate each two consecutive pieces u and w by inserting

wR in between them (the string w in reversed order). The hard part is to prove

that all deterministic while programs still unwind in the transformed structure.

However, it should be much clearer that there is a deterministic while program

with a Boolean stack that can follow the entire infinite path; it simply stores on its

stack the inserted strings and uses the stored string in order to find a way through

the next piece of the infinite path. The technical details are rather complicated.

The reader can consult Urzyczyn (1987) for the details.

It is not known whether Theorem 15.35 holds for nondeterministic programs,

and neither is its statement known to be equivalent to any of the well known

open problems in complexity theory. In contrast, it follows from Exercise 15.10

and from Theorem 15.32 that for rich mono-unary vocabularies the statement

“DL(dreg) ≡ DL(dbstk)” is equivalent to LOGSPACE = P . Hence, this problem

cannot be solved without solving one of the major open problems in complexity

theory.

The comparison of the expressive power of a Boolean stack and an algebraic

stack is discussed in Theorem 15.31 for polyadic vocabularies and in Theorem 15.33

and Theorem 15.34 for monadic vocabularies.

MIT Press Math7X9/2010/08/25:15:15 Page 376

Expressive Power 377

15.6 Unbounded Nondeterminism

The wildcard assignment statement x := ? discussed in Section 11.2 chooses an

element of the domain of computation nondeterministically and assigns it to x. It

is a device that represents unbounded nondeterminism as opposed to the binary

nondeterminism of the nondeterministic choice construct ∪. The programming

language of regular programs augmented with wildcard assignment is not an

acceptable programming language, since a wildcard assignment can produce values

that are outside the substructure generated by the input.

Our first result shows that wildcard assignment increases the expressive power

in quite a substantial way; it cannot be simulated even by r.e. programs.

Theorem 15.36: Let the vocabulary Σ contain two constants c1, c2, a binary

predicate symbol p, the symbol = for equality, and no other function or predicate

symbols. There is a formula of DL(wild) that is equivalent to no formula of DL(r.e.),

thus DL(wild)
≤ DL(r.e.).

Proof Consider the DL(wild) formula

ϕ
def
= <(x := c1; z := ?; p(x, z)?;x := z)∗> x = c2,

which is true in a structure A iff (c1, c2) belongs to the transitive closure of p.

Since the vocabulary contains no function symbols, it follows that every DL(r.e.)

formula is equivalent to a first-order formula. It is well known (and in fact can be

proved quite easily by the compactness of predicate logic) that there is no first-order

formula capable of expressing the transitive closure of a binary relation.

It is not known whether any of the logics with unbounded memory are reducible

to DL(wild). An interesting thing happens when both wildcard and array assign-

ments are allowed. We show that in the resulting logic, it is possible to define the

finiteness of (the domain of) a structure, but not in the logics with either of the

additions removed. Thus, having both memory and nondeterminism unbounded

provides more power than having either of them bounded.

Theorem 15.37: Let vocabulary Σ contain only the symbol of equality. There

is a formula of DL(array+wild) equivalent to no formula of either DL(array) or

DL(wild).

MIT Press Math7X9/2010/08/25:15:15 Page 377

378 Chapter 15

Proof Let F be a unary function variable and consider the formula

ϕ
def
= <α> ∀y ∃x <z := F (x)> z = y,

where α = (x := ?; y := ?;F (x) := y)∗. This program stores some elements in some

locations of F . In a model A, the formula ϕ expresses the fact that we can store

all elements of the domain in the variable F in a finite number of steps, thus the

domain is finite. That finiteness cannot be expressed in DL(array) should be clear:

since DL(array) is reducible over this vocabulary to first-order logic, another routine

application of the compactness of predicate logic suffices.

We show that over our vocabulary, DL(wild) is also reducible to first-order

logic. For this it is enough to observe that for our simple vocabulary, every regular

program with wildcard assignments unwinds in every structure. Given a regular

program α with wildcard assignments, let x1, . . . , xk be all the variables occurring

in α. Seqs in CS (α) are sequences of the following three kinds of atomic programs:

xi := xj xi := ? ϕ?,

where i, j ∈ {1, . . . , k} and ϕ is a Boolean combination of atomic formulas of the

form xi = xj . It is easy to show that for each seq σ ∈ CS (α), there is a program γ

and a first-order formula ψ such that for every structure A,

mA(σ) = {(u, v) ∈ mA(γ) | u ∈ mA(ψ)}.
The program γ uses only variables from {x1, . . . , xk}, and it is a sequence of

assignments (ordinary or wildcard) such that no variable on the left side of an

assignment appears twice in γ. Moreover, ψ is a conjunction of formulas of the form

∃xi1 . . . ∃xim ϕ, where each xij ∈ {x1, . . . , xk} and ϕ is a Boolean combination of

atomic formulas of the form xi = xj . Since there are only finitely many different

γ and ψ satisfying the above conditions, it follows that that there are only finitely

many semantically different seqs in CS (α), therefore α unwinds in all structures.

15.7 Bibliographical Notes

Many of the results on relative expressiveness presented herein answer questions

posed in Harel (1979). Similar uninterpreted research, comparing the expressive

power of classes of programs (but detached from any surrounding logic) has taken

place under the name comparative schematology quite extensively ever since Ianov

(1960); see Greibach (1975) and Manna (1974).

The results of Section 15.1 are folklore. However, Kfoury (1985) contained the

MIT Press Math7X9/2010/08/25:15:15 Page 378

Expressive Power 379

first proposal to use the notion of the unwind property as a tool for separating the

expressive power of logics of programs (Theorem 15.4). Kreczmar (1977) studied

the unwind property over the fields of real and complex numbers as well as over

Archimedian fields (the unwind property for deterministic while programs holds

for each of these structures). A systematic study of the unwind property, mainly

for regular programs, was carried out in the PhD thesis of Urzyczyn (1983c).

The material of Section 15.2, relating spectra of logics of programs to their

relative expressive power, is due to Tiuryn and Urzyczyn. It started with Tiuryn and

Urzyczyn (1983) (see Tiuryn and Urzyczyn (1988) for the full version). The general

Spectral Theorem (Theorem 15.11) is from Tiuryn and Urzyczyn (1984). However,

some of the definitions presented in our exposition are simpler than in the papers

cited above. In particular, the notion of admissibility of a programming language has

been simplified here, and an auxiliary notion of termination subsumption has been

introduced. As a result, some of the proofs have become simpler too. In particular,

our proof of the Spectral Theorem is simpler than that in Tiuryn and Urzyczyn

(1984).

The main result of Section 15.3, Theorem 15.20, appears in Berman et al. (1982)

and was proved independently in Stolboushkin and Taitslin (1983). These results

extend in a substantial way an earlier and much simpler result for the case of regular

programs without equality in the vocabulary, which appears in Halpern (1981). A

simpler proof of the special case of the quantifier-free fragment of the logic of regular

programs appears in Meyer and Winklmann (1982). The proof of Theorem 15.20

presented here is from Tiuryn (1989). Theorem 15.19 is due to Urzyczyn (1983b),

and as a corollary it yields Theorem 15.20. Theorem 15.21 is from Tiuryn and

Urzyczyn (1984).

Theorem 15.22 is from Stolboushkin (1983). The proof, as in the case of regular

programs (see Stolboushkin and Taitslin (1983)), uses Adian’s result from group

theory (Adian (1979)). Theorem 15.23 is also from Stolboushkin (1983). The

method of trapping programs is from Kfoury (1985). Theorems 15.24 and 15.25

are from Kfoury (1985). Observe that Theorem 15.25 is strong enough to yield

Theorem 15.20. Theorem 15.26 is from Tiuryn and Urzyczyn (1983, 1988).

The main result of Section 15.4, Theorem 15.30, is from Erimbetov (1981)

and was proved independently by Tiuryn (1981b) (see Tiuryn (1984) for the full

version). Erimbetov (1981) contains a somewhat special case of this result, namely

that DL(dreg) < DL(dstk). Both proofs applied similar methods: pebble games on

finite trees. The proof given here is based on the idea presented in Kfoury (1983).

In particular, Proposition 15.29 is from Kfoury (1983). However, the proof of this

Proposition was further simplified by Kfoury and Stolboushkin (1997). We follow

the latter proof in our exposition.

MIT Press Math7X9/2010/08/25:15:15 Page 379

380 Chapter 15

Theorem 15.35 is from Urzyczyn (1987). There is a different proof of this result,

using Adian structures, which appears in Stolboushkin (1989). Exercise 15.11 is

from Urzyczyn (1988), which also studies programs with Boolean arrays.

Wildcard assignments were considered in Harel et al. (1977) under the name

nondeterministic assignments. Theorem 15.36 is from Meyer and Winklmann

(1982). Theorem 15.37 is from Meyer and Parikh (1981).

In our exposition of the comparison of the expressive power of logics, we have

made the assumption that programs use only quantifier-free first-order tests. It

follows from the results of Urzyczyn (1986) that allowing full first-order tests in

many cases results in increased expressive power. Urzyczyn (1986) also proves that

adding array assignments to nondeterministic r.e. programs increases the expressive

power of the logic. This should be contrasted with the result of Meyer and Tiuryn

(1981, 1984) to the effect that for deterministic r.e. programs, array assignments

do not increase expressive power.

Makowski (1980) considers a weaker notion of equivalence between logics com-

mon in investigations in abstract model theory, whereby models are extended with

interpretations for additional predicate symbols. With this notion it is shown in

Makowski (1980) that most of the versions of logics of programs treated here be-

come equivalent.

Exercises

15.1. Show that program equivalence is not invariant under elementary equivalence

of structures.

15.2. (Meyer and Tiuryn (1981, 1984)) Define the class of deterministic r.e. pro-

grams over a given vocabulary. Show that DL(r.e.) has the same expressive power as

DL over deterministic r.e. programs. Notice that r.e. programs are not divergence-

closed.

15.3. In Theorem 15.20, reduce the case of a vocabulary containing a function

symbol of arity greater than one to the case of a vocabulary containing two unary

function symbols.

15.4. Define super-atomic seqs as those that use only simple assignments in which

the terms have depth at most one. Show that a term t has pebble complexity at

most n iff there is a super-atomic seq with at most n variables that computes it.

MIT Press Math7X9/2010/08/25:15:15 Page 380

Expressive Power 381

15.5. Show that every nondeterministic while program with a Boolean stack has

bounded memory.

15.6. Show that regular programs with an algebraic stack are translatable into

regular programs with arrays. (Hint. Prove that for every regular program α with

an algebraic stack, there is a polynomial p(n) such that in every terminating

computation of α over an n-element interpretation, the maximal depth of the stack

is at most p(n).)

15.7. Prove that regular programs with two algebraic stacks have the same compu-

tational power as arbitrary r.e. programs.

15.8. Prove Theorem 15.30 for vocabularies containing only symbols of arity greater

than two.

15.9. Show that over a vocabulary containing no function symbols of arity greater

than one all terms have pebble complexity one.

15.10. Show that over a mono-unary vocabulary, regular programs with a Boolean

stack have the same computational power as regular programs with an algebraic

stack. Show that the same result holds for deterministic programs. Conclude that

the two version of DL over these programming languages are of equal expressive

power.

15.11. Prove that over a monadic vocabulary, nondeterministic regular programs

with a Boolean stack have the same computational power as nondeterministic

regular programs with an algebraic stack.

15.12. Prove that for any poor vocabulary,

(a) DL(stk) ≡ DL(array) iff DTIME (2O(n)) = DSPACE (2O(n));

(b) DL(dreg) ≡ DL(reg) iff DSPACE (n) = NSPACE (n);

(c) DL(dreg) ≡ DL(dstk) iff DSPACE (n) = DTIME (2O(n)).

MIT Press Math7X9/2010/08/25:15:15 Page 381

382 Chapter 15

MIT Press Math7X9/2010/08/25:15:15 Page 382

16 Variants of DL

In this section we consider some restrictions and extensions of DL. We are interested

mainly in questions of comparative expressive power on the uninterpreted level. In

arithmetical structures these questions usually become trivial, since it is difficult

to go beyond the power of first-order arithmetic without allowing infinitely many

distinct tests in programs (see Theorems 12.6 and 12.7). In regular DL this luxury

is not present.

16.1 Algorithmic Logic

Algorithmic Logic (AL) is the predecessor of Dynamic Logic. The basic system

was defined by Salwicki (1970) and generated an extensive amount of subsequent

research carried out by a group of mathematicians working in Warsaw. Two surveys

of the first few years of their work can be found in Banachowski et al. (1977) and

Salwicki (1977).

The original version of AL allowed deterministic while programs and formulas

built from the constructs

αϕ ∪ αϕ ∩ αϕ
corresponding in our terminology to

<α>ϕ <α∗>ϕ
∧
n∈ω

<αn>ϕ,

respectively, where α is a deterministic while program and ϕ is a quantifier-free

first-order formula.

In Mirkowska (1980, 1981a,b), AL was extended to allow nondeterministicwhile

programs and the constructs

∇αϕ Δαϕ

corresponding in our terminology to

<α>ϕ halt(α) ∧ [α]ϕ ∧ <α>ϕ,

respectively. The latter asserts that all traces of α are finite and terminate in a

state satisfying ϕ.

A feature present in AL but not in DL is the set of “dynamic terms” in addition

to dynamic formulas. For a first-order term t and a deterministic while program

MIT Press Math7X9/2010/08/25:15:15 Page 383

384 Chapter 16

α, the meaning of the expression αt is the value of t after executing program α.

If α does not halt, the meaning is undefined. Such terms can be systematically

eliminated; for example, P (x, αt) is replaced by ∃z (<α>(z = t) ∧ P (x, z)).
The emphasis in the early research on AL was in obtaining infinitary complete-

ness results (as in Section 14.1), developing normal forms for programs, investi-

gating recursive procedures with parameters, and axiomatizing certain aspects of

programming using formulas of AL. As an example of the latter, the algorithmic

formula

(while s
= ε do s := pop(s))1

can be viewed as an axiom connected with the data structure stack. One can then

investigate the consequences of such axioms within AL, regarding them as properties

of the corresponding data structures.

Complete infinitary deductive systems for first-order and propositional versions

are given in Mirkowska (1980, 1981a,b). The infinitary completeness results for AL

are usually proved by the algebraic methods of Rasiowa and Sikorski (1963).

Constable (1977), Constable and O’Donnell (1978) and Goldblatt (1982) present

logics similar to AL and DL for reasoning about deterministic while programs.

16.2 Nonstandard Dynamic Logic

Nonstandard Dynamic Logic (NDL) was introduced by Andréka, Németi, and Sain

in 1979. The reader is referred to Németi (1981) and Andréka et al. (1982a,b)

for a full exposition and further references. The main idea behind NDL is to

allow nonstandard models of time by referring only to first-order properties of

time when measuring the length of a computation. The approach described in

Andréka et al. (1982a,b) and further research in NDL is concentrated on proving

properties of flowcharts, i.e., programs built up of assignments, conditionals and go

to statements.

Nonstandard Dynamic Logic is well suited to comparing the reasoning power of

various program verification methods. This is usually done by providing a model-

theoretic characterization of a given method for program verification. To illustrate

this approach, we briefly discuss a characterization of Hoare Logic for partial

correctness formulas. For the present exposition, we choose a somewhat simpler

formalism which still conveys the basic idea of nonstandard time.

Let Σ be a first-order vocabulary. For the remainder of this section we fix a

deterministic while program α over Σ in which the while-do construct does not

MIT Press Math7X9/2010/08/25:15:15 Page 384

Variants of DL 385

occur (such a program is called loop-free). Let z = (z1, . . . , zn) contain all variables

occurring in α, and let y = (y1, . . . , yn) be a vector of n distinct individual variables

disjoint from z.

Since α is loop-free, it has only finitely many computation sequences. One can

easily define a quantifier-free first-order formula θα with all free variable among y, z

that defines the input/output relation of α in all Σ-structures A in the sense that

the pair of states (u, v) is in mA(α) if and only if

A, v[y1/u(z1), . . . , yn/u(zn)] � θα

and u(x) = v(x) for all x ∈ V − {z1, . . . , zn}.
Let α+ be the following deterministic while program:

y := z;

α;

while z
= y do y := z; α

where z
= y stands for z1
= y1 ∨ · · · ∨ zn
= yn and y := z stands for y1 :=

z1 ; · · · ; yn := zn. Thus program α+ executes α iteratively until α does not change

the state.

The remainder of this section is devoted to giving a model-theoretic charac-

terization, using NDL, of Hoare’s system for proving partial correctness assertions

involving α+ relative to a given first-order theory T over Σ. We denote provability

in Hoare Logic by �
HL
.

Due to the very specific form of α+, the Hoare system reduces to the following

rule:

ϕ→ χ, χ[z/y] ∧ θα → χ, χ[z/y] ∧ θα ∧ z = y → ψ

ϕ→ [α+]ψ

where ϕ, χ, ψ are first-order formulas and no variable of y occurs free in χ.

The next series of definitions introduces a variant of NDL. A structure I for the

language consisting of a unary function symbol +1 (successor), a constant symbol

0, and equality is called a time model if the following axioms are valid in I:

• x+ 1 = y + 1→ x = y

• x+ 1
= 0

• x
= 0→ ∃y y + 1 = x

• x
= x+1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

, for any n = 1, 2, . . .

Let A be a Σ-structure and I a time model. A function ρ : I → An is called a

MIT Press Math7X9/2010/08/25:15:15 Page 385

386 Chapter 16

run of α in A if the following infinitary formulas are valid in A:

• ∧
i∈I θα[y/ρ(i), z/ρ(i+ 1)] ;

• for every first-order formula ϕ(z) over Σ,

ϕ(ρ(0)) ∧
∧
i∈I

(ϕ(ρ(i))→ ϕ(ρ(i + 1))) →
∧
i∈I

ϕ(ρ(i)).

The first formula says that for i ∈ I, ρ(i) is the valuation obtained from ρ(0) after

i iterations of the program α. The second formula is the induction scheme along

the run ρ.

Finally, we say that a partial correctness formula ϕ → [α+]ψ follows from T

in nonstandard time semantics and write T �
NT
ϕ→ [α+]ψ if for every model A of

T , time model I, and run ρ of α in A,

A � ϕ[z/ρ(0)] →
∧
i∈I

(ρ(i) = ρ(i+ 1)→ ψ[z/ρ(i)]).

The following theorem characterizes the power of Hoare Logic for programs of

the form α+ over nonstandard time models.

Theorem 16.1: For every first-order theory T over Σ and first-order formulas

ϕ, ψ over Σ, the following conditions are equivalent:

(i) T �
HL
ϕ→ [α+]ψ;

(ii) T �
NT
ϕ→ [α+]ψ.

Other proof methods have been characterized in the same spirit. The reader

is referred to Makowski and Sain (1986) for more information on this issue and

further references.

16.3 Well-Foundedness

As in Section 10.6 for PDL, we consider adding to DL assertions to the effect that

programs can enter infinite computations. Here too, we shall be interested both in

LDL and in RDL versions; i.e., those in which haltα and wf α, respectively, have

been added inductively as new formulas for any program α. As mentioned there,

the connection with the more common notation repeatα and loopα (from which

MIT Press Math7X9/2010/08/25:15:15 Page 386

Variants of DL 387

the L and R in the names LDL and RDL derive) is by:

loopα
def⇐⇒ ¬haltα

repeatα
def⇐⇒ ¬wf α.

We now state some of the relevant results. The first concerns the addition of haltα:

Theorem 16.2:

LDL ≡ DL.

Proof sketch. In view of the equivalences (10.6.2)–(10.6.5) of Section 10.6, it

suffices, for each regular program α, to find a DL formula ϕα such that

� [α∗]haltα → (ϕα ↔ wf α).

Given such ϕα, halt (α
∗) is equivalent to [α∗]haltα ∧ ϕα.

Consider the computation tree Tα(s) corresponding to the possible computa-

tions of α in state s. The tree is derived from α by identifying common prefixes

of seqs. A node of Tα(s) is labeled with the state reached at that point. The tree

Tα(s), it should be noted, is obtained from the syntactic tree Tα by truncating

subtrees that are rooted below false tests. Then s � haltα holds iff Tα(s) contains

no infinite path.

For any program of the form α∗, consider the tree Sα(s) derived from Tα∗(s) by
eliminating all states internal to executions of α. Thus t is an immediate descendant

of t′ in Sα(s) iff t′ is reached from s by some execution of α∗ and t is reached from

t′ by an additional execution of α.

If s � [α∗]haltα, then by König’s lemma Sα(s) is of finite outdegree. It can

be shown that in this case Sα(s) has an infinite path iff either some state repeats

along a path or there are infinitely many states t, each of which appears only within

bounded depth in Sα(s) but for which there is a state appearing for the first time

at depth greater than that of the last appearance of t.

This equivalent to “Sα(s) contains an infinite path” is then written in DL using

the fact that a state is characterized by a finite tuple of values corresponding to the

finitely many variables in α.

As an example of a typical portion of this definition, the following is a DL

equivalent of the statement: “There is a state in Sα(s) appearing for the first time

at depth greater than the greatest depth at which a given state y appears.”

∃z (<α∗>x = z ∧ [z′ := x; (α;α[z′/x])∗; z′ = z?;α∗]¬x = y).

MIT Press Math7X9/2010/08/25:15:15 Page 387

388 Chapter 16

Here y, z and z′ are n-tuples of new variables denoting states matching the n-tuple

x of variables appearing in α. Assignments and tests are executed pointwise, as is

the substitution α[z′/x], which replaces all occurrences of the variables in α with

their z′ counterparts. The inner program runs α simultaneously on x and z′, reaches
z and then continues running α on x. The assertion is that y cannot be obtained

in this manner.

In contrast to this, we have:

Theorem 16.3:

LDL < RDL.

Proof sketch. The result is proved by showing how to state in RDL that a binary

function g is a well-order, where one first constrains the domain to be countable,

with the unary f acting as a successor function starting at some “zero” constant c.

The result then follows from the fact that well-order is not definable in Lω1ω (see

Keisler (1971)).

Turning to the validity problem for these extensions, clearly they cannot be any

harder to decide than that of DL, which is Π1
1-complete. However, the following

result shows that detecting the absence of infinite computations of even simple

uninterpreted programs is extremely hard.

Theorem 16.4: The validity problems for formulas of the form ϕ → wf α and

formulas of the form ϕ → haltα, for first-order ϕ and regular α, are both Π1
1-

complete. If α is constrained to have only first-order tests then the ϕ→ wf α case

remains Π1
1-complete but the ϕ→ haltα case is r.e.; that is, it is Σ0

1-complete.

Proof sketch. That the problems are in Π1
1 is easy. The Π1

1-hardness results can

be established by reductions from the recurring tiling problem of Proposition 2.22

similarly to the proof of Theorem 13.1. As for haltα formulas with first-order tests

in Σ0
1, compactness and König’s lemma are used. Details appear in Harel and Peleg

(1985).

Axiomatizations of LDL and RDL are discussed in Harel (1984). We just mention

here that the additions to Axiom System 14.12 of Chapter 14 that are used to obtain

an arithmetically complete system for RDL are the axiom

[α∗](ϕ→ <α>ϕ) → (ϕ→ ¬wf α)

MIT Press Math7X9/2010/08/25:15:15 Page 388

Variants of DL 389

and the inference rule

ϕ(n+ 1)→ [α]ϕ(n), ¬ϕ(0)
ϕ(n)→ wf α

for first-order ϕ and n not occurring in α.

16.4 Dynamic Algebra

Dynamic algebra provides an abstract algebraic framework that relates to PDL as

Boolean algebra relates to propositional logic. Dynamic algebra was introduced in

Kozen (1980b) and Pratt (1979b) and studied by numerous authors; see Kozen

(1979c,b, 1980a, 1981b); Pratt (1979a, 1980a, 1988); Németi (1980); Trnkova and

Reiterman (1980). A survey of the main results appears in Kozen (1979a). A

dynamic algebra is defined to be any two-sorted algebraic structure (K, B, ·), where
B = (B, →, 0) is a Boolean algebra, K = (K, +, ·, ∗, 0, 1) is a Kleene algebra

(see Section 17.5), and · : K ×B → B is a scalar multiplication satisfying algebraic

constraints corresponding to the dual forms of the PDL axioms (Axioms 5.5). For

example, all dynamic algebras satisfy the equations

(αβ) · ϕ = α · (β · ϕ)
α · 0 = 0

0 · ϕ = 0

α · (ϕ ∨ ψ) = α · ϕ ∨ α · ψ,
which correspond to the PDL validities

<α ; β>ϕ ↔ <α><β>ϕ

<α>0 ↔ 0

<0?>ϕ ↔ 0

<α>(ϕ ∨ ψ) ↔ <α>ϕ ∨ <α>ψ,

respectively. The Boolean algebra B is an abstraction of the formulas of PDL and

the Kleene algebra K is an abstraction of the programs.

Kleene algebra is of interest in its own right, and we defer a more detailed

treatment until Section 17.5. In short, a Kleene algebra is an idempotent semiring

under +, ·, 0, 1 satisfying certain axioms for ∗ that say essentially that ∗ behaves

like the asterate operator on sets of strings or reflexive transitive closure on

binary relations. There are finitary and infinitary axiomatizations of the essential

MIT Press Math7X9/2010/08/25:15:15 Page 389

390 Chapter 16

properties of * that are of quite different deductive strength. A Kleene algebra

satisfying the stronger infinitary axiomatization is called *-continuous (see Section

17.5).

The interaction of scalar multiplication with iteration can be axiomatized in a

finitary or infinitary way. One can postulate

α∗ · ϕ ≤ ϕ ∨ (α∗ · (¬ϕ ∧ (α · ϕ))) (16.4.1)

corresponding to the diamond form of the PDL induction axiom (Axiom 5.5(viii)).

Here ϕ ≤ ψ in B iff ϕ∨ψ = ψ. Alternatively, one can postulate the stronger axiom

of ∗-continuity:

α∗ · ϕ = sup
n
(αn · ϕ). (16.4.2)

We can think of (16.4.2) as a conjunction of infinitely many axioms αn ·ϕ ≤ α∗ ·ϕ,
n ≥ 0, and the infinitary Horn formula

(
∧
n≥0

αn · ϕ ≤ ψ) → α∗ · ϕ ≤ ψ.

In the presence of the other axioms, (16.4.2) implies (16.4.1) (Kozen (1980b)), and

is strictly stronger in the sense that there are dynamic algebras that are not *-

continuous (Pratt (1979a)).

A standard Kripke frame K = (U, mK) of PDL gives rise to a *-continuous

dynamic algebra consisting of a Boolean algebra of subsets of U and a Kleene

algebra of binary relations on U . Operators are interpreted as in PDL, including

0 as 0? (the empty program), 1 as 1? (the identity program), and α · ϕ as <α>ϕ.

Nonstandard Kripke frames (see Section 6.3) also give rise to dynamic algebras,

but not necessarily *-continuous ones. A dynamic algebra is separable if any pair

of distinct Kleene elements can be distinguished by some Boolean element; that is,

if α
= β, then there exists ϕ ∈ B with α · ϕ
= β · ϕ.
Research directions in this area include the following.

• Representation theory. It is known that any separable dynamic algebra is iso-

morphic to some possibly nonstandard Kripke frame. Under certain conditions,

“possibly nonstandard” can be replaced by “standard,” but not in general, even for

*-continuous algebras (Kozen (1980b, 1979c, 1980a)).

• Algebraic methods in PDL. The small model property (Theorem 6.5) and com-

pleteness (Theorem 7.6) for PDL can be established by purely algebraic considera-

tions (Pratt (1980a)).

MIT Press Math7X9/2010/08/25:15:15 Page 390

Variants of DL 391

• Comparative study of alternative axiomatizations of ∗. For example, it is known

that separable dynamic algebras can be distinguished from standard Kripke frames

by a first-order formula, but even Lω1ω cannot distinguish the latter from ∗-
continuous separable dynamic algebras (Kozen (1981b)).

• Equational theory of dynamic algebras. Many seemingly unrelated models of

computation share the same equational theory, namely that of dynamic algebras

(Pratt (1979b,a)).

In addition, many interesting questions arise from the algebraic viewpoint, and

interesting connections with topology, classical algebra, and model theory have

been made (Kozen (1979b); Németi (1980)).

16.5 Probabilistic Programs

There is wide interest recently in programs that employ probabilistic moves such as

coin tossing or random number draws and whose behavior is described probabilisti-

cally (for example, α is “correct” if it does what it is meant to do with probability 1).

To give one well known example taken from Miller (1976) and Rabin (1980), there

are fast probabilistic algorithms for checking primality of numbers but no known

fast nonprobabilistic ones. Many synchronization problems including digital con-

tract signing, guaranteeing mutual exclusion, etc. are often solved by probabilistic

means.

This interest has prompted research into formal and informal methods for

reasoning about probabilistic programs. It should be noted that such methods are

also applicable for reasoning probabilistically about ordinary programs, for example,

in average-case complexity analysis of a program, where inputs are regarded as

coming from some set with a probability distribution.

Kozen (1981d) provided a formal semantics for probabilistic first-order while

programs with a random assignment statement x := ?. Here the term “random” is

quite appropriate (contrast with Section 11.2) as the statement essentially picks an

element out of some fixed distribution over the domain D. This domain is assumed

to be given with an appropriate set of measurable subsets. Programs are then

interpreted as measurable functions on a certain measurable product space of copies

of D.

In Feldman and Harel (1984) a probabilistic version of first-order Dynamic

Logic, Pr(DL), was investigated on the interpreted level. Kozen’s semantics is

extended as described below to a semantics for formulas that are closed under

Boolean connectives and quantification over reals and integers and that employ

MIT Press Math7X9/2010/08/25:15:15 Page 391

392 Chapter 16

terms of the form Fr(ϕ) for first-order ϕ. In addition, if α is a while program with

nondeterministic assignments and ϕ is a formula, then {α}ϕ is a new formula.

The semantics assumes a domain D, say the reals, with a measure space

consisting of an appropriate family of measurable subsets of D. The states μ, ν, . . .

are then taken to be the positive measures on this measure space. Terms are

interpreted as functions from states to real numbers, with Fr(ϕ) in μ being the

frequency (or simply, the measure) of ϕ in μ. Frequency is to positive measures

as probability is to probability measures. The formula {α}ϕ is true in μ if ϕ is

true in ν, the state (i.e., measure) that is the result of applying α to μ in Kozen’s

semantics. Thus {α}ϕ means “after α, ϕ” and is the construct analogous to <α>ϕ

of DL.

For example, in Pr(DL) one can write

Fr(1) = 1 → {α}Fr(1) ≥ p

to mean, “α halts with probability at least p.” The formula

Fr(1) = 1 → [i := 1;x := ?;while x > 1/2 do (x := ?; i := i+ 1)]

∀n ((n ≥ 1→ Fr(i = n) = 2−n) ∧ (n < 1→ Fr(i = n) = 0))

is valid in all structures in which the distribution of the random variable used in

x := ? is a uniform distribution on the real interval [0, 1].

An axiom system for Pr(DL) was proved in Feldman and Harel (1984) to be

complete relative to an extension of first-order analysis with integer variables, and

for discrete probabilities first-order analysis with integer variables was shown to

suffice.

Various propositional versions of probabilistic DL have also been proposed; see

Reif (1980); Makowsky and Tiomkin (1980); Ramshaw (1981); Feldman (1984);

Parikh and Mahoney (1983); Kozen (1985). In Ramshaw (1981), Ramshaw gave a

Hoare-like logic, but observed that even the if-then-else rule was incomplete. Reif

(1980) gave a logic that was not expressive enough to define if-then-else; moreover,

the soundness of one of its proof rules was later called into question (Feldman

and Harel (1984)). Makowsky and Tiomkin (1980) gave an infinitary system and

proved completeness. Parikh and Mahoney (1983) studied the equational properties

of probabilistic programs. Feldman (1984) gave a less expressive version of Pr(DL),

though still with quantifiers, and proved decidability by reduction to the first-

order theory of R (Renegar (1991)). Kozen (1985) replaced the truth-functional

propositional operators with analogous arithmetic ones, giving an arithmetical

calculus closer in spirit to the semantics of Kozen (1981d). Three equivalent

MIT Press Math7X9/2010/08/25:15:15 Page 392

Variants of DL 393

semantics were given: a Markov transition semantics, a generalized operational

semantics involving measure transformers, and a generalized predicate transformer

semantics involving measurable function transformers. A small model property and

PSPACE decision procedure over well-structured programs were given. A deductive

calculus was proposed and its use demonstrated by calculating the expected running

time of a random walk.

In a different direction, Lehmann and Shelah (1982) extend propositional tem-

poral logic (Section 17.2) with an operator C for “certainly” where Cϕmeans essen-

tially, “ϕ is true with probability 1.” Actual numerical probabilities, like p or 2−n in

the examples above, are not expressible in this language. Nevertheless, the system

can express many properties of interest, especially for finite state protocols that

employ probabilistic choice, such as probabilistic solutions to such synchronization

problems as mutual exclusion. In many such cases the probabilistic behavior of the

program can be described without resorting to numerical values and is independent

of the particular distribution used for the random choices.

For example, one can write

atL1 → (¬C¬ �atL2 ∧ ¬C¬ �atL3)

meaning “if execution is at label L1, then it is possible (i.e., true with nonzero

probability) to be at L2 in the next step, and similarly for L3.” Three variants

of the system, depending upon whether positive probabilities are bounded from

below or not, and whether or not the number of possibilities is finite, are shown

in Lehmann and Shelah (1982) to be decidable and complete with respect to finite

effective axiomatizations that extend those of classical modal or temporal logic.

Probabilistic processes and model checking have recently become a popular

topic of research; see Morgan et al. (1999); Segala and Lynch (1994); Hansson

and Jonsson (1994); Jou and Smolka (1990); Pnueli and Zuck (1986, 1993); Baier

and Kwiatkowska (1998); Huth and Kwiatkowska (1997); Blute et al. (1997). The

relationship between all these formal approaches remains an interesting topic for

further work.

16.6 Concurrency and Communication

As in Section 10.7 for PDL, we can add to DL the concurrency operator for programs,

so that α∧β is a program, inductively, for any α and β. As in concurrent PDL, the

meaning of a program is then a relation between states and sets of states.

It is not known whether the resulting logic, concurrent DL, is strictly more

MIT Press Math7X9/2010/08/25:15:15 Page 393

394 Chapter 16

expressive than DL, but this is known to be true if both logics are restricted to

allow only quantifier-free first-order tests in the programs.

Also, the four axiom systems of Chapter 14 can be proved complete with the

appropriate addition of the valid formulas of the concurrent versions of PDL.

16.7 Bibliographical Notes

Algorithmic logic was introduced by Salwicki (1970). Mirkowska (1980, 1981a,b)

extended AL to allow nondeterministic while programs and studied the operators

∇ and Δ. Complete infinitary deductive systems for propositional and first-order

versions were given by Mirkowska (1980, 1981a,b) using the algebraic methods of

Rasiowa and Sikorski (1963). Surveys of early work in AL can be found in Bana-

chowski et al. (1977); Salwicki (1977). Constable (1977), Constable and O’Donnell

(1978) and Goldblatt (1982) presented logics similar to AL and DL for reasoning

about deterministic while programs.

Nonstandard Dynamic Logic was introduced by Németi (1981) and Andréka

et al. (1982a,b). Theorem 16.1 is due to Csirmaz (1985). See Makowski and Sain

(1986) for more information and further references on NDL. Nonstandard semantics

has also been studied at the propositional level; see Section 6.4.

The halt construct (actually its complement, loop) was introduced in Harel

and Pratt (1978), and the wf construct (actually its complement, repeat) was

investigated for PDL in Streett (1981, 1982). Theorem 16.2 is from Meyer and

Winklmann (1982), Theorem 16.3 is from Harel and Peleg (1985), Theorem 16.4 is

from Harel (1984), and the axiomatizations of LDL and PDL are discussed in Harel

(1979, 1984).

Dynamic algebra was introduced in Kozen (1980b) and Pratt (1979b) and

studied by numerous authors; see Kozen (1979c,b, 1980a, 1981b); Pratt (1979a,

1980a, 1988); Németi (1980); Trnkova and Reiterman (1980). A survey of the main

results appears in Kozen (1979a).

The PhD thesis of Ramshaw (1981) contains an engaging introduction to

the subject of probabilistic semantics and verification. Kozen (1981d) provided

a formal semantics for probabilistic programs. The logic Pr(DL) was presented

in Feldman and Harel (1984), along with a deductive system that is complete

for Kozen’s semantics relative to an extension of first-order analysis. Various

propositional versions of probabilistic DL have been proposed in Reif (1980);

Makowsky and Tiomkin (1980); Feldman (1984); Parikh and Mahoney (1983);

Kozen (1985). The temporal approach to probabilistic verification has been studied

MIT Press Math7X9/2010/08/25:15:15 Page 394

Variants of DL 395

in Lehmann and Shelah (1982); Hart et al. (1982); Courcoubetis and Yannakakis

(1988); Vardi (1985a). Interest in the subject of probabilistic verification has

undergone a recent revival; see Morgan et al. (1999); Segala and Lynch (1994);

Hansson and Jonsson (1994); Jou and Smolka (1990); Baier and Kwiatkowska

(1998); Huth and Kwiatkowska (1997); Blute et al. (1997).

Concurrent DL is defined in Peleg (1987b), in which the results mentioned in

Section 16.6 are proved. Additional versions of this logic, which employ various

mechanisms for communication among the concurrent parts of a program, are also

considered in Peleg (1987c,a).

MIT Press Math7X9/2010/08/25:15:15 Page 395

396 Chapter 16

MIT Press Math7X9/2010/08/25:15:15 Page 396

17 Other Approaches

In this chapter we describe some topics that are the subject of extensive past

and present research and which are all closely related to Dynamic Logic. Our

descriptions here are very brief and sketchy and are designed to provide the reader

with only a most superficial idea of the essence of the topic, together with one or

two central or expository references where details and further references can be

found.

17.1 Logic of Effective Definitions

The Logic of Effective Definitions (LED), introduced by Tiuryn (1981a), was

intended to study notions of computability over abtract models and to provide a

universal framework for the study of logics of programs over such models. It consists

of first-order logic augmented with new atomic formulas of the form α = β, where

α and β are effective definitional schemes (the latter notion is due to Friedman

(1971)):

if ϕ1 then t1
else if ϕ2 then t2

else if ϕ3 then t3
else if . . .

where the ϕi are quantifier-free formulas and ti are terms over a bounded set of

variables, and the function i �→ (ϕi, ti) is recursive. The formula α = β is defined

to be true in a state if both α and β terminate and yield the same value, or neither

terminates.

Model theory and infinitary completeness of LED are treated in Tiuryn (1981a).

Effective definitional schemes in the definition of LED can be replaced by any

programming language K, giving rise to various logical formalisms. The following

result, which relates LED to other logics discussed here, is proved in Meyer and

Tiuryn (1981, 1984).

Theorem 17.1: For every signature L,

LED ≡ DL(r.e.).

MIT Press Math7X9/2010/08/25:15:15 Page 397

398 Chapter 17

17.2 Temporal Logic

Temporal Logic (TL) is an alternative application of modal logic to program

specification and verification. It was first proposed as a useful tool in program

verification by Pnueli (1977) and has since been developed by many authors in

various forms. This topic is surveyed in depth in Emerson (1990) and Gabbay et al.

(1994).

TL differs from DL chiefly in that it is endogenous ; that is, programs are not

explicit in the language. Every application has a single program associated with it,

and the language may contain program-specific statements such as atL, meaning

“execution is currently at location L in the program.” There are two competing

semantics, giving rise to two different theories called linear-time and branching-

time TL. In the former, a model is a linear sequence of program states representing

an execution sequence of a deterministic program or a possible execution sequence

of a nondeterministic or concurrent program. In the latter, a model is a tree of

program states representing the space of all possible traces of a nondeterministic

or concurrent program. Depending on the application and the semantics, different

syntactic constructs can be chosen. The relative advantages of linear and branching

time semantics are discussed in Lamport (1980); Emerson and Halpern (1986);

Emerson and Lei (1987); Vardi (1998a).

Modal constructs used in TL include

�ϕ “ϕ holds in all future states”

�ϕ “ϕ holds in some future state”
�ϕ “ϕ holds in the next state”

for linear-time logic, as well as constructs for expressing

“for all traces starting from the present state. . . ”

“for some trace starting from the present state. . . ”

for branching-time logic.

Temporal logic is useful in situations where programs are not normally supposed

to halt, such as operating systems, and is particularly well suited to the study of

concurrency. Many classical program verification methods such as the intermittent

assertions method are treated quite elegantly in this framework; we give an example

of this below.

Temporal logic has been most successful in providing tools for proving properties

of concurrent finite state protocols, such as solutions to the dining philosophers and

mutual exclusion problems, which are popular abstract versions of synchronization

and resource management problems in distributed systems.

MIT Press Math7X9/2010/08/25:15:15 Page 398

Other Approaches 399

The Inductive Assertions Method

In this section we give an example to illustrate the inductive assertions method.

We will later give a more modern treatment using TL. For purposes of illustration,

we use a programming language in which programs consist of a sequence of

labeled statements. Statements may include simple assignments, conditional and

unconditional go to statements, and print statements. For example, the following

program computes n!.

Example 17.2:

L0 : x := 1

L1 : y := 1

L2 : y := y + 1

L3 : x := x · y
L4 : if y
= n then go to L2

L5 : print x

In this program, the variable n can be considered free; it is part of the input. Note

that the program does not halt if n = 1. Suppose we wish to show that whenever

the program halts, x will contain the value n!. Traditionally one establishes an

invariant , which is a statement ϕ with the properties

(i) ϕ is true at the beginning,

(ii) ϕ is preserved throughout execution, and

(iii) ϕ implies the output condition.

In our case, the output condition is x = n!, and the appropriate invariant ϕ is

atL1 → x = 1

∧ atL2 → x = y!

∧ atL3 → x = (y − 1)! (17.2.1)

∧ atL4 → x = y!

∧ atL5 → x = y! ∧ y = n

where atLi means the processor is about to execute statement Li. Then (i) holds,

because at the beginning of the program, atL0 is true, therefore all five conjuncts

are vacuously true. To show that (ii) holds, suppose we are at any point in the

MIT Press Math7X9/2010/08/25:15:15 Page 399

400 Chapter 17

program, say L3, and ϕ holds. Then x = (y − 1)!, since atL3 → x = (y − 1)! is a

conjunct of ϕ. In the next step, we will be at L4, and x = y! will hold, since we

will have just executed the statement L3 : x := x · y. Therefore atL4 → x = y!

will hold, and since atL4 holds, all the other conjuncts will be vacuously true, so ϕ

will hold. In this way we verify, for each possible location in the program, that ϕ is

preserved after execution of one instruction. Finally, when we are about to execute

L5, ϕ ensures that x contains the desired result n!.

The Temporal Approach

To recast this development in the framework of Temporal Logic, note that we are

arguing that a certain formula ϕ is preserved throughout time. If we define a state

of the computation to be a pair (Li, u) where Li is the label of a statement and u

is a valuation of the program variables, then we can consider the trace

σ = s0s1s2 · · ·
of states that the program goes through during execution. Each state si contains

all the information needed to determine whether ϕ is true at si. We write si � ϕ if

the statement ϕ holds in the state si.

There is also a binary relation Next that tells which states can immediately

follow a state. The relation Next depends on the program. For example, in the

program of Example 17.2,

((L2, x = 6, y = 14), (L3, x = 6, y = 15)) ∈ Next.

In the sequence σ above, s0 is the start state (L0, x = 0, y = 0) and si+1 is

the unique state such that (si, si+1) ∈ Next. In ordinary deterministic programs,

each state has at most one Next-successor, but in concurrent or nondeterministic

programs, there may be many possible Next-successors.

Define

s � �ϕ
def⇐⇒ for all states t such that (s, t) ∈ Next, t � ϕ

s � �ϕ
def⇐⇒ starting with s, all future states satisfy ϕ

⇐⇒ for all t such that (s, t) ∈ Next
∗, t � ϕ

where Next
∗ is the reflexive transitive closure of Next

s � �ϕ
def⇐⇒ s � ¬�¬ϕ.

In other words, s � �ϕ if all Next-successors of s satisfy ϕ. In the trace σ, if

si+1 exists, then si � �ϕ iff si+1 � ϕ. The formula �ϕ does not imply that a

MIT Press Math7X9/2010/08/25:15:15 Page 400

Other Approaches 401

Next-successor exists; however, the dual operator ¬ �¬ can be used where this is

desired:

s � ¬ �¬ϕ ⇐⇒ there exists t such that (s, t) ∈ Next and t � ϕ.

In the trace σ, si � �ϕ iff ∀j ≥ i, sj � ϕ.
To say that the statement ϕ of (17.2.1) is an invariant means that every si

satisfies ϕ→ �ϕ; that is, if si � ϕ then si+1 � ϕ. This is the same as saying

s0 � �(ϕ→ �ϕ).

To say that ϕ holds at the beginning of execution is just

s0 � ϕ.

The principle of induction on N allows us to conclude that ϕ will be true in all

reachable states; that is,

s0 � �ϕ.

We can immediately derive the correctness of the program, since (17.2.1) implies

our desired output condition.

The induction principle of TL takes the form:

ϕ ∧�(ϕ→ �ϕ) → �ϕ. (17.2.2)

Note the similarity to the PDL induction axiom (Axiom 5.5(viii)):

ϕ ∧ [α∗](ϕ→ [α]ϕ) → [α∗]ϕ.
This is a classical program verification method known as inductive or invariant

assertions.

The operators �, �, and � are called temporal operators because they describe

how the truth of the formula ϕ depends on time. The inductive or invariant

assertions method is really an application of the temporal principle (17.2.2). The

part �(ϕ→ �ϕ) of the formula ϕ of (17.2.2) says that ϕ is an invariant ; that is, at

all future points, if ϕ is true, then ϕ will be true after one more step of the program.

This method is useful for proving invariant or safety properties . These are

properties that can be expressed as �ϕ; that is, properties that we wish to remain

true throughout the computation. Examples of such properties are:

• partial correctness—see Example 17.2;

• mutual exclusion—no two processes are in their critical sections simultaneously;

MIT Press Math7X9/2010/08/25:15:15 Page 401

402 Chapter 17

• clean execution—for example, a stack never overflows, or we never divide by 0 at

a particular division instruction;

• freedom from deadlock—it is never the case that all processes are simultaneously

requesting resources held by another process.

Another very important class of properties that one would like to reason about

are eventuality or liveness properties , which say that something will eventually

become true. These are expressed using the � operator of TL. Examples are:

• total correctness—a program eventually halts and produces an output that is

correct;

• fairness or freedom from starvation—if a process is waiting for a resource, it will

eventually obtain access to it;

• liveness of variables—if a variable x is assigned a value through the execution of

an assignment statement x := t, then that variable is used at some future point.

There are two historical methods of reasoning about eventualities. The first is

called the method of well-founded sets ; the second is called intermittent assertions.

Recall from Section 1.3 that a strict partial order (A,<) is well-founded if every

subset has a minimal element. This implies that there can be no infinite descending

chains

a0 > a1 > a2 > · · ·

in A. One way to prove that a program terminates is to find such a well-founded set

(A,<) and associate with each state s of the computation an element as ∈ A such

that if (s, t) ∈ Next then as > at. Thus the program could not run forever through

states s0, s1, s2, . . ., because then there would be an infinite descending chain

as0 > as1 > as2 > · · · ,

contradicting the assumption of well-foundedness. For example, in the program

(17.2), if we start out with n > 1, then every time through the loop, y is incremented

by 1, so progress is made toward y = n which will cause the loop to exit at L4. One

can construct a well-founded order < on states that models this forward progress.

However, the expression describing it would be a rather lengthy and unnatural

arithmetic combination of the values of n and y and label indices Li, even for this

very simple program.

A more natural method is the intermittent assertions method . This establishes

MIT Press Math7X9/2010/08/25:15:15 Page 402

Other Approaches 403

eventualities of the form ψ → �ϕ by applications of rules such as

ψ → �θ, θ → �ϕ

ψ → �ϕ
(17.2.3)

among others. This method may also use well-founded relations, although the well-

founded relations one needs to construct are often simpler. For example, in the

program of Example 17.2, total correctness is expressed by

atL0 ∧ n > 1 → �(atL5 ∧ x = n!). (17.2.4)

Using (17.2.3), we can prove

atL0 ∧ n > 1 → �(atL4 ∧ y ≤ n ∧ x = y!) (17.2.5)

from the four statements

atL0 ∧ n > 1 → �(atL1 ∧ n > 1 ∧ x = 1)

atL1 ∧ n > 1 ∧ x = 1 → �(atL2 ∧ n > 1 ∧ x = 1 ∧ y = 1)

atL2 ∧ n > 1 ∧ y = 1 → �(atL3 ∧ n > 1 ∧ x = 1 ∧ y = 2)

atL3 ∧ n > 1 ∧ x = 1 ∧ y = 2 → �(atL4 ∧ n > 1 ∧ x = 2 ∧ y = 2)

→ �(atL4 ∧ y ≤ n ∧ x = y!).

Similarly, one can prove using (17.2.3) that for all values a,

atL4 ∧ y = a ∧ y < n ∧ x = y!→ �(atL4 ∧ y = a+ 1 ∧ y ≤ n ∧ x = y!) (17.2.6)

by going through the loop once. This implies that every time through the loop, the

value of n− y decreases by 1. Thus we can use the well-founded relation < on the

natural numbers to get

atL4 ∧ y ≤ n ∧ x = y! → �(atL4 ∧ y = n ∧ x = y!) (17.2.7)

from (17.2.6), using the principle

∃m ψ(m) ∧ ∀m �(ψ(m+ 1)→ �ψ(m)) → �ψ(0).

Finally, we observe that

atL4 ∧ y = n ∧ x = y!→ �(atL5 ∧ x = n!),

so we achieve our proof of the total correctness assertion (17.2.4) by combining

(17.2.5), (17.2.6), and (17.2.7) using (17.2.3).

MIT Press Math7X9/2010/08/25:15:15 Page 403

404 Chapter 17

Expressiveness

Recall

s � �ϕ
def⇐⇒ ∀t (s, t) ∈ Next→ t � ϕ

s � �ϕ
def⇐⇒ ∀t (s, t) ∈ Next

∗ → t � ϕ
s � �ϕ

def⇐⇒ s � ¬�¬ϕ
⇐⇒ ∃t (s, t) ∈ Next

∗ ∧ t � ϕ.

Here are some interesting properties that can be expressed with �, �, and � over

linear-time interpretations.

Example 17.3:

(i) The trace consists of exactly one state:

halt
def⇐⇒ �0

(ii) The trace is finite, that is, the computation eventually halts:

fin
def⇐⇒ �halt

(iii) The trace is infinite:

inf
def⇐⇒ ¬fin

(iv) The formula ϕ is true at infinitely many points along the trace (a formula

is true at a state on a trace if the formula is satisfied by the suffix of the trace

beginning at that state):

inf ∧��ϕ

(v) The formula ϕ becomes true for the first time at some point, then remains true

thereafter:

�ϕ ∧ �(ϕ→ �ϕ)

(vi) The trace has exactly one nonnull interval on which ϕ is true, and it is false

elsewhere:

�ϕ ∧ �((ϕ ∧ �¬ϕ)→ ��¬ϕ)

MIT Press Math7X9/2010/08/25:15:15 Page 404

Other Approaches 405

(vii) The formula ϕ is true at each multiple of 4 but false elsewhere:

ϕ ∧�(ϕ→ �(¬ϕ ∧ �(¬ϕ ∧ �(¬ϕ ∧ �ϕ))))

The Until Operator

One useful operator that cannot be expressed is until. This is a binary operator

written in infix (e.g., ϕuntilψ). It says that there exists some future point t such

that t � ψ and that all points strictly between the current state and t satisfy ϕ.

The operators �, �, and � can all be defined in terms of until:

�ϕ ⇐⇒ ¬(0until¬ϕ)
�ϕ ⇐⇒ ϕ ∨ (1untilϕ)

�ϕ ⇐⇒ ϕ ∧ ¬(1until¬ϕ)

In the definition of �, the subexpression 0until¬ϕ says that some future point

t satisfies ¬ϕ, but all points strictly between the current state and t satisfy 0

(false); but this can happen only if there are no intermediate states, that is, t is

the next state. Thus 0until¬ϕ says that there exists a Next-successor satisfying

¬ϕ. The definition of � says that ϕ is true now or sometime in the future, and all

intermediate points satisfy 1 (true).

It has been shown in Kamp (1968) and Gabbay et al. (1980) that the until

operator is powerful enough to express anything that can be expressed in the first-

order theory of (ω,<). It has also been shown in Wolper (1981, 1983) that there

are very simple predicates that cannot be expressed by until; for example, “ϕ is

true at every multiple of 4.” Compare Example 17.3(vii) above; here, we do not say

anything about whether ϕ is true at points that are not multiples of 4.

The until operator has been shown to be very useful in expressing non-

input/output properties of programs such as: “If process p requests a resource

before q does, then it will receive it before q does.” Indeed, much of the research in

TL has concentrated on providing useful methods for proving these and other kinds

of properties (see Manna and Pnueli (1981); Gabbay et al. (1980)).

Concurrency and Nondeterminism

Unlike DL, TL can be applied to programs that are not normally supposed to halt,

such as operating systems, because programs are interpreted as traces instead of

pairs of states. Up to now we have only considered deterministic, single-process

programs, so that for each state s, if (s, t) ∈ Next then t is unique. There is no

MIT Press Math7X9/2010/08/25:15:15 Page 405

406 Chapter 17

reason however not to apply TL to nondeterministic and concurrent (multiproces-

sor) systems, although there is a slight problem with this, which we discuss below.

In the single-processor environment, a state is a pair (Li, u), where Li is the

instruction the program is about to execute, and u is a valuation of the program

variables. In a multiprocessor environment, say with n processors, a state is a tuple

(L1, . . . , Ln, u) where the ith process is just about to execute Li. If s and t are

states, then (s, t) ∈ Next if t can be obtained from s by letting just one process pi
execute Li while the other processes wait. Thus each s can have up to n possible

next states. In a nondeterministic program, a statement

Li : go to Lj or Lk

can occur; to execute this statement, a process chooses nondeterministically to go

to either Lj or Lk. Thus we can have two next states. In either of these situations,

multiprocessing or nondeterminism, the computation is no longer a single trace,

but many different traces are possible. We can assemble them all together to get

a computation tree in which each node represents a state accessible from the start

state.

As above, an invariance property is a property of the form �ϕ, which says that

the property ϕ is preserved throughout time. Thus we should define

s � �ϕ
def⇐⇒ t � ϕ for every node t in the tree below s.

The problem is that the dual � of the operator � defined in this way does not

really capture what we mean by eventuality or liveness properties. We would like

to be able to say that every possible trace in the computation tree has a state

satisfying ϕ. For instance, a nondeterministic program is total if there is no chance

of an infinite trace out of the start state s; that is, every trace out of s satisfies

�halt. The dual � of � as defined by �ϕ = ¬�¬ϕ does not really express this. It

says instead

s � �ϕ ⇐⇒ there is some node t in the tree below s such that t � ϕ.

This is not a very useful statement.

There have been several proposals to fix this. One way is to introduce a new

modal operator A that says, “For all traces in the tree. . . ,” and then use �, �

in the sense of linear TL applied to the trace quantified by A. The dual of A is

E, which says, “There exists a trace in the tree. . . .” Thus, in order to say that

the computation tree starting from the current state satisfies a safety or invariance

MIT Press Math7X9/2010/08/25:15:15 Page 406

Other Approaches 407

property, we would write

A�ϕ,

which says, “For all traces π out of the current state, π satisfies �ϕ,” and to say

that the tree satisfies an eventuality property, we would write

A�ϕ,

which says, “For all traces π out of the current state, π satisfies �ϕ; that is, ϕ

occurs somewhere along the trace π.” The logic with the linear temporal operators

augmented with the trace quantifiers A and E is known as CTL; see Emerson (1990);

Emerson and Halpern (1986, 1985); Emerson and Lei (1987); Emerson and Sistla

(1984).

An alternative approach that fits in well with PDL is to bring the programs α

back into the language explicitly, only this time interpret programs as sets of traces

instead of pairs of states. We could then write

[α]�ϕ

[α]�ϕ

which would mean, respectively, “For all traces π of program α, π � �ϕ” and “For

all traces π of α, π � �ϕ,” and these two statements would capture precisely our

intuitive notion of eventuality and invariance. We discuss such a system, called

Process Logic, below in Section 17.3.

Complexity and Deductive Completeness

A useful axiomatization of linear-time TL is given by the axioms

�(ϕ→ ψ) → (�ϕ→ �ψ)

�(ϕ ∧ ψ) ↔ �ϕ ∧ �ψ

�ϕ ↔ ϕ ∨ ��ϕ

�(ϕ ∨ ψ) ↔ �ϕ ∨ �ψ

�(ϕ ∧ ψ) ↔ �ϕ ∧ �ψ

ϕ ∧�(ϕ→ �ϕ) → �ϕ

∀x ϕ(x) → ϕ(t) (t is free for x in ϕ)

∀x �ϕ → �∀x ϕ

MIT Press Math7X9/2010/08/25:15:15 Page 407

408 Chapter 17

and rules

ϕ, ϕ→ ψ

ψ

ϕ

�ϕ

ϕ

∀x ϕ.

Compare the axioms of PDL (Axioms 5.5). The propositional fragment of this

deductive system is complete for linear-time propositional TL, as shown in Gabbay

et al. (1980).

Sistla and Clarke (1982) and Emerson and Halpern (1985) have shown that the

validity problem for most versions of propositional TL is PSPACE -complete for

linear structures and EXPTIME -complete for branching structures.

Embedding TL in DL

TL is subsumed by DL. To embed propositional TL into PDL, take an atomic

program a to mean “one step of program p.” In the linear model, the TL constructs
�ϕ, �ϕ, �ϕ, and ϕuntilψ are then expressed by [a]ϕ, [a∗]ϕ, <a∗>ϕ, and

<(a;ϕ?)∗; a>ψ, respectively.

17.3 Process Logic

Dynamic Logic and Temporal Logic embody markedly different approaches to

reasoning about programs. This dichotomy has prompted researchers to search for

an appropriate process logic that combines the best features of both. An appropriate

candidate should combine the ability to reason about programs compositionally

with the ability to reason directly about the intermediate states encountered during

the course of a computation.

Pratt (1979c), Parikh (1978b), Nishimura (1980), and Harel et al. (1982) all

suggested increasingly more powerful propositional-level formalisms in which the

basic idea is to interpret formulas in traces rather than in states. In particular,

Harel et al. (1982) present a system called Process Logic (PL), which is essentially

a union of TL and test-free regular PDL. That paper proves that the satisfiability

problem is decidable and gives a complete finitary axiomatization.

We present here an extended version that includes tests. In order to interpret

the while loop correctly, we also include an operator ω for infinite iteration. We

allow only poor tests (see Section 10.2).

Syntactically, we have programs α, β, . . . and propositions ϕ, ψ, . . . as in PDL.

We have atomic symbols of each type and compound expressions built up from the

operators →, 0, ;, ∪, ∗, ? (applied to Boolean combinations of atomic formulas

only), ω, and []. In addition we have the temporal operators first and until. The

MIT Press Math7X9/2010/08/25:15:15 Page 408

Other Approaches 409

temporal operators are available for expressing and reasoning about trace prop-

erties, but programs are constructed compositionally as in PDL. Other operators

are defined as in PDL (see Section 5.1) except for skip, which we handle specially

below.

Semantically, both programs and propositions are interpreted as sets of traces.

We start with a Kripke frame K = (K,mK) as in Section 5.2, where K is a set of

states s, t, . . . and the function mK interprets atomic formulas p as subsets of K and

atomic programs a as binary relations on K.

A trace σ is a finite or infinite sequence of states

σ = s0s1s2 · · ·

(repetitions allowed). A trace is of length n if it contains n+1 states; thus a single

state constitutes a trace of length 0. The first state of a trace σ is denoted first(σ),

and the last state (if it exists) is denoted last(σ). The state last(σ) exists iff σ is

finite.

If σ = s0s1 · · · sk and τ = sksk+1 · · · are traces, then the fusion of σ and τ is

the trace

στ = s0s1 · · · sk−1sksk+1 · · ·

Note that sk is written only once. The traces σ and τ cannot be fused unless σ is

finite and last(σ) = first(τ). If σ is infinite, or if σ is finite but last(σ)
= first(τ),

then στ does not exist. A trace τ is a suffix of a trace ρ if there exists a finite trace

σ such that ρ = στ . It is a proper suffix if there exists such a σ of nonzero length.

If A and B are sets of traces, we define

A ·B def
= {στ | σ ∈ A, τ ∈ B}

A ◦B def
= A ·B ∪ {infinite traces in A}.

It is not hard to verify that · and ◦ are associative.

We define the interpretation of the temporal operators first. The definition is

slightly different from that of Section 17.2, but the concept is similar.

For p an atomic proposition and σ a finite trace, define

σ � p def⇐⇒ last(σ) ∈ mK(p).

The right-hand side is given by the specification of the Kripke frame K. If σ is

MIT Press Math7X9/2010/08/25:15:15 Page 409

410 Chapter 17

infinite, or if σ is finite and last(σ)
∈ mK(p), then σ � p. We also define

σ � firstϕ
def⇐⇒ first(σ) � ϕ

σ � ϕuntilψ
def⇐⇒ there exists a proper suffix τ of σ such that τ � ψ,

and for all proper suffixes ρ of σ such that τ is a

proper suffix of ρ, ρ � ϕ.
The following trace satisfies (first (q ∧ ¬p))until first¬q:

� � � � � � � �� � � � � � � � · · ·
p ¬p ¬p ¬p ¬p p p ¬p
q q q q q ¬q q q

As in Section 17.2, if we define

�ϕ
def⇐⇒ ¬(0until¬ϕ)

�ϕ
def⇐⇒ ϕ ∧ ¬(1until¬ϕ)

�ϕ
def⇐⇒ ¬�¬ϕ
⇐⇒ ϕ ∨ (1untilϕ),

then we get

σ � �ϕ ⇐⇒ the maximal proper suffix of σ, if it exists, satisfies ϕ,

σ � �ϕ ⇐⇒ all suffixes of σ, proper or not, satisfy ϕ,

σ � �ϕ ⇐⇒ there exists a suffix of σ, proper or not, satisfying ϕ.

Now we wish to extend the definition of mK to give meanings to programs. The

extended meaning function mK will assign a set of traces to each program.

The meaning of an atomic program a is the binary relation mK(a) as determined

by the frame K, considered as a set of traces of length one. We define

mK(α ∪ β) def
= mK(α) ∪mK(β)

mK(α ; β)
def
= mK(α) ◦mK(β)

= mK(α) ·mK(β) ∪ {infinite traces in mK(α)}
mK(α

∗) def
=

⋃
n≥0

mK(α
n), where mK(α

0)
def
= K and mK(α

n+1)
def
= mK(αα

n)

mK(α
ω)

def
= {σ0σ1 · · · | σn ∈ mK(α), n ≥ 0} ∪ {infinite traces in mK(α

∗)}
mK(ϕ?)

def
= mK(ϕ) ∩ {traces of length 0}.

MIT Press Math7X9/2010/08/25:15:15 Page 410

Other Approaches 411

We do not define skip as 1? as in PDL, but rather as the relation

skip
def
= {(s, s) | s ∈ K}.

The reason for including the ω operator is to model the while loop correctly.

In PDL, we had

while ϕ do α = (ϕ? ; α)∗ ; ¬ϕ?

which was all right for binary relation semantics, since if the test ϕ never becomes

false, there will be no output state. However, with trace semantics, such a compu-

tation would result in an infinite trace obtained by concatenating infinitely many

finite α traces. This is given by αω and should be included in the semantics of the

while loop. Thus for PL, we define

while ϕ do α
def
= (ϕ? ; α)∗ ; ¬ϕ? ∪ (ϕ? ; α)ω.

We would also like infinite traces in mK(α) included in mK(α ; β). Intuitively, such

traces would result if α ran forever without terminating, thus they would also result

from running α ; β.

For the semantics of the modal operator [], we define σ ∈ mK([α]ϕ) iff either

of the following two conditions holds:

(i) σ is finite, and for all traces τ ∈ mK(α) such that στ exists, στ ∈ mK(ϕ); or

(ii) σ is infinite and σ ∈ mK(ϕ).

Intuitively, either σ represents a finite computation and all extensions τ of σ

obtained by running the program α satisfy ϕ; or σ is an infinite computation

satisfying ϕ already.

The addition of clause (ii) takes care of the possibility that α does not halt. It

causes the PDL axiom [α ; β]ϕ↔ [α][β]ϕ to be satisfied.

Axiomatization

Trace models satisfy (most of) the PDL axioms. As in Section 17.2, define

halt
def⇐⇒ �0

fin
def⇐⇒ �halt

inf
def⇐⇒ ¬fin,

MIT Press Math7X9/2010/08/25:15:15 Page 411

412 Chapter 17

which say that the trace is of length 0, of finite length, or of infinite length,

respectively. Define two new operators [[]] and << >>:

[[α]]ϕ
def⇐⇒ fin→ [α]ϕ

<<α>>ϕ
def⇐⇒ ¬[[α]]¬ϕ ⇐⇒ fin ∧ <α>ϕ.

Then

mK([[α]]ϕ) = {σ | for all τ ∈ mK(α), if στ exists, then στ ∈ mK(ϕ)}
mK(<<α>>ϕ) = {σ | there exists τ ∈ mK(α) such that στ exists and στ ∈ mK(ϕ)}.
The operator << >> is just < > restricted to finite traces.

By definition of [] and < >, the following are valid formulas of PL:

[α]ϕ ↔ (fin→ [[α]]ϕ) ∧ (inf → ϕ)

↔ (fin ∧ [[α]]ϕ) ∨ (inf ∧ ϕ)
<α>ϕ ↔ (fin→ <<α>>ϕ) ∧ (inf → ϕ)

↔ (fin ∧ <<α>>ϕ) ∨ (inf ∧ ϕ).
First we show that the modal axioms

[α](ϕ ∧ ψ) ↔ ([α]ϕ ∧ [α]ψ) (17.3.1)

[α](ϕ→ ψ) → ([α]ϕ→ [α]ψ) (17.3.2)

are satisfied. To show (17.3.1), first observe that

[[α]](ϕ ∧ ψ) ↔ [[α]]ϕ ∧ [[α]]ψ

is valid. Then

[α](ϕ ∧ ψ) ↔ (fin→ [[α]](ϕ ∧ ψ)) ∧ (inf → (ϕ ∧ ψ))
↔ (fin→ ([[α]]ϕ ∧ [[α]]ψ)) ∧ (inf → (ϕ ∧ ψ))
↔ (fin→ [[α]]ϕ) ∧ (fin→ [[α]]ψ) ∧ (inf → ϕ) ∧ (inf → ψ)

↔ [α]ϕ ∧ [α]ψ.

To show (17.3.2), by propositional reasoning, it suffices to show

[α](ϕ→ ψ) ∧ [α]ϕ → [α]ψ.

First observe that

[[α]](ϕ→ ψ) ∧ [[α]]ϕ → [[α]]ψ

MIT Press Math7X9/2010/08/25:15:15 Page 412

Other Approaches 413

is valid. Then

[α](ϕ→ ψ) ∧ [α]ϕ

↔ (fin→ [[α]](ϕ→ ψ)) ∧ (inf → (ϕ→ ψ)) ∧ (fin→ [[α]]ϕ) ∧ (inf → ϕ)

→ (fin→ ([[α]]ϕ→ [[α]]ψ)) ∧ (inf → (ϕ→ ψ)) ∧ (fin→ [[α]]ϕ) ∧ (inf → ϕ)

↔ (fin→ ([[α]]ϕ ∧ ([[α]]ϕ→ [[α]]ψ))) ∧ (inf → (ϕ ∧ (ϕ→ ψ)))

→ (fin→ [[α]]ψ) ∧ (inf → ψ)

↔ [α]ψ.

The argument for the axiom

[α ∪ β]ϕ ↔ [α]ϕ ∧ [β]ϕ

is similar and uses the property

[[α ∪ β]]ϕ ↔ [[α]]ϕ ∧ [[β]]ϕ.

The axiom [α ; β]ϕ↔ [α][β]ϕ is obtained as follows. Suppose σ is finite. Arguing

semantically, σ ∈ mK([[α ; β]]ϕ) iff

• for all infinite α-traces τ such that στ exists, στ � ϕ; and
• for all finite α-traces τ such that στ exists, for all β-traces ρ such that στρ exists,

στρ � ϕ.

Thus

[[α ; β]]ϕ ↔ [[α]](inf → ϕ) ∧ [[α]](fin→ [[β]]ϕ)

↔ [[α]]((inf → ϕ) ∧ (fin→ [[β]]ϕ))

↔ [[α]][β]ϕ

and

[α ; β]ϕ ↔ (fin→ [[α ; β]]ϕ) ∧ (inf → ϕ)

↔ (fin→ [[α]][β]ϕ) ∧ (inf → ϕ)

↔ (fin→ [[α]][β]ϕ) ∧ (inf → [β]ϕ)

↔ [α][β]ϕ.

The penultimate step uses the fact that ϕ and [β]ϕ are equivalent for infinite

traces.

MIT Press Math7X9/2010/08/25:15:15 Page 413

414 Chapter 17

The ∗ operator is the same as in PDL. It can be shown that the two PDL axioms

ϕ ∧ [α][α∗]ϕ ↔ [α∗]ϕ
ϕ ∧ [α∗](ϕ→ [α]ϕ) → [α∗]ϕ

hold by establishing that⋃
n≥0

mK(α
n) = mK(α

0) ∪ (mK(α) ◦
⋃
n≥0

mK(α
n))

= mK(α
0) ∪ ((

⋃
n≥0

mK(α
n)) ◦mK(α)).

The axiom for the test operator ? is not quite the same as in PDL. The PDL

axiom [ψ?]ϕ ↔ (ψ → ϕ) is valid only for weak tests and finite traces. If either

one of these restrictions is lifted, then the formula is no longer valid. Instead we

postulate

(fin→ ([ψ?]ϕ↔ (ψ → ϕ))) ∧ (inf → ([ψ?]ϕ↔ ϕ)) (17.3.3)

for weak tests only.

In our formulation, tests are instantaneous. One may argue that this interferes

with the semantics of programs such as while 1 do ϕ?, which rightfully should

generate an infinite trace but does not. This suggests an alternative approach in

which tests would be interpreted as binary relations (traces of length one). However,

the latter approach is even more problematic. For one thing, it is not clear how to

axiomatize [ψ?]ϕ; certainly (17.3.3) is no longer valid. Since we can assert the

length of a trace, our axiomatization would be encumbered by such irrelevancies as

length 17 → [1?]length 18. Worse, Boolean algebra would no longer be readily

available, at least in any simple form. For example, ϕ? ; ϕ? and ϕ? would no

longer be equivalent. We thus prefer the formulation we have given. Note, however,

that if we restrict programs to ordinary while programs in which ϕ? must occur

in the test of a conditional or while statement, then pathelogical programs such

as while 1 do ϕ? are disallowed, and all is well. The program while 1 do skip

generates an infinite trace because of the redefinition of skip.

Finally, what can we say about ω? One property that is certain is

mK(α
ω) = mK(α) ◦mK(α

ω)

= mK(α
ω) ◦mK(α),

MIT Press Math7X9/2010/08/25:15:15 Page 414

Other Approaches 415

which leads to the axioms

[αω]ϕ ↔ [ααω]ϕ

↔ [αωα]ϕ.

One might expect the formula [αω]inf to be valid, but this is not the case.

For example, mK(1?
ω) contains all and only traces of length 0. However, if any

trace σ ∈ mK(α
ω) has a state satisfying ϕ—that is, if σ has a suffix satisfying

firstϕ—then some prefix of σ in mK(α
∗) also has this property. Thus

[α∗]�firstϕ → [αω]�firstϕ (17.3.4)

is valid. We cannot replace firstϕ by an arbitrary property ψ; for instance, (17.3.4)

does not necessarily hold for ψ = inf .

As mentioned, the version of PL of Harel et al. (1982) is decidable (but, it

seems, in nonelementary time only) and complete. It has also been shown that if

we restrict the semantics to include only finite traces (not a necessary restriction for

obtaining the results above), then PL is no more expressive than PDL. Translations

of PL structures into PDL structures have also been investigated, making possible an

elementary time decision procedure for deterministic PL; see Halpern (1982, 1983).

An extension of PL in which first and until are replaced by regular operators on

formulas has been shown to be decidable but nonelementary in Harel et al. (1982).

This logic perhaps comes closer to the desired objective of a powerful decidable

logic of traces with natural syntactic operators that is closed under attachment of

regular programs to formulas.

First-order PL has not been properly investigated yet, perhaps because the

“right” logic has not yet been agreed upon. It is also not quite clear yet whether

the PL approach has pragmatic advantages over TL in reasoning about concurrent

programs. The exact relationship of PL with the second order theory of n succes-

sors (see Rabin (1969)), to which the validity problem is reduced for obtaining

decidability, seems also worthy of further study.

17.4 The μ-Calculus

The μ-calculus was suggested as a formalism for reasoning about programs in Scott

and de Bakker (1969) and was further developed in Hitchcock and Park (1972),

Park (1976), and de Bakker (1980).

The heart of the approach is μ, the least fixpoint operator, which captures the

notions of iteration and recursion. The calculus was originally defined as a first-

MIT Press Math7X9/2010/08/25:15:15 Page 415

416 Chapter 17

order-level formalism, but propositional versions have become popular.

The μ operator binds relation variables. If ϕ(X) is a logical expression with a

free relation variable X , then the expression μX.ϕ(X)represents the least X such

that ϕ(X) = X , if such an X exists. For example, the reflexive transitive closure

R∗ of a binary relation R is the least binary relation containing R and closed under

reflexivity and transitivity; this would be expressed in the first-order μ-calculus as

R∗ def
= μX(x, y).(x = y ∨ ∃z (R(x, z) ∧X(z, y))). (17.4.1)

This should be read as, “the least binary relation X(x, y) such that either x = y

or x is related by R to some z such that z and y are already related by X .” This

captures the usual fixpoint formulation of reflexive transitive closure (Section 1.7).

The formula (17.4.1) can be regarded either as a recursive program computing R∗
or as an inductively defined assertion that is true of a pair (x, y) iff that pair is in

the reflexive transitive closure of R.

The existence of a least fixpoint is not guaranteed except under certain restric-

tions. Indeed, the formula ¬X has no fixpoint, therefore μX.¬X does not exist.

Typically, one restricts the application of the binding operator μX to formulas that

are positive or syntactically monotone in X ; that is, those formulas in which every

free occurrence of X occurs in the scope of an even number of negations. This im-

plies that the relation operator X �→ ϕ(X) is (semantically) monotone in the sense

of Section 1.7, which by the Knaster–Tarski theorem (Theorem 1.12) ensures the

existence of a least fixpoint.

The first-order μ-calculus can define all sets definable by first-order induction

and more. In particular, it can capture the input/output relation of any program

built from any of the DL programming constructs we have discussed. Since the

first-order μ-calculus also admits first-order quantification, it is easily seen to be as

powerful as DL.

It was shown by Park (1976) that finiteness is not definable in the first-

order μ-calculus with the monotonicity restriction, but well-foundedness is. Thus

this version of the μ-calculus is independent of Lωck
1 ω

(and hence of DL(r.e.)) in

expressive power. Well-foundedness of a binary relation R can be written

∀x (μX(x).∀y (R(y, x)→ X(y))).

A more severe syntactic restriction on the binding operator μX is to allow

its application only to formulas that are syntactically continuous in X ; that is,

those formulas in which X does not occur free in the scope of any negation or any

universal quantifier. It can be shown that this syntactic restriction implies semantic

MIT Press Math7X9/2010/08/25:15:15 Page 416

Other Approaches 417

continuity (Section 1.7), so the least fixpoint is the union of ∅, ϕ(∅), ϕ(ϕ(∅)),

As shown in Park (1976), this version is strictly weaker than Lωck
1 ω

.

In Pratt (1981a) and Kozen (1982, 1983), propositional versions of the μ-calculus

were introduced. The latter version consists of propositional modal logic with a

least fixpoint operator. It is the most powerful logic of its type, subsuming all

known variants of PDL, game logic of Parikh (1983), various forms of temporal

logic (see Section 17.2), and other seemingly stronger forms of the μ-calculus (Vardi

and Wolper (1986c)). In the following presentation we focus on this version, since

it has gained fairly widespread acceptance; see Kozen (1984); Kozen and Parikh

(1983); Streett (1985a); Streett and Emerson (1984); Vardi and Wolper (1986c);

Walukiewicz (1993, 1995, 2000); Stirling (1992); Mader (1997); Kaivola (1997).

The language of the propositional μ-calculus, also called the modal μ-calculus , is

syntactically simpler than PDL. It consists of the usual propositional constructs →
and 0, atomic modalities [a], and the least fixpoint operator μ. A greatest fixpoint

operator dual to μ can be defined:

νX.ϕ(X)
def⇐⇒ ¬μX.¬ϕ(¬X).

Variables are monadic, and the μ operator may be applied only to syntactically

monotone formulas. As discussed above, this ensures monotonicity of the corre-

sponding set operator. The language is interpreted over Kripke frames in which

atomic propositions are interpreted as sets of states and atomic programs are in-

terpreted as binary relations on states.

The propositional μ-calculus subsumes PDL. For example, the PDL formula

<a∗>ϕ for atomic a can be written μX.(ϕ∨<a>X). The formula μX.<a>[a]X , which

expresses the existence of a forced win for the first player in a two-player game,

and the formula μX.[a]X , which expresses well-foundedness and is equivalent to

wf a (see Section 10.6), are both inexpressible in PDL, as shown in Streett (1981);

Kozen (1981c). Niwinski (1984) has shown that even with the addition of the halt

construct, PDL is strictly less expressive than the μ-calculus.

The propositional μ-calculus satisfies a finite model theorem, as first shown in

Kozen (1988). Decidability results were obtained in Kozen and Parikh (1983); Vardi

and Stockmeyer (1985); Vardi (1985b), culminating in a deterministic exponential-

time algorithm of Emerson and Jutla (1988) based on an automata-theoretic lemma

of Safra (1988). Since the μ-calculus subsumes PDL, it is EXPTIME -complete.

In Kozen (1982, 1983), an axiomatization of the propositional μ-calculus was

proposed and conjectured to be complete. The axiomatization consists of the axioms

MIT Press Math7X9/2010/08/25:15:15 Page 417

418 Chapter 17

and rules of propositional modal logic, plus the axiom

ϕ[X/μX.ϕ] → μX.ϕ

and rule

ϕ[X/ψ] → ψ

μX.ϕ → ψ

for μ. Completeness of this deductive system for a syntactically restricted subset of

formulas was shown in Kozen (1982, 1983). Completeness for the full language was

proved by Walukiewicz (1995, 2000). This was quickly followed by simpler alterna-

tive proofs by Ambler et al. (1995); Bonsangue and Kwiatkowska (1995); Hartonas

(1998). Bradfield (1996) showed that the alternating μ/ν hierarchy (least/greatest

fixpoints) is strict. An interesting open question is the complexity of model check-

ing: does a given formula of the propositional μ-calculus hold in a given state of a

given Kripke frame? Although some progress has been made (see Bhat and Cleave-

land (1996); Cleaveland (1996); Emerson and Lei (1986); Sokolsky and Smolka

(1994); Stirling and Walker (1989)), it is still unknown whether this problem has a

polynomial-time algorithm.

The propositional μ-calculus has become a popular system for the specification

and verification of properties of transition systems, where it has had some practical

impact (Steffen et al. (1996)). Several recent papers on model checking work in

this context; see Bhat and Cleaveland (1996); Cleaveland (1996); Emerson and Lei

(1986); Sokolsky and Smolka (1994); Stirling and Walker (1989). A comprehensive

introduction can be found in Stirling (1992).

17.5 Kleene Algebra

Kleene algebra (KA) is the algebra of regular expressions. It is named for

S. C. Kleene (1909–1994), who among his many other achievements invented regular

expressions and proved their equivalence to finite automata in Kleene (1956).

Kleene algebra has appeared in various guises and under many names in re-

lational algebra (Ng (1984); Ng and Tarski (1977)), semantics and logics of pro-

grams (Kozen (1981b); Pratt (1988)), automata and formal language theory (Kuich

(1987); Kuich and Salomaa (1986)), and the design and analysis of algorithms (Aho

et al. (1975); Tarjan (1981); Mehlhorn (1984); Iwano and Steiglitz (1990); Kozen

(1991b)). As discussed in Section 16.4, Kleene algebra plays a prominent role in

dynamic algebra as an algebraic model of program behavior.

Beginning with the monograph of Conway (1971), many authors have con-

MIT Press Math7X9/2010/08/25:15:15 Page 418

Other Approaches 419

tributed over the years to the development of the algebraic theory; see Backhouse

(1975); Krob (1991); Kleene (1956); Kuich and Salomaa (1986); Sakarovitch (1987);

Kozen (1990); Bloom and Ésik (1992); Hopkins and Kozen (1999). See also Kozen

(1996) for further references.

A Kleene algebra is an algebraic structure (K, +, ·, ∗, 0, 1) satisfying the axioms

α+ (β + γ) = (α+ β) + γ

α+ β = β + α

α+ 0 = α+ α = α

α(βγ) = (αβ)γ

1α = α1 = α

α(β + γ) = αβ + αγ

(α+ β)γ = αγ + βγ

0α = α0 = 0

1 + αα∗ = 1 + α∗α = α∗ (17.5.1)

β + αγ ≤ γ → α∗β ≤ γ (17.5.2)

β + γα ≤ γ → βα∗ ≤ γ (17.5.3)

where ≤ refers to the natural partial order on K:

α ≤ β
def⇐⇒ α+ β = β.

In short, a KA is an idempotent semiring under +, ·, 0, 1 satisfying (17.5.1)–

(17.5.3) for ∗. The axioms (17.5.1)–(17.5.3) say essentially that ∗ behaves like the

asterate operator on sets of strings or reflexive transitive closure on binary relations.

This particular axiomatization is from Kozen (1991a, 1994a), but there are other

competing ones.

The axioms (17.5.2) and (17.5.3) correspond to the reflexive transitive closure

rule (RTC) of PDL (Section 5.6). Instead, we might postulate the equivalent axioms

αγ ≤ γ → α∗γ ≤ γ (17.5.4)

γα ≤ γ → γα∗ ≤ γ, (17.5.5)

which correspond to the loop invariance rule (LI). The induction axiom (IND) is

inexpressible in KA, since there is no negation.

A Kleene algebra is ∗-continuous if it satisfies the infinitary condition

αβ∗γ = sup
n≥0

αβnγ (17.5.6)

MIT Press Math7X9/2010/08/25:15:15 Page 419

420 Chapter 17

where

β0 def
= 1 βn+1 def

= ββn

and where the supremum is with respect to the natural order ≤. We can think of

(17.5.6) as a conjunction of the infinitely many axioms αβnγ ≤ αβ∗γ, n ≥ 0, and

the infinitary Horn formula

(
∧
n≥0

αβnγ ≤ δ) → αβ∗γ ≤ δ.

In the presence of the other axioms, the *-continuity condition (17.5.6) implies

(17.5.2)–(17.5.5) and is strictly stronger in the sense that there exist Kleene algebras

that are not *-continuous (Kozen (1990)).

The fundamental motivating example of a Kleene algebra is the family of regular

sets of strings over a finite alphabet, but other classes of structures share the same

equational theory, notably the binary relations on a set. In fact it is the latter

interpretation that makes Kleene algebra a suitable choice for modeling programs in

dynamic algebras. Other more unusual interpretations are the min,+ algebra used

in shortest path algorithms (see Aho et al. (1975); Tarjan (1981); Mehlhorn (1984);

Kozen (1991b)) and KAs of convex polyhedra used in computational geometry as

described in Iwano and Steiglitz (1990).

Axiomatization of the equational theory of the regular sets is a central question

going back to the original paper of Kleene (1956). A completeness theorem for

relational algebras was given in an extended language by Ng (1984); Ng and Tarski

(1977). Axiomatization is a central focus of the monograph of Conway (1971), but

the bulk of his treatment is infinitary. Redko (1964) proved that there is no finite

equational axiomatization. Schematic equational axiomatizations for the algebra

of regular sets, necessarily representing infinitely many equations, have been given

by Krob (1991) and Bloom and Ésik (1993). Salomaa (1966) gave two finitary

complete axiomatizations that are sound for the regular sets but not sound in

general over other standard interpretations, including relational interpretations.

The axiomatization given above is a finitary universal Horn axiomatization that is

sound and complete for the equational theory of standard relational and language-

theoretic models, including the regular sets (Kozen (1991a, 1994a)). Other work on

completeness appears in Krob (1991); Boffa (1990, 1995); Archangelsky (1992).

The literature contains a bewildering array of inequivalent definitions of Kleene

algebras and related algebraic structures; see Conway (1971); Pratt (1988, 1990);

Kozen (1981b, 1991a); Aho et al. (1975); Mehlhorn (1984); Kuich (1987); Kozen

(1994b). As demonstrated in Kozen (1990), many of these are strongly related.

MIT Press Math7X9/2010/08/25:15:15 Page 420

Other Approaches 421

One important property shared by most of them is closure under the formation of

n × n matrices. This was proved for the axiomatization of Section 16.4 in Kozen

(1991a, 1994a), but the idea essentially goes back to Kleene (1956); Conway (1971);

Backhouse (1975). This result gives rise to an algebraic treatment of finite automata

in which the automata are represented by their transition matrices.

The equational theory of Kleene algebra is PSPACE -complete (Stockmeyer and

Meyer (1973)); thus it is apparently less complex than PDL, which is EXPTIME -

complete (Theorem 8.5), although the strict separation of the two complexity classes

is still open.

Kleene Algebra with Tests

From a practical standpoint, many simple program manipulations such as loop

unwinding and basic safety analysis do not require the full power of PDL, but

can be carried out in a purely equational subsystem using the axioms of Kleene

algebra. However, tests are an essential ingredient, since they are needed to model

conventional programming constructs such as conditionals and while loops and

to handle assertions. This motivates the definition of the following variant of KA

introduced in Kozen (1996, 1997b).

A Kleene algebra with tests (KAT) is a Kleene algebra with an embedded

Boolean subalgebra. Formally, it is a two-sorted algebra

(K, B, +, ·, ∗, , 0, 1)

such that

• (K, +, ·, ∗, 0, 1) is a Kleene algebra

• (B, +, ·, , 0, 1) is a Boolean algebra

• B ⊆ K.

The unary negation operator is defined only on B. Elements of B are called tests

and are written ϕ, ψ, Elements of K (including elements of B) are written

α, β, In PDL, a test would be written ϕ?, but in KAT we dispense with the

symbol ?.

This deceptively concise definition actually carries a lot of information. The

operators +, ·, 0, 1 each play two roles: applied to arbitrary elements ofK, they refer

to nondeterministic choice, composition, fail, and skip, respectively; and applied to

tests, they take on the additional meaning of Boolean disjunction, conjunction,

falsity, and truth, respectively. These two usages do not conflict—for example,

sequential testing of two tests is the same as testing their conjunction—and their

coexistence admits considerable economy of expression.

MIT Press Math7X9/2010/08/25:15:15 Page 421

422 Chapter 17

For applications in program verification, the standard interpretation would be

a Kleene algebra of binary relations on a set and the Boolean algebra of subsets

of the identity relation. One could also consider trace models, in which the Kleene

elements are sets of traces (sequences of states) and the Boolean elements are sets

of states (traces of length 0). As with KA, one can form the algebra n×n matrices

over a KAT (K, B); the Boolean elements of this structure are the diagonal matrices

over B.

KAT can express conventional imperative programming constructs such as con-

ditionals and while loops as in PDL. It can perform elementary program manip-

ulation such as loop unwinding, constant propagation, and basic safety analysis

in a purely equational manner. The applicability of KAT and related equational

systems in practical program verification has been explored in Cohen (1994a,b,c);

Kozen (1996); Kozen and Patron (2000).

There is a language-theoretic model that plays the same role in KAT that the

regular sets play in KA, namely the algebra of regular sets of guarded strings, and

a corresponding completeness result was obtained by Kozen and Smith (1996).

Moreover, KAT is complete for the equational theory of relational models, as

shown in Kozen and Smith (1996). Although less expressive than PDL, KAT is

also apparently less difficult to decide: it is PSPACE -complete, the same as KA, as

shown in Cohen et al. (1996).

In Kozen (1999a), it is shown that KAT subsumes propositional Hoare Logic in

the following sense. The partial correctness assertion {ϕ} α {ψ} is encoded in KAT

as the equation ϕαψ = 0, or equivalently ϕα = ϕαψ. If a rule

{ϕ1} α1 {ψ1}, . . . , {ϕn} αn {ψn}
{ϕ} α {ψ}

is derivable in propositional Hoare Logic, then its translation, the universal Horn

formula

ϕ1α1ψ1 = 0 ∧ · · · ∧ ϕnαnψn = 0 → ϕαψ = 0,

is a theorem of KAT. For example, the while rule of Section 4.4 becomes

σϕαϕ = 0 → ϕ(σα)∗σ σϕ = 0.

More generally, all relationally valid Horn formulas of the form

γ1 = 0 ∧ · · · ∧ γn = 0 → α = β

are theorems of KAT (Kozen (1999a)).

Horn formulas are important from a practical standpoint. For example, com-

MIT Press Math7X9/2010/08/25:15:15 Page 422

Other Approaches 423

mutativity conditions are used to model the idea that the execution of certain

instructions does not affect the result of certain tests. In light of this, the complex-

ity of the universal Horn theory of KA and KAT are of interest. There are both

positive and negative results. It is shown in Kozen (1997c) that for a Horn formula

Φ→ ϕ over *-continuous Kleene algebras,

• if Φ contains only commutativity conditions αβ = βα, the universal Horn theory

is Π0
1-complete;

• if Φ contains only monoid equations, the problem is Π0
2-complete;

• for arbitrary finite sets of equations Φ, the problem is Π1
1-complete.

On the other hand, commutativity assumptions of the form αϕ = ϕα, where ϕ is a

test, and assumptions of the form γ = 0 can be eliminated without loss of efficiency,

as shown in Cohen (1994a); Kozen and Smith (1996). Note that assumptions of this

form are all we need to encode Hoare Logic as described above.

In typed Kleene algebra introduced in Kozen (1998, 1999b), elements have types

s→ t. This allows Kleene algebras of nonsquare matrices, among other applications.

It is shown in Kozen (1999b) that Hoare Logic is subsumed by the type calculus of

typed KA augmented with a typecast or coercion rule for tests. Thus Hoare-style

reasoning with partial correctness assertions reduces to typechecking in a relatively

simple type system.

MIT Press Math7X9/2010/08/25:15:15 Page 423

424 Chapter 17

MIT Press Math7X9/2010/08/25:15:15 Page 424

References

Abrahamson, K. (1980). Decidability and expressiveness of logics of processes. Ph. D. thesis,
Univ. of Washington.

Adian, S. I. (1979). The Burnside Problem and Identities in Groups. Springer-Verlag.

Aho, A. V., J. E. Hopcroft, and J. D. Ullman (1975). The Design and Analysis of Computer
Algorithms. Reading, Mass.: Addison-Wesley.

Ambler, S., M. Kwiatkowska, and N. Measor (1995, November). Duality and the completeness
of the modal μ-calculus. Theor. Comput. Sci. 151 (1), 3–27.

Andréka, H., I. Németi, and I. Sain (1982a). A complete logic for reasoning about programs via
nonstandard model theory, part I. Theor. Comput. Sci. 17, 193–212.

Andréka, H., I. Németi, and I. Sain (1982b). A complete logic for reasoning about programs via
nonstandard model theory, part II. Theor. Comput. Sci. 17, 259–278.

Apt, K. R. (1981). Ten years of Hoare’s logic: a survey—part I. ACM Trans. Programming
Languages and Systems 3, 431–483.

Apt, K. R. and E.-R. Olderog (1991). Verification of Sequential and Concurrent Programs.
Springer-Verlag.

Apt, K. R. and G. Plotkin (1986). Countable nondeterminism and random assignment. J.
Assoc. Comput. Mach. 33, 724–767.

Archangelsky, K. V. (1992). A new finite complete solvable quasiequational calculus for algebra
of regular languages. Manuscript, Kiev State University.

Arnold, A. (1997a). An initial semantics for the μ-calculus on trees and Rabin’s
complementation lemma. Technical report, University of Bordeaux.

Arnold, A. (1997b). The μ-calculus on trees and Rabin’s complementation theorem. Technical
report, University of Bordeaux.

Backhouse, R. C. (1975). Closure Algorithms and the Star-Height Problem of Regular
Languages. Ph. D. thesis, Imperial College, London, U.K.

Backhouse, R. C. (1986). Program Construction and Verification. Prentice-Hall.

Baier, C. and M. Kwiatkowska (1998, April). On the verification of qualitative properties of
probabilistic processes under fairness constraints. Information Processing Letters 66 (2), 71–79.

Banachowski, L., A. Kreczmar, G. Mirkowska, H. Rasiowa, and A. Salwicki (1977). An
introduction to algorithmic logic: metamathematical investigations in the theory of programs.
In Mazurkiewitz and Pawlak (Eds.), Math. Found. Comput. Sci., pp. 7–99. Banach Center,
Warsaw.

Barwise, J. (1975). Admissible Sets and Structures. North-Holland.

Bell, J. S. and A. B. Slomson (1971). Models and Ultraproducts. North Holland.

Ben-Ari, M., J. Y. Halpern, and A. Pnueli (1982). Deterministic propositional dynamic logic:
finite models, complexity and completeness. J. Comput. Syst. Sci. 25, 402–417.

Berman, F. (1978). Expressiveness hierarchy for PDL with rich tests. Technical Report
78-11-01, Comput. Sci. Dept., Univ. of Washington.

Berman, F. (1979). A completeness technique for D-axiomatizable semantics. In Proc. 11th
Symp. Theory of Comput., pp. 160–166. ACM.

Berman, F. (1982). Semantics of looping programs in propositional dynamic logic. Math. Syst.
Theory 15, 285–294.

Berman, F. and M. Paterson (1981). Propositional dynamic logic is weaker without tests.
Theor. Comput. Sci. 16, 321–328.

Berman, P., J. Y. Halpern, and J. Tiuryn (1982). On the power of nondeterminism in dynamic
logic. In Nielsen and Schmidt (Eds.), Proc 9th Colloq. Automata Lang. Prog., Volume 140 of
Lect. Notes in Comput. Sci., pp. 48–60. Springer-Verlag.

Bhat, G. and R. Cleaveland (1996, March). Efficient local model checking for fragments of the
modal μ-calculus. In T. Margaria and B. Steffen (Eds.), Proc. Second Int. Workshop Tools and

MIT Press Math7X9/2010/08/25:15:15 Page 425

426 References

Algorithms for the Construction and Analysis of Systems (TACAS’96), Volume 1055 of Lect.
Notes in Comput. Sci., pp. 107–112. Springer-Verlag.

Birkhoff, G. (1935). On the structure of abstract algebras. Proc. Cambridge Phil. Soc. 31,
433–454.

Birkhoff, G. (1973). Lattice Theory (third ed.). American Mathematical Society.

Bloom, S. L. and Z. Ésik (1992). Program correctness and matricial iteration theories. In Proc.
Mathematical Foundations of Programming Semantics, 7th Int. Conf., Volume 598 of Lecture
Notes in Computer Science, pp. 457–476. Springer-Verlag.

Bloom, S. L. and Z. Ésik (1993). Equational axioms for regular sets. Math. Struct. Comput.
Sci. 3, 1–24.

Blute, R., J. Desharnais, A. Edelat, and P. Panangaden (1997). Bisimulation for labeled Markov
processes. In Proc. 12th Symp. Logic in Comput. Sci., pp. 149–158. IEEE.

Boffa, M. (1990). Une remarque sur les systèmes complets d’identités rationnelles. Informatique
Théoretique et Applications/Theoretical Informatics and Applications 24 (4), 419–423.

Boffa, M. (1995). Une condition impliquant toutes les identités rationnelles. Informatique
Théoretique et Applications/Theoretical Informatics and Applications 29 (6), 515–518.

Bonsangue, M. and M. Kwiatkowska (1995, August). Re-interpreting the modal μ-calculus. In
A. Ponse, M. van Rijke, and Y. Venema (Eds.), Modal Logic and Process Algebra, pp. 65–83.
CSLI Lecture Notes.

Boole, G. (1847). The Mathematical Analysis of Logic. MacMillan, Barclay and MacMillan,
Cambridge.

Börger, E. (1984). Spectralproblem and completeness of logical decision problems. In G. H.
E. Börger and D. Rödding (Eds.), Logic and Machines: Decision Problems and Complexity,
Proccedings, Volume 171 of Lect. Notes in Comput. Sci., pp. 333–356. Springer-Verlag.

Bradfield, J. C. (1996). The modal μ-calculus alternation hierarchy is strict. In U. Montanari
and V. Sassone (Eds.), Proc. CONCUR’96, Volume 1119 of Lect. Notes in Comput. Sci., pp.
233–246. Springer.

Burstall, R. M. (1974). Program proving as hand simulation with a little induction.
Information Processing , 308–312.

Chandra, A., D. Kozen, and L. Stockmeyer (1981). Alternation. J. Assoc. Comput.
Mach. 28 (1), 114–133.

Chang, C. C. and H. J. Keisler (1973). Model Theory. North-Holland.

Chellas, B. F. (1980). Modal Logic: An Introduction. Cambridge University Press.

Clarke, E. M. (1979). Programming language constructs for which it is impossible to obtain
good Hoare axiom systems. J. Assoc. Comput. Mach. 26, 129–147.

Cleaveland, R. (1996, July). Efficient model checking via the equational μ-calculus. In Proc.
11th Symp. Logic in Comput. Sci., pp. 304–312. IEEE.

Cohen, E. (1994a, April). Hypotheses in Kleene algebra. Available as
ftp://ftp.bellcore.com/pub/ernie/research/homepage.html.

Cohen, E. (1994b). Lazy caching. Available as
ftp://ftp.bellcore.com/pub/ernie/research/homepage.html.

Cohen, E. (1994c). Using Kleene algebra to reason about concurrency control. Available as
ftp://ftp.bellcore.com/pub/ernie/research/homepage.html.

Cohen, E., D. Kozen, and F. Smith (1996, July). The complexity of Kleene algebra with tests.
Technical Report 96-1598, Computer Science Department, Cornell University.

Constable, R. L. (1977, May). On the theory of programming logics. In Proc. 9th Symp.
Theory of Comput., pp. 269–285. ACM.

Constable, R. L. and M. O’Donnell (1978). A Programming Logic. Winthrop.

MIT Press Math7X9/2010/08/25:15:15 Page 426

References 427

Conway, J. H. (1971). Regular Algebra and Finite Machines. London: Chapman and Hall.

Cook, S. A. (1971). The complexity of theorem proving procedures. In Proc. Third Symp.
Theory of Computing, New York, pp. 151–158. Assoc. Comput. Mach.

Cook, S. A. (1978). Soundness and completeness of an axiom system for program verification.
SIAM J. Comput. 7, 70–80.

Courcoubetis, C. and M. Yannakakis (1988, October). Verifying temporal properties of
finite-state probabilistic programs. In Proc. 29th Symp. Foundations of Comput. Sci., pp.
338–345. IEEE.

Cousot, P. (1990). Methods and logics for proving programs. In J. van Leeuwen (Ed.),
Handbood of Theoretical Computer Science, Volume B, pp. 841–993. Amsterdam: Elsevier.

Csirmaz, L. (1985). A completeness theorem for dynamic logic. Notre Dame J. Formal
Logic 26, 51–60.

Davis, M. D., R. Sigal, and E. J. Weyuker (1994). Computability, Complexity, and Languages:
Fundamentals of Theoretical Computer Science. Academic Press.

de Bakker, J. (1980). Mathematical Theory of Program Correctness. Prentice-Hall.

Ehrenfeucht, A. (1961). An application of games in the completeness problem for formalized
theories. Fund. Math. 49, 129–141.

Emerson, E. A. (1985). Automata, tableax, and temporal logics. In R. Parikh (Ed.), Proc.
Workshop on Logics of Programs, Volume 193 of Lect. Notes in Comput. Sci., pp. 79–88.
Springer-Verlag.

Emerson, E. A. (1990). Temporal and modal logic. In J. van Leeuwen (Ed.), Handbook of
theoretical computer science, Volume B: formal models and semantics, pp. 995–1072. Elsevier.

Emerson, E. A. and J. Y. Halpern (1985). Decision procedures and expressiveness in the
temporal logic of branching time. J. Comput. Syst. Sci. 30 (1), 1–24.

Emerson, E. A. and J. Y. Halpern (1986). “Sometimes” and “not never” revisited: on branching
vs. linear time temporal logic. J. ACM 33 (1), 151–178.

Emerson, E. A. and C. Jutla (1988, October). The complexity of tree automata and logics of
programs. In Proc. 29th Symp. Foundations of Comput. Sci., pp. 328–337. IEEE.

Emerson, E. A. and C. Jutla (1989, June). On simultaneously determinizing and complementing
ω-automata. In Proc. 4th Symp. Logic in Comput. Sci. IEEE.

Emerson, E. A. and C.-L. Lei (1986, June). Efficient model checking in fragments of the
propositional μ-calculus. In Proc. 1st Symp. Logic in Comput. Sci., pp. 267–278. IEEE.

Emerson, E. A. and C. L. Lei (1987). Modalities for model checking: branching time strikes
back. Sci. Comput. Programming 8, 275–306.

Emerson, E. A. and P. A. Sistla (1984). Deciding full branching-time logic. Infor. and
Control 61, 175–201.

Engeler, E. (1967). Algorithmic properties of structures. Math. Syst. Theory 1, 183–195.

Engelfriet, J. (1983). Iterated pushdown automata and complexity classes. In Proceedings of
the Fifteenth Annual ACM Symposium on Theory of Computing, Boston, Massachusetts, pp.
365–373.

Erimbetov, M. M. (1981). On the expressive power of programming logics. In Proc. Alma-Ata
Conf. Research in Theoretical Programming, pp. 49–68. In Russian.

Feldman, Y. A. (1984). A decidable propositional dynamic logic with explicit probabilities.
Infor. and Control 63, 11–38.

Feldman, Y. A. and D. Harel (1984). A probabilistic dynamic logic. J. Comput. Syst. Sci. 28,
193–215.

Ferman, A. and D. Harel (2000). In preparation.

Fischer, M. J. and R. E. Ladner (1977). Propositional modal logic of programs. In Proc. 9th
Symp. Theory of Comput., pp. 286–294. ACM.

MIT Press Math7X9/2010/08/25:15:15 Page 427

428 References

Fischer, M. J. and R. E. Ladner (1979). Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18 (2), 194–211.

Fischer, P. C. (1966). Turing machines with restricted memory access. Information and
Control 9 (4), 364–379.

Fischer, P. C., A. R. Meyer, and A. L. Rosenberg (1968). Counter machines and counter
languages. Math. Systems Theory 2 (3), 265–283.

Floyd, R. W. (1967). Assigning meanings to programs. In Proc. Symp. Appl. Math.,
Volume 19, pp. 19–31. AMS.

Friedman, H. (1971). Algorithmic procedures, generalized Turing algorithms, and elementary
recursion theory. In Gandy and Yates (Eds.), Logic Colloq. 1969, pp. 361–390. North-Holland.

Gabbay, D. (1977). Axiomatizations of logics of programs. Unpublished.

Gabbay, D., I. Hodkinson, and M. Reynolds (1994). Temporal Logic: Mathematical Foundations
and Computational Aspects. Oxford University Press.

Gabbay, D., A. Pnueli, S. Shelah, and J. Stavi (1980). On the temporal analysis of fairness. In
Proc. 7th Symp. Princip. Prog. Lang., pp. 163–173. ACM.

Garey, M. R. and D. S. Johnson (1979). Computers and Intractibility: A Guide to the Theory of
NP-Completeness. W.H. Freeman.

Gödel, K. (1930). Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatsh.
Math. Phys. 37, 349–360.

Goldblatt, R. (1982). Axiomatising the Logic of Computer Programming, Volume 130 of Lect.
Notes in Comput. Sci. Springer-Verlag.

Goldblatt, R. (1987). Logics of time and computation. Technical Report Lect. Notes 7, Center
for the Study of Language and Information, Stanford Univ.

Graham, R., D. Knuth, and O. Patashnik (1989). Concrete Mathematics: A Foundation for
Computer Science. Addison-Wesley.

Grätzer, G. (1978). Universal Algebra. Springer-Verlag.

Greibach, S. (1975). Theory of Program Structures: Schemes, Semantics, Verification,
Volume 36 of Lecture Notes in Computer Science. Springer Verlag.

Gries, D. (1981). The Science of Programming. Springer-Verlag.

Gries, D. and F. B. Schneider (1994). A Logical Approach to Discrete Math. Springer-Verlag.
Third printing.

Gurevich, Y. (1983). Algebras of feasible functions. In 24-th IEEE Annual Symposium on
Foundations of Computer Science, pp. 210–214.

Halmos, P. R. (1960). Naive Set Theory. Van Nostrand.

Halpern, J. Y. (1981). On the expressive power of dynamic logic II. Technical Report TM-204,
MIT/LCS.

Halpern, J. Y. (1982). Deterministic process logic is elementary. In Proc. 23rd Symp. Found.
Comput. Sci., pp. 204–216. IEEE.

Halpern, J. Y. (1983). Deterministic process logic is elementary. Infor. and Control 57 (1),
56–89.

Halpern, J. Y. and J. H. Reif (1981). The propositional dynamic logic of deterministic,
well-structured programs. In Proc. 22nd Symp. Found. Comput. Sci., pp. 322–334. IEEE.

Halpern, J. Y. and J. H. Reif (1983). The propositional dynamic logic of deterministic,
well-structured programs. Theor. Comput. Sci. 27, 127–165.

Hansson, H. and B. Jonsson (1994). A logic for reasoning about time and probability. Formal
Aspects of Computing 6, 512–535.

Harel, D. (1979). First-Order Dynamic Logic, Volume 68 of Lect. Notes in Comput. Sci.
Springer-Verlag.

MIT Press Math7X9/2010/08/25:15:15 Page 428

References 429

Harel, D. (1984). Dynamic logic. In Gabbay and Guenthner (Eds.), Handbook of Philosophical
Logic, Volume II: Extensions of Classical Logic, pp. 497–604. Reidel.

Harel, D. (1985). Recurring dominoes: Making the highly undecidable highly understandable.
Annals of Discrete Mathematics 24, 51–72.

Harel, D. (1992). Algorithmics: The Spirit of Computing (second ed.). Addison-Wesley.

Harel, D. and D. Kozen (1984). A programming language for the inductive sets, and
applications. Information and Control 63 (1–2), 118–139.

Harel, D., D. Kozen, and R. Parikh (1982). Process logic: Expressiveness, decidability,
completeness. J. Comput. Syst. Sci. 25 (2), 144–170.

Harel, D., A. R. Meyer, and V. R. Pratt (1977). Computability and completeness in logics of
programs. In Proc. 9th Symp. Theory of Comput., pp. 261–268. ACM.

Harel, D. and M. S. Paterson (1984). Undecidability of PDL with L = {a2i | i ≥ 0}. J. Comput.
Syst. Sci. 29, 359–365.

Harel, D. and D. Peleg (1985). More on looping vs. repeating in dynamic logic. Information
Processing Letters 20, 87–90.

Harel, D., A. Pnueli, and J. Stavi (1983). Propositional dynamic logic of nonregular programs.
J. Comput. Syst. Sci. 26, 222–243.

Harel, D., A. Pnueli, and M. Vardi (1982). Two dimensional temporal logic and PDL with
intersection. Unpublished.

Harel, D. and V. R. Pratt (1978). Nondeterminism in logics of programs. In Proc. 5th Symp.
Princip. Prog. Lang., pp. 203–213. ACM.

Harel, D. and D. Raz (1993). Deciding properties of nonregular programs. SIAM J.
Comput. 22, 857–874.

Harel, D. and D. Raz (1994). Deciding emptiness for stack automata on infinite trees.
Information and Computation 113, 278–299.

Harel, D. and R. Sherman (1982). Looping vs. repeating in dynamic logic. Infor. and
Control 55, 175–192.

Harel, D. and R. Sherman (1985). Propositional dynamic logic of flowcharts. Infor. and
Control 64, 119–135.

Harel, D. and E. Singerman (1996). More on nonregular PDL: Finite models and Fibonacci-like
programs. Information and Computation 128, 109–118.

Hart, S., M. Sharir, and A. Pnueli (1982). Termination of probabilistic concurrent programs. In
Proc. 9th Symp. Princip. Prog. Lang., pp. 1–6. ACM.

Hartmanis, J. and R. E. Stearns (1965). On the complexity of algorithms. Trans. Amer. Math.
Soc. 117, 285–306.

Hartonas, C. (1998). Duality for modal μ-logics. Theor. Comput. Sci. 202 (1–2), 193–222.

Henkin, L. (1949). The completeness of the first order functional calculus. J. Symb. Logic 14,
159–166.

Hennessy, M. C. B. and G. D. Plotkin (1979). Full abstraction for a simple programming
language. In Proc. Symp. Semantics of Algorithmic Languages, Volume 74 of Lecture Notes in
Computer Science, pp. 108–120. Springer-Verlag.

Hitchcock, P. and D. Park (1972). Induction rules and termination proofs. In M. Nivat (Ed.),
Int. Colloq. Automata Lang. Prog., pp. 225–251. North-Holland.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Comm. Assoc.
Comput. Mach. 12, 576–580, 583.

Hopcroft, J. E. and J. D. Ullman (1979). Introduction to Automata Theory, Languages and
Computation. Addison-Wesley.

Hopkins, M. and D. Kozen (1999, July). Parikh’s theorem in commutative Kleene algebra. In
Proc. Conf. Logic in Computer Science (LICS’99), pp. 394–401. IEEE.

MIT Press Math7X9/2010/08/25:15:15 Page 429

430 References

Hughes, G. E. and M. J. Cresswell (1968). An Introduction to Modal Logic. Methuen.

Huth, M. and M. Kwiatkowska (1997). Quantitative analysis and model checking. In Proc. 12th
Symp. Logic in Comput. Sci., pp. 111–122. IEEE.

Ianov, Y. I. (1960). The logical schemes of algorithms. In Problems of Cybernetics, Volume 1,
pp. 82–140. Pergamon Press.

Iwano, K. and K. Steiglitz (1990). A semiring on convex polygons and zero-sum cycle problems.
SIAM J. Comput. 19 (5), 883–901.

Jou, C. and S. Smolka (1990). Equivalences, congruences and complete axiomatizations for
probabilistic processes. In Proc. CONCUR’90, Volume 458 of Lecture Notes in Comput. Sci.,
pp. 367–383. Springer-Verlag.

Kaivola, R. (1997, April). Using Automata to Characterise Fixed Point Temporal Logics. Ph.
D. thesis, University of Edinburgh. Report CST-135-97.

Kamp, H. W. (1968). Tense logics and the theory of linear order. Ph. D. thesis, UCLA.

Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher (Eds.), Complexity of Computer Computations, pp. 85–103. Plenum Press.

Keisler, J. (1971). Model Theory for Infinitary Logic. North Holland.

Kfoury, A. (1983). Definability by programs in first-order structures. Theoretical Computer
Science 25, 1–66.

Kfoury, A. and A. Stolboushkin (1997). An infinite pebble game and applications. Information
and Computation 136, 53–66.

Kfoury, A. J. (1985). Definability by deterministic and nondeterministic programs with
applications to first-order dynamic logic. Infor. and Control 65 (2–3), 98–121.

Kleene, S. C. (1943). Recursive predicates and quantifiers. Trans. Amer. Math. Soc. 53, 41–74.

Kleene, S. C. (1952). Introduction to Metamathematics. D. van Nostrand.

Kleene, S. C. (1955). On the forms of the predicates in the theory of constructive ordinals
(second paper). Amer. J. Math. 77, 405–428.

Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. In C. E.
Shannon and J. McCarthy (Eds.), Automata Studies, pp. 3–41. Princeton, N.J.: Princeton
University Press.

Knijnenburg, P. M. W. (1988, November). On axiomatizations for propositional logics of
programs. Technical Report RUU-CS-88-34, Rijksuniversiteit Utrecht.

Koren, T. and A. Pnueli (1983). There exist decidable context-free propositional dynamic logics.
In Proc. Symp. on Logics of Programs, Volume 164 of Lecture Notes in Computer Science, pp.
290–312. Springer-Verlag.

Kowalczyk, W., D. Niwiński, and J. Tiuryn (1987). A generalization of Cook’s
auxiliary–pushdown–automata theorem. Fundamenta Informaticae XII, 497–506.

Kozen, D. (1979a). Dynamic algebra. In E. Engeler (Ed.), Proc. Workshop on Logic of
Programs, Volume 125 of Lecture Notes in Computer Science, pp. 102–144. Springer-Verlag.
chapter of Propositional dynamic logics of programs: A survey by Rohit Parikh.

Kozen, D. (1979b). On the duality of dynamic algebras and Kripke models. In E. Engeler
(Ed.), Proc. Workshop on Logic of Programs, Volume 125 of Lecture Notes in Computer
Science, pp. 1–11. Springer-Verlag.

Kozen, D. (1979c, October). On the representation of dynamic algebras. Technical Report
RC7898, IBM Thomas J. Watson Research Center.

Kozen, D. (1980a, May). On the representation of dynamic algebras II. Technical Report
RC8290, IBM Thomas J. Watson Research Center.

Kozen, D. (1980b, July). A representation theorem for models of *-free PDL. In Proc. 7th
Colloq. Automata, Languages, and Programming, pp. 351–362. EATCS.

Kozen, D. (1981a). Logics of programs. Lecture notes, Aarhus University, Denmark.

MIT Press Math7X9/2010/08/25:15:15 Page 430

References 431

Kozen, D. (1981b). On induction vs. *-continuity. In Kozen (Ed.), Proc. Workshop on Logic of
Programs, Volume 131 of Lecture Notes in Computer Science, New York, pp. 167–176.
Springer-Verlag.

Kozen, D. (1981c). On the expressiveness of μ. Manuscript.

Kozen, D. (1981d). Semantics of probabilistic programs. J. Comput. Syst. Sci. 22, 328–350.

Kozen, D. (1982, July). Results on the propositional μ-calculus. In Proc. 9th Int. Colloq.
Automata, Languages, and Programming, Aarhus, Denmark, pp. 348–359. EATCS.

Kozen, D. (1983). Results on the propositional μ-calculus. Theor. Comput. Sci. 27, 333–354.

Kozen, D. (1984, May). A Ramsey theorem with infinitely many colors. In Lenstra, Lenstra,
and van Emde Boas (Eds.), Dopo Le Parole, pp. 71–72. Amsterdam: University of Amsterdam.

Kozen, D. (1985, April). A probabilistic PDL. J. Comput. Syst. Sci. 30 (2), 162–178.

Kozen, D. (1988). A finite model theorem for the propositional μ-calculus. Studia Logica 47 (3),
233–241.

Kozen, D. (1990). On Kleene algebras and closed semirings. In Rovan (Ed.), Proc. Math.
Found. Comput. Sci., Volume 452 of Lecture Notes in Computer Science, Banska-Bystrica,
Slovakia, pp. 26–47. Springer-Verlag.

Kozen, D. (1991a, July). A completeness theorem for Kleene algebras and the algebra of regular
events. In Proc. 6th Symp. Logic in Comput. Sci., Amsterdam, pp. 214–225. IEEE.

Kozen, D. (1991b). The Design and Analysis of Algorithms. New York: Springer-Verlag.

Kozen, D. (1994a, May). A completeness theorem for Kleene algebras and the algebra of regular
events. Infor. and Comput. 110 (2), 366–390.

Kozen, D. (1994b). On action algebras. In J. van Eijck and A. Visser (Eds.), Logic and
Information Flow, pp. 78–88. MIT Press.

Kozen, D. (1996, March). Kleene algebra with tests and commutativity conditions. In
T. Margaria and B. Steffen (Eds.), Proc. Second Int. Workshop Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’96), Volume 1055 of Lecture Notes in Computer
Science, Passau, Germany, pp. 14–33. Springer-Verlag.

Kozen, D. (1997a). Automata and Computability. New York: Springer-Verlag.

Kozen, D. (1997b, May). Kleene algebra with tests. Transactions on Programming Languages
and Systems 19 (3), 427–443.

Kozen, D. (1997c, June). On the complexity of reasoning in Kleene algebra. In Proc. 12th
Symp. Logic in Comput. Sci., Los Alamitos, Ca., pp. 195–202. IEEE.

Kozen, D. (1998, March). Typed Kleene algebra. Technical Report 98-1669, Computer Science
Department, Cornell University.

Kozen, D. (1999a, July). On Hoare logic and Kleene algebra with tests. In Proc. Conf. Logic in
Computer Science (LICS’99), pp. 167–172. IEEE.

Kozen, D. (1999b, July). On Hoare logic, Kleene algebra, and types. Technical Report 99-1760,
Computer Science Department, Cornell University. Abstract in: Abstracts of 11th Int. Congress
Logic, Methodology and Philosophy of Science, Ed. J. Cachro and K. Kijania-Placek, Krakow,
Poland, August 1999, p. 15. To appear in: Proc. 11th Int. Congress Logic, Methodology and
Philosophy of Science, ed. P. Gardenfors, K. Kijania-Placek and J. Wolenski, Kluwer.

Kozen, D. and R. Parikh (1981). An elementary proof of the completeness of PDL. Theor.
Comput. Sci. 14 (1), 113–118.

Kozen, D. and R. Parikh (1983). A decision procedure for the propositional μ-calculus. In
Clarke and Kozen (Eds.), Proc. Workshop on Logics of Programs, Volume 164 of Lecture Notes
in Computer Science, pp. 313–325. Springer-Verlag.

Kozen, D. and M.-C. Patron (2000, July). Certification of compiler optimizations using Kleene
algebra with tests. In U. Furbach and M. Kerber (Eds.), Proc. 1st Int. Conf. Computational
Logic, London. To appear.

MIT Press Math7X9/2010/08/25:15:15 Page 431

432 References

Kozen, D. and F. Smith (1996, September). Kleene algebra with tests: Completeness and
decidability. In D. van Dalen and M. Bezem (Eds.), Proc. 10th Int. Workshop Computer
Science Logic (CSL’96), Volume 1258 of Lecture Notes in Computer Science, Utrecht, The
Netherlands, pp. 244–259. Springer-Verlag.

Kozen, D. and J. Tiuryn (1990). Logics of programs. In van Leeuwen (Ed.), Handbook of
Theoretical Computer Science, Volume B, pp. 789–840. Amsterdam: North Holland.

Kreczmar, A. (1977). Programmability in fields. Fundamenta Informaticae I, 195–230.

Kripke, S. (1963). Semantic analysis of modal logic. Zeitschr. f. math. Logik und Grundlagen
d. Math. 9, 67–96.

Krob, D. (1991, October). A complete system of B-rational identities. Theoretical Computer
Science 89 (2), 207–343.

Kuich, W. (1987). The Kleene and Parikh theorem in complete semirings. In T. Ottmann
(Ed.), Proc. 14th Colloq. Automata, Languages, and Programming, Volume 267 of Lecture Notes
in Computer Science, New York, pp. 212–225. EATCS: Springer-Verlag.

Kuich, W. and A. Salomaa (1986). Semirings, Automata, and Languages. Berlin:
Springer-Verlag.

Ladner, R. E. (1977). Unpublished.

Lamport, L. (1980). “Sometime” is sometimes “not never”. Proc. 7th Symp. Princip. Prog.
Lang., 174–185.

Lehmann, D. and S. Shelah (1982). Reasoning with time and chance. Infor. and Control 53 (3),
165–198.

Lewis, H. R. and C. H. Papadimitriou (1981). Elements of the Theory of Computation.
Prentice Hall.

Lipton, R. J. (1977). A necessary and sufficient condition for the existence of Hoare logics. In
Proc. 18th Symp. Found. Comput. Sci., pp. 1–6. IEEE.

Luckham, D. C., D. Park, and M. Paterson (1970). On formalized computer programs. J.
Comput. Syst. Sci. 4, 220–249.

Mader, A. (1997, September). Verification of Modal Properties Using Boolean Equation
Systems. Ph. D. thesis, Fakultt fr Informatik, Technische Universitt Mnchen.

Makowski, J. A. (1980). Measuring the expressive power of dynamic logics: an application of
abstract model theory. In Proc. 7th Int. Colloq. Automata Lang. Prog., Volume 80 of Lect.
Notes in Comput. Sci., pp. 409–421. Springer-Verlag.

Makowski, J. A. and I. Sain (1986). On the equivalence of weak second-order and nonstandard
time semantics for various program verification systems. In Proc. 1st Symp. Logic in Comput.
Sci., pp. 293–300. IEEE.

Makowsky, J. A. and M. L. Tiomkin (1980). Probabilistic propositional dynamic logic.
Manuscript.

Manna, Z. (1974). Mathematical Theory of Computation. McGraw-Hill.

Manna, Z. and A. Pnueli (1981). Verification of concurrent programs: temporal proof principles.
In D. Kozen (Ed.), Proc. Workshop on Logics of Programs, Volume 131 of Lect. Notes in
Comput. Sci., pp. 200–252. Springer-Verlag.

Manna, Z. and A. Pnueli (1987, January). Specification and verification of concurrent programs
by ∀-automata. In Proc. 14th Symp. Principles of Programming Languages, pp. 1–12. ACM.

McCulloch, W. S. and W. Pitts (1943). A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophysics 5, 115–143.

Mehlhorn, K. (1984). Graph Algorithms and NP-Completeness, Volume II of Data Structures
and Algorithms. Springer-Verlag.

Meyer, A. R. and J. Y. Halpern (1982). Axiomatic definitions of programming languages: a
theoretical assessment. J. Assoc. Comput. Mach. 29, 555–576.

MIT Press Math7X9/2010/08/25:15:15 Page 432

References 433

Meyer, A. R. and R. Parikh (1981). Definability in dynamic logic. J. Comput. Syst. Sci. 23,
279–298.

Meyer, A. R., R. S. Streett, and G. Mirkowska (1981). The deducibility problem in
propositional dynamic logic. In E. Engeler (Ed.), Proc. Workshop Logic of Programs, Volume
125 of Lect. Notes in Comput. Sci., pp. 12–22. Springer-Verlag.

Meyer, A. R. and J. Tiuryn (1981). A note on equivalences among logics of programs. In
D. Kozen (Ed.), Proc. Workshop on Logics of Programs, Volume 131 of Lect. Notes in Comput.
Sci., pp. 282–299. Springer-Verlag.

Meyer, A. R. and J. Tiuryn (1984). Equivalences among logics of programs. Journal of
Computer and Systems Science 29, 160–170.

Meyer, A. R. and K. Winklmann (1982). Expressing program looping in regular dynamic logic.
Theor. Comput. Sci. 18, 301–323.

Miller, G. L. (1976). Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci. 13,
300–317.

Minsky, M. L. (1961). Recursive unsolvability of Post’s problem of ’tag’ and other topics in the
theory of Turing machines. Ann. Math. 74 (3), 437–455.

Mirkowska, G. (1971). On formalized systems of algorithmic logic. Bull. Acad. Polon. Sci. Ser.
Sci. Math. Astron. Phys. 19, 421–428.

Mirkowska, G. (1980). Algorithmic logic with nondeterministic programs. Fund.
Informaticae III, 45–64.

Mirkowska, G. (1981a). PAL—propositional algorithmic logic. In E. Engeler (Ed.), Proc.
Workshop Logic of Programs, Volume 125 of Lect. Notes in Comput. Sci., pp. 23–101.
Springer-Verlag.

Mirkowska, G. (1981b). PAL—propositional algorithmic logic. Fund. Informaticae IV, 675–760.

Morgan, C., A. McIver, and K. Seidel (1999). Probabilistic predicate transformers. ACM
Trans. Programming Languages and Systems 8 (1), 1–30.

Moschovakis, Y. N. (1974). Elementary Induction on Abstract Structures. North-Holland.

Moschovakis, Y. N. (1980). Descriptive Set Theory. North-Holland.

Muller, D. E., A. Saoudi, and P. E. Schupp (1988, July). Weak alternating automata give a
simple explanation of why most temporal and dynamic logics are decidable in exponential time.
In Proc. 3rd Symp. Logic in Computer Science, pp. 422–427. IEEE.

Németi, I. (1980). Every free algebra in the variety generated by the representable dynamic
algebras is separable and representable. Manuscript.

Németi, I. (1981). Nonstandard dynamic logic. In D. Kozen (Ed.), Proc. Workshop on Logics
of Programs, Volume 131 of Lect. Notes in Comput. Sci., pp. 311–348. Springer-Verlag.

Ng, K. C. (1984). Relation Algebras with Transitive Closure. Ph. D. thesis, University of
California, Berkeley.

Ng, K. C. and A. Tarski (1977). Relation algebras with transitive closure, abstract 742-02-09.
Notices Amer. Math. Soc. 24, A29–A30.

Nishimura, H. (1979). Sequential method in propositional dynamic logic. Acta Informatica 12,
377–400.

Nishimura, H. (1980). Descriptively complete process logic. Acta Informatica 14, 359–369.

Niwinski, D. (1984). The propositional μ-calculus is more expressive than the propositional
dynamic logic of looping. University of Warsaw.

Parikh, R. (1978a). The completeness of propositional dynamic logic. In Proc. 7th Symp. on
Math. Found. of Comput. Sci., Volume 64 of Lect. Notes in Comput. Sci., pp. 403–415.
Springer-Verlag.

Parikh, R. (1978b). A decidability result for second order process logic. In Proc. 19th Symp.
Found. Comput. Sci., pp. 177–183. IEEE.

MIT Press Math7X9/2010/08/25:15:15 Page 433

434 References

Parikh, R. (1981). Propositional dynamic logics of programs: a survey. In E. Engeler (Ed.),
Proc. Workshop on Logics of Programs, Volume 125 of Lect. Notes in Comput. Sci., pp.
102–144. Springer-Verlag.

Parikh, R. (1983). Propositional game logic. In Proc. 23rd IEEE Symp. Foundations of
Computer Science.

Parikh, R. and A. Mahoney (1983). A theory of probabilistic programs. In E. Clarke and
D. Kozen (Eds.), Proc. Workshop on Logics of Programs, Volume 164 of Lect. Notes in Comput.
Sci., pp. 396–402. Springer-Verlag.

Park, D. (1976). Finiteness is μ-ineffable. Theor. Comput. Sci. 3, 173–181.

Paterson, M. S. and C. E. Hewitt (1970). Comparative schematology. In Record Project MAC
Conf. on Concurrent Systems and Parallel Computation, pp. 119–128. ACM.

Pecuchet, J. P. (1986). On the complementation of Büchi automata. Theor. Comput. Sci. 47,
95–98.

Peleg, D. (1987a). Communication in concurrent dynamic logic. J. Comput. Sys. Sci. 35, 23–58.

Peleg, D. (1987b). Concurrent dynamic logic. J. Assoc. Comput. Mach. 34 (2), 450–479.

Peleg, D. (1987c). Concurrent program schemes and their logics. Theor. Comput. Sci. 55, 1–45.

Peng, W. and S. P. Iyer (1995). A new type of pushdown-tree automata on infinite trees. Int.
J. of Found. of Comput. Sci. 6 (2), 169–186.

Peterson, G. L. (1978). The power of tests in propositional dynamic logic. Technical Report 47,
Comput. Sci. Dept., Univ. of Rochester.

Pnueli, A. (1977). The temporal logic of programs. In Proc. 18th Symp. Found. Comput. Sci.,
pp. 46–57. IEEE.

Pnueli, A. and L. D. Zuck (1986). Verification of multiprocess probabilistic protocols.
Distributed Computing 1 (1), 53–72.

Pnueli, A. and L. D. Zuck (1993, March). Probabilistic verification. Information and
Computation 103 (1), 1–29.

Post, E. (1943). Formal reductions of the general combinatorial decision problem. Amer. J.
Math. 65, 197–215.

Post, E. (1944). Recursively enumerable sets of positive natural numbers and their decision
problems. Bull. Amer. Math. Soc. 50, 284–316.

Pratt, V. (1988, June). Dynamic algebras as a well-behaved fragment of relation algebras. In
D. Pigozzi (Ed.), Proc. Conf. on Algebra and Computer Science, Volume 425 of Lecture Notes
in Computer Science, Ames, Iowa, pp. 77–110. Springer-Verlag.

Pratt, V. (1990, September). Action logic and pure induction. In J. van Eijck (Ed.), Proc.
Logics in AI: European Workshop JELIA ’90, Volume 478 of Lecture Notes in Computer
Science, New York, pp. 97–120. Springer-Verlag.

Pratt, V. R. (1976). Semantical considerations on Floyd-Hoare logic. In Proc. 17th Symp.
Found. Comput. Sci., pp. 109–121. IEEE.

Pratt, V. R. (1978). A practical decision method for propositional dynamic logic. In Proc. 10th
Symp. Theory of Comput., pp. 326–337. ACM.

Pratt, V. R. (1979a, July). Dynamic algebras: examples, constructions, applications. Technical
Report TM-138, MIT/LCS.

Pratt, V. R. (1979b). Models of program logics. In Proc. 20th Symp. Found. Comput. Sci., pp.
115–122. IEEE.

Pratt, V. R. (1979c). Process logic. In Proc. 6th Symp. Princip. Prog. Lang., pp. 93–100. ACM.

Pratt, V. R. (1980a). Dynamic algebras and the nature of induction. In Proc. 12th Symp.
Theory of Comput., pp. 22–28. ACM.

Pratt, V. R. (1980b). A near-optimal method for reasoning about actions. J. Comput. Syst.
Sci. 20 (2), 231–254.

MIT Press Math7X9/2010/08/25:15:15 Page 434

References 435

Pratt, V. R. (1981a). A decidable μ-calculus: preliminary report. In Proc. 22nd Symp. Found.
Comput. Sci., pp. 421–427. IEEE.

Pratt, V. R. (1981b). Using graphs to understand PDL. In D. Kozen (Ed.), Proc. Workshop on
Logics of Programs, Volume 131 of Lect. Notes in Comput. Sci., pp. 387–396. Springer-Verlag.

Rabin, M. O. (1969). Decidability of second order theories and automata on infinite trees.
Trans. Amer. Math. Soc. 141, 1–35.

Rabin, M. O. (1980). Probabilistic algorithms for testing primality. J. Number Theory 12,
128–138.

Rabin, M. O. and D. S. Scott (1959). Finite automata and their decision problems. IBM J.
Res. Develop. 3 (2), 115–125.

Ramshaw, L. H. (1981). Formalizing the analysis of algorithms. Ph. D. thesis, Stanford Univ.

Rasiowa, H. and R. Sikorski (1963). Mathematics of Metamathematics. Polish Scientific
Publishers, PWN.

Redko, V. N. (1964). On defining relations for the algebra of regular events. Ukrain. Mat.
Z. 16, 120–126. In Russian.

Reif, J. (1980). Logics for probabilistic programming. In Proc. 12th Symp. Theory of Comput.,
pp. 8–13. ACM.

Renegar, J. (1991). Computational complexity of solving real algebraic formulae. In Proc. Int.
Congress of Mathematicians, pp. 1595–1606. Springer-Verlag.

Rice, H. G. (1953). Classes of recursively enumerable sets and their decision problems. Trans.
Amer. Math. Soc. 89, 25–59.

Rice, H. G. (1956). On completely recursively enumerable classes and their key arrays. J.
Symbolic Logic 21, 304–341.

Rogers, H. (1967). Theory of Recursive Functions and Effective Computability. McGraw-Hill.

Rogers, Jr., H. (1967). Theory of Recursive Functions and Effective Computability.
McGraw-Hill.

Rosen, K. H. (1995). Discrete Mathematics and Its Applications (3rd ed.). McGraw-Hill.

Safra, S. (1988, October). On the complexity of ω-automata. In Proc. 29th Symp. Foundations
of Comput. Sci., pp. 319–327. IEEE.

Sakarovitch, J. (1987). Kleene’s theorem revisited: A formal path from Kleene to Chomsky. In
A. Kelemenova and J. Keleman (Eds.), Trends, Techniques, and Problems in Theoretical
Computer Science, Volume 281 of Lecture Notes in Computer Science, New York, pp. 39–50.
Springer-Verlag.

Salomaa, A. (1966, January). Two complete axiom systems for the algebra of regular events. J.
Assoc. Comput. Mach. 13 (1), 158–169.

Salomaa, A. (1981). Jewels of Formal Language Theory. Pitman Books Limited.

Salwicki, A. (1970). Formalized algorithmic languages. Bull. Acad. Polon. Sci. Ser. Sci. Math.
Astron. Phys. 18, 227–232.

Salwicki, A. (1977). Algorithmic logic: a tool for investigations of programs. In Butts and
Hintikka (Eds.), Logic Foundations of Mathematics and Computability Theory, pp. 281–295.
Reidel.

Saudi, A. (1989). Pushdown automata on infinite trees and omega-Kleene closure of context-free
tree sets. In Proc. Math. Found. of Comput. Sci., Volume 379 of Lecture Notes in Computer
Science, pp. 445–457. Springer-Verlag.

Sazonov, V. (1980). Polynomial computability and recursivity in finite domains. Elektronische
Informationsverarbeitung und Kibernetik 16, 319–323.

Scott, D. S. and J. W. de Bakker (1969). A theory of programs. IBM Vienna.

Segala, R. and N. Lynch (1994). Probabilistic simulations for probabilistic processes. In Proc.
CONCUR’94, Volume 836 of Lecture Notes in Comput. Sci., pp. 481–496. Springer-Verlag.

MIT Press Math7X9/2010/08/25:15:15 Page 435

436 References

Segerberg, K. (1977). A completeness theorem in the modal logic of programs (preliminary
report). Not. Amer. Math. Soc. 24 (6), A–552.

Shoenfield, J. R. (1967). Mathematical Logic. Addison-Wesley.

Sholz, H. (1952). Ein ungelöstes Problem in der symbolischen Logik. The Journal of Symbolic
Logic 17, 160.

Sistla, A. P. and E. M. Clarke (1982). The complexity of propositional linear temporal logics.
In Proc. 14th Symp. Theory of Comput., pp. 159–168. ACM.

Sistla, A. P., M. Y. Vardi, and P. Wolper (1987). The complementation problem for Büchi
automata with application to temporal logic. Theor. Comput. Sci. 49, 217–237.

Soare, R. I. (1987). Recursively Enumerable Sets and Degrees. Springer-Verlag.

Sokolsky, O. and S. Smolka (1994, June). Incremental model checking in the modal μ-calculus.
In D. Dill (Ed.), Proc. Conf. Computer Aided Verification, Volume 818 of Lect. Notes in
Comput. Sci., pp. 352–363. Springer.

Steffen, B., T. Margaria, A. Classen, V. Braun, R. Nisius, and M. Reitenspiess (1996, March). A
constraint oriented service environment. In T. Margaria and B. Steffen (Eds.), Proc. Second Int.
Workshop Tools and Algorithms for the Construction and Analysis of Systems (TACAS’96),
Volume 1055 of Lect. Notes in Comput. Sci., pp. 418–421. Springer.

Stirling, C. (1992). Modal and temporal logics. In S. Abramsky, D. Gabbay, and T. Maibaum
(Eds.), Handbook of Logic in Computer Science, pp. 477–563. Clarendon Press.

Stirling, C. and D. Walker (1989, March). Local model checking in the modal μ-calculus. In
Proc. Int. Joint Conf. Theory and Practice of Software Develop. (TAPSOFT89), Volume 352 of
Lect. Notes in Comput. Sci., pp. 369–383. Springer.

Stockmeyer, L. J. and A. R. Meyer (1973). Word problems requiring exponential time. In Proc.
5th Symp. Theory of Computing, New York, pp. 1–9. ACM: ACM.

Stolboushkin, A. (1983). Regular dynamic logic is not interpretable in deterministic context-free
dynamic logic. Information and Computation 59, 94–107.

Stolboushkin, A. (1989, June). Some complexity bounds for dynamic logic. In Proc. 4th Symp.
Logic in Comput. Sci., pp. 324–332. IEEE.

Stolboushkin, A. P. and M. A. Taitslin (1983). Deterministic dynamic logic is strictly weaker
than dynamic logic. Infor. and Control 57, 48–55.

Stone, M. H. (1936). The representation theorem for Boolean algebra. Trans. Amer. Math.
Soc. 40, 37–111.

Streett, R. (1985a). Fixpoints and program looping: reductions from the propositional
μ-calculus into propositional dynamic logics of looping. In Parikh (Ed.), Proc. Workshop on
Logics of Programs 1985, pp. 359–372. Springer. Lect. Notes in Comput. Sci. 193.

Streett, R. and E. A. Emerson (1984). The propositional μ-calculus is elementary. In Proc. 11th
Int. Colloq. on Automata Languages and Programming, pp. 465–472. Springer. Lect. Notes in
Comput. Sci. 172.

Streett, R. S. (1981). Propositional dynamic logic of looping and converse. In Proc. 13th Symp.
Theory of Comput., pp. 375–381. ACM.

Streett, R. S. (1982). Propositional dynamic logic of looping and converse is elementarily
decidable. Infor. and Control 54, 121–141.

Streett, R. S. (1985b). Fixpoints and program looping: reductions from the propositional
μ-calculus into propositional dynamic logics of looping. In R. Parikh (Ed.), Proc. Workshop on
Logics of Programs, Volume 193 of Lect. Notes in Comput. Sci., pp. 359–372. Springer-Verlag.

Tarjan, R. E. (1981). A unified approach to path problems. J. Assoc. Comput. Mach., 577–593.

Tarski, A. (1935). Die Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica 1,
261–405.

Thiele, H. (1966). Wissenschaftstheoretische untersuchungen in algorithmischen sprachen. In

MIT Press Math7X9/2010/08/25:15:15 Page 436

References 437

Theorie der Graphschemata-Kalkale Veb Deutscher Verlag der Wissenschaften. Berlin.

Thomas, W. (1997, May). Languages, automata, and logic. Technical Report 9607,
Christian-Albrechts-Universität Kiel.

Tiuryn, J. (1981a). A survey of the logic of effective definitions. In E. Engeler (Ed.), Proc.
Workshop on Logics of Programs, Volume 125 of Lect. Notes in Comput. Sci., pp. 198–245.
Springer-Verlag.

Tiuryn, J. (1981b). Unbounded program memory adds to the expressive power of first-order
programming logics. In Proc. 22nd Symp. Found. Comput. Sci., pp. 335–339. IEEE.

Tiuryn, J. (1984). Unbounded program memory adds to the expressive power of first-order
programming logics. Infor. and Control 60, 12–35.

Tiuryn, J. (1986). Higher-order arrays and stacks in programming: an application of complexity
theory to logics of programs. In Gruska and Rovan (Eds.), Proc. Math. Found. Comput. Sci.,
Volume 233 of Lect. Notes in Comput. Sci., pp. 177–198. Springer-Verlag.

Tiuryn, J. (1989). A simplified proof of DDL < DL. Information and Computation 81, 1–12.

Tiuryn, J. and P. Urzyczyn (1983). Some relationships between logics of programs and
complexity theory. In Proc. 24th Symp. Found. Comput. Sci., pp. 180–184. IEEE.

Tiuryn, J. and P. Urzyczyn (1984). Remarks on comparing expressive power of logics of
programs. In Chytil and Koubek (Eds.), Proc. Math. Found. Comput. Sci., Volume 176 of Lect.
Notes in Comput. Sci., pp. 535–543. Springer-Verlag.

Tiuryn, J. and P. Urzyczyn (1988). Some relationships between logics of programs and
complexity theory. Theor. Comput. Sci. 60, 83–108.

Trnkova, V. and J. Reiterman (1980). Dynamic algebras which are not Kripke structures. In
Proc. 9th Symp. on Math. Found. Comput. Sci., pp. 528–538.

Turing, A. M. (1936). On computable numbers with an application to the
Entscheidungsproblem. Proc. London Math. Soc. 42, 230–265. Erratum: Ibid., 43 (1937),
pp. 544–546.

Urzyczyn, P. (1983a). A necessary and sufficient condition in order that a Herbrand
interpretation be expressive relative to recursive programs. Information and Control 56,
212–219.

Urzyczyn, P. (1983b). Nontrivial definability by flowchart programs. Infor. and Control 58,
59–87.

Urzyczyn, P. (1983c). The Unwind Property. Ph. D. thesis, Warsaw University. In Polish.

Urzyczyn, P. (1986). “During” cannot be expressed by “after”. Journal of Computer and
System Sciences 32, 97–104.

Urzyczyn, P. (1987). Deterministic context-free dynamic logic is more expressive than
deterministic dynamic logic of regular programs. Fundamenta Informaticae 10, 123–142.

Urzyczyn, P. (1988). Logics of programs with Boolean memory. Fundamenta Informaticae XI,
21–40.

Valiev, M. K. (1980). Decision complexity of variants of propositional dynamic logic. In Proc.
9th Symp. Math. Found. Comput. Sci., Volume 88 of Lect. Notes in Comput. Sci., pp. 656–664.
Springer-Verlag.

van Dalen, D. (1994). Logic and Structure (Third ed.). Springer-Verlag.

van Emde Boas, P. (1978). The connection between modal logic and algorithmic logics. In
Symp. on Math. Found. of Comp. Sci., pp. 1–15.

Vardi, M. (1998a). Linear vs. branching time: a complexity-theoretic perspective. In Proc. 13th
Symp. Logic in Comput. Sci., pp. 394–405. IEEE.

Vardi, M. and P. Wolper (1986a). Automata-theoretic techniques for modal logics of programs.
J. Comput. Sys. Sci. 32, 183–221.

Vardi, M. Y. (1985a, October). Automatic verification of probabilistic concurrent finite-state

MIT Press Math7X9/2010/08/25:15:15 Page 437

438 References

programs. In Proc. 26th Symp. Found. Comput. Sci., pp. 327–338. IEEE.

Vardi, M. Y. (1985b). The taming of the converse: reasoning about two-way computations. In
R. Parikh (Ed.), Proc. Workshop on Logics of Programs, Volume 193 of Lect. Notes in Comput.
Sci., pp. 413–424. Springer-Verlag.

Vardi, M. Y. (1987, June). Verification of concurrent programs: the automata-theoretic
framework. In Proc. 2nd Symp. Logic in Comput. Sci., pp. 167–176. IEEE.

Vardi, M. Y. (1998b, July). Reasoning about the past with two-way automata. In Proc. 25th
Int. Colloq. Automata Lang. Prog., Volume 1443 of Lect. Notes in Comput. Sci., pp. 628–641.
Springer-Verlag.

Vardi, M. Y. and L. Stockmeyer (1985, May). Improved upper and lower bounds for modal logics
of programs: preliminary report. In Proc. 17th Symp. Theory of Comput., pp. 240–251. ACM.

Vardi, M. Y. and P. Wolper (1986b, June). An automata-theoretic approach to automatic
program verification. In Proc. 1st Symp. Logic in Computer Science, pp. 332–344. IEEE.

Vardi, M. Y. and P. Wolper (1986c). Automata-theoretic techniques for modal logics of
programs. J. Comput. Syst. Sci. 32, 183–221.

Walukiewicz, I. (1993, June). Completeness result for the propositional μ-calculus. In Proc. 8th
IEEE Symp. Logic in Comput. Sci.

Walukiewicz, I. (1995, June). Completeness of Kozen’s axiomatisation of the propositional
μ-calculus. In Proc. 10th Symp. Logic in Comput. Sci., pp. 14–24. IEEE.

Walukiewicz, I. (2000, February–March). Completeness of Kozen’s axiomatisation of the
propositional μ-calculus. Infor. and Comput. 157 (1–2), 142–182.

Wand, M. (1978). A new incompleteness result for Hoare’s system. J. Assoc. Comput.
Mach. 25, 168–175.

Whitehead, A. N. and B. Russell (1910–1913). Principia Mathematica. Cambridge University
Press. Three volumes.

Wolper, P. (1981). Temporal logic can be more expressive. In Proc. 22nd Symp. Foundations of
Computer Science, pp. 340–348. IEEE.

Wolper, P. (1983). Temporal logic can be more expressive. Infor. and Control 56, 72–99.

MIT Press Math7X9/2010/08/25:15:15 Page 438

Notation and Abbreviations

Z integers . 3

Q rational numbers . 3

R real numbers . 3

N natural numbers. .3

ω finite ordinals . 3

=⇒ meta-implication . 3

→ implication . 3

⇐⇒ meta-equivalence . 3

↔ equivalence . 3

iff if and only if . 3
def
= definition. .3
def⇐⇒ definition. .3

|σ| length of a sequence . 3

A∗ set of all finite strings over A . 3

ε empty string . 3

wR reverse of a string . 3

A,B,C, . . . sets . 3

∈ set containment . 3

⊆ set inclusion, subset . 3

⊂ strict inclusion . 4

#A cardinality of a set . 4

2A powerset . 4

∅ empty set . 4

A ∪B union . 4

A ∩B intersection . 4⋃
A union . 4⋂
A intersection . 4

B −A complement of A in B . 4

∼A complement . 4

A×B Cartesian product . 4∏
α∈I Aα Cartesian product . 4

An Cartesian power . 4

πβ projection function . 4

MIT Press Math7X9/2010/08/25:15:15 Page 439

440 Notation and Abbreviations

ZFC Zermelo–Fraenkel set theory with choice . 4

P,Q,R, . . . relations . 5

∅ empty relation . 6

R(a1, . . . , an) (a1, . . . , an) ∈ R . 6

a R b (a, b) ∈ R . 6

◦ relational composition . 7

ι identity relation . 7

Rn n-fold composition of a binary relation . 7
− converse . 7

R+ transitive closure . 8

R∗ reflexive transitive closure . 8

[a] equivalence class . 9

f, g, h, . . . functions . 9

f : A→ B function with domain A and range B . 9

A→ B function space . 9

BA function space . 9

�→ anonymous function specifier . 9

� function restriction . 10

◦ function composition . 10

f−1 inverse . 10

f [a/b] function patching . 10

supB supremum . 11

WFI well-founded induction . 12

α, β, γ, . . . ordinals . 14

Ord class of all ordinals . 14

ZF Zermelo–Fraenkel set theory .16

τ† least prefixpoint operator. .18

curry currying operator . 25

�, � endmarkers . 27

�� blank symbol. .28

δ transition function . 28

α, β, γ, . . . Turing machine configurations .29

MIT Press Math7X9/2010/08/25:15:15 Page 440

Notation and Abbreviations 441

1−→
M,x

next configuration relation . 29

z[i/b] string replacement operator . 29
∗−→

M,x
reflexive transitive closure of

1−→
M,x

. 30

L(M) strings accepted by a Turing machine. .30

δ transition relation . 33

HP halting problem . 37

MP membership problem . 37

DTIME (f(n)) deterministic time complexity class . 39

NTIME (f(n)) nondeterministic time complexity class . 39

ATIME (f(n)) alternating time complexity class . 39

DSPACE (f(n)) deterministic space complexity class . 39

NSPACE (f(n)) nondeterministic space complexity class . 39

ASPACE (f(n)) alternating space complexity class . 39

EXPTIME deterministic exponential time. .40

NEXPTIME nondeterministic exponential time . 40

P deterministic polynomial time . 40

NP nondeterministic polynomial time . 40

M [B] oracle Turing machine . 41

Σ0
1 r.e. sets . 43

Π0
1 co-r.e. sets . 43

Δ0
1 recursive sets .43

Σ0
n,Π

0
n,Δ

0
n arithmetic hierarchy . 43

Π1
1 second-order universal relations . 45

Δ1
1 hyperarithmetic relations . 45

IND programming language for inductive sets 45

ω1 least uncountable ordinal . 50

ωck
1 least nonrecursive ordinal . 50

ord labeling of well-founded tree . 50

≤m many-one reducibility . 54

≤log
m logspace reducibility. .54

≤p
m polynomial-time reducibility . 54

� satisfiability relation . 69

MIT Press Math7X9/2010/08/25:15:15 Page 441

442 Notation and Abbreviations

ThΦ logical consequences of a set of formulas . 69

� provability relation . 70

¬ negation . 70

p, q, r, . . . atomic propositions . 71

∧ conjunction . 71

∨ disjunction . 71

1 truth. .71

0 falsity . 71

ϕ, ψ, ρ, . . . propositional formulas .72

S, K axioms of propositional logic . 77

DN double negation . 77

MP modus ponens .77

EFQ e falso quodlibet . 78

Σ vocabulary . 87

a, b, c, . . . constants . 87

= equality symbol . 87

x, y, . . . individual variables . 87

s, t, . . . terms . 87

TΣ(X) set of terms . 87

TΣ ground terms. .87

A = (A, mA) Σ-algebra . 88

mA meaning function. .88

fA meaning of a function in a structure . 88

|A| carrier of a structure . 88

TΣ(X) term algebra . 89

u, v, w, . . . valuations . 90

tA meaning of a ground term in a structure.90

ModΦ models of a set of formulas . 91

ThA theory of a structure . 91

ThD theory of a class of structures . 91

[a] congruence class . 94

a ≡ b (mod n) number theoretic congruence . 95

a ≡ b (I) congruence modulo an ideal . 95

MIT Press Math7X9/2010/08/25:15:15 Page 442

Notation and Abbreviations 443

� normal subgroup . 95

A/≡ quotient algebra .96

REF reflexivity rule . 99

SYM symmetry rule . 99

TRANS transitivity rule . 99

CONG congruence rule . 99∏
i∈I Ai product algebra . 100

H closure operator for homomorphic images 101

S closure operator for subalgebras . 101

P closure operator for products . 101

∀ universal quantifier. .102

∃ existential quantifier . 102

p, q, r, . . . predicate symbols . 102

ϕ, ψ, ρ, . . . first-order formulas. .103

p(t1, . . . , tn) atomic formula .103

Lωω first-order predicate logic .103

ϕ[x1/t1, . . . , xn/tn] simultaneous substitution . 105

ϕ[xi/ti | 1 ≤ i ≤ n] simultaneous substitution . 105

A = (A, mA) relational structure. .105

GEN generalization rule . 111∧
α∈A ϕα infinitary conjunction . 120∨
α∈A ϕα infinitary disjunction . 120

� modal necessity operator . 127

� modal possibility operator. .127

K = (K, RK, mK) Kripke frame for modal logic . 127

GEN modal generalization . 130

a, b, c, . . . modalities . 130

[a] multimodal necessity operator .131

<a> multimodal possibility operator . 131

K = (K, mK) Kripke frame for multimodal logic . 131

first(σ) first state of a path . 132

last(σ) last state of a path . 132

x := t assignment . 145

MIT Press Math7X9/2010/08/25:15:15 Page 443

444 Notation and Abbreviations

α ; β sequential composition . 148

ϕ? test . 148

α ∪ β nondeterministic choice . 148

α∗ iteration . 148

σ, τ, . . . seqs . 150

CS (α) computation sequences of a program . 150

{ϕ} α {ψ} partial correctness assertion . 156

ϕ, ψ, . . . propositions. .164

α, β, γ, . . . programs . 164

a, b, c, . . . atomic programs . 164

Π0 set of atomic programs . 164

p, q, r, . . . atomic propositions . 164

Φ0 set of atomic propositions . 164

Π set of programs . 164

Φ set of propositions . 164

[α] DL box operator . 165

<α> DL diamond operator . 166

skip null program . 167

fail failing program . 167

K = (K, mK) Kripke frame for PDL . 167

mK meaning function . 167

u, v, w, . . . states . 167

RTC reflexive transitive closure rule . 182

LI loop invariance rule . 182

IND induction axiom. .182

FL(ϕ) Fischer–Ladner closure . 191

FL�(ϕ) Fischer–Ladner closure auxiliary function 191

K/FL(ϕ) filtration of a Kripke frame. .195

PDA pushdown automaton . 227

aΔbaΔ a nonregular program . 228

PDL+ L extension of PDL with a nonregular program 229

SkS monadic second-order theory of k successors229

CFL context-free language. .238

MIT Press Math7X9/2010/08/25:15:15 Page 444

Notation and Abbreviations 445

UDH unique diamond path Hintikka tree .241

PTA pushdown tree automaton . 242

A� local automaton. .244

A� box automaton. .245

A� diamond automaton. .247

DWP deterministic while programs . 259

WP nondeterministic while programs . 260

DPDL deterministic PDL . 260

SPDL strict PDL . 260

SDPDL strict deterministic PDL . 260

Φ(i) programs with nesting of tests at most i264

PDL(i) PDL with programs in Φ(i) . 264

PDL(0) test-free PDL .264

APDL automata PDL . 267

−α complement of a program . 268

α ∩ β intersection of programs. .268

IPDL PDL with intersection . 269
− converse operator . 270

TC(ϕ, α, ψ) total correctness assertion . 271

μ least fixed point operator. .271

wf well-foundedness predicate . 272

halt halt predicate . 272

loop loop operator . 272

repeat, Δ repeat operator . 272

RPDL PDL with well-foundedness predicate . 272

LPDL PDL with halt predicate .272

CRPDL RPDL with converse .274

CLPDL LPDL with converse . 274

∧ concurrency operator. .277

F (t1, . . . , tn) := t array assignment. .288

push(t) push instruction . 289

pop(y) pop instruction . 289

x := ? wildcard assignment . 290

MIT Press Math7X9/2010/08/25:15:15 Page 445

446 Notation and Abbreviations

wa constant valuation . 293

DL(r.e.) DL with r.e. programs . 297

DL(array) DL with array assignments . 297

DL(stk) DL with algebraic stack . 297

DL(bstk) DL with Boolean stack . 297

DL(wild) DL with wildcard assignment . 297

DL(dreg) DL with while programs . 297

DL1 ≤ DL2 no more expressive than. .304

DL1 < DL2 strictly less expressive than . 304

DL1 ≡ DL2 equivalent in expressive power .304

DL(rich-test r.e.) rich test DL of r.e. programs . 304

Lωck
1 ω

constructive infinitary logic . 305

DL1 ≤N DL2 relative expressiveness over N . 308

CA natural chain in a structure . 318

Aw expansion of a structure by constants . 318

Nextm program computing a natural chain . 318

Sn collection of n-element structures. .319

�A� code of a structure . 320

SPm(α) mth spectrum of a program . 320

SP (K) spectrum of a class of programs . 320

HΣ
m language of codes of structures . 321

SP (K) ≈ C spectrum SP (K) captures complexity class C 322

APDA auxiliary pushdown automaton . 324

�
S1

provability in DL Axiom System 14.2 . 328

ϕ[x/t] substitution into DL formulas . 329

�
S2

provability in DL Axiom System 14.6 . 331

�
S3

provability in DL Axiom System 14.9 . 335

�S4 provability in DL Axiom System 14.12 .337

FV (α) free variables of an abstract program . 344

K1 ≤ K2 translatability .347

K1 %T K2 termination subsumption. .348

Tn full binary tree of depth n .355

Ltr(π) L-trace of a computation . 356

MIT Press Math7X9/2010/08/25:15:15 Page 446

Notation and Abbreviations 447

Cmp(α,A) computations of a program in a set .356

LtrCmp(α,A, n) L-traces of length at most n . 356

Gn structure arising from an Adian group. .366

N(C, k) k-neighborhood of a subset of N . 371

AL Algorithmic Logic . 383

NDL Nonstandard Dynamic Logic . 384

�
HL

provability in Hoare Logic . 385

I time model . 385

�
NT

satisfiability in nonstandard time semantics 386

LDL DL with halt predicate . 386

RDL DL with well-foundedness predicate . 386

Pr(DL) probabilistic DL . 391

LED Logic of Effective Definitions . 397

TL Temporal Logic . 398

�ϕ box operator of temporal logic . 398

�ϕ diamond operator of temporal logic . 398
�ϕ nexttime operator of temporal logic . 398

atLi at statement . 399

Next next relation of TL . 400

fin finiteness predicate of TL .404

inf infiniteness predicate of TL . 404

until until operator of TL . 405

A temporal operator “for all traces” . 406

E temporal operator “there exists a trace”406

PL Process Logic . 408

first temporal operator of PL .408

until temporal operator of PL .408

first(σ) first state in σ . 409

last(σ) last state in σ . 409

[[]] trace operator of PL .412

<< >> trace operator of PL .412

μX.ϕ(X) least fixpoint of ϕ(X) . 416

KA Kleene algebra . 418

MIT Press Math7X9/2010/08/25:15:15 Page 447

448 Notation and Abbreviations

KAT Kleene algebra with tests. .421

b negation of a Boolean element in KAT . 421

MIT Press Math7X9/2010/08/25:15:15 Page 448

Index

* operator,
See iteration operator

*-continuity, 419
*-continuous Kleene algebra,

See Kleene algebra
*-continuous dynamic algebra,

See dynamic algebra

A-validity, 297
Abelian group, 92
accept configuration, 35
acceptable structure, 311
acceptance, 28, 30, 35, 36
accepting subtree, 35
accessibility relation, 127
acyclic, 13
Adian structure, 365, 380
admissibility, 347, 379
AEXPSPACE , 40
AEXPTIME , 40
AL,

See Algorithmic Logic
algebra

dynamic,
See dynamic algebra
Kleene,
See Kleene algebra
Σ-, 88
term, 89

algebraic stack, 290
Algorithmic Logic, 383–384, 394
ALOGSPACE , 39
α-recursion theory, 64
alternating Turing machine,

See Turing machine
analytic hierarchy, 45
and-configuration, 35
annihilator, 22
anti-monotone, 26
antichain, 11
antisymmetric, 6
APSPACE, 40
APTIME, 39
argument of a function, 9
arithmetic hierarchy, 42–45
arithmetical

completeness, 334, 335, 338, 341
structure, 308, 311, 334

arity, 5, 283, 288
array, 288

assignment, 288
variable, 288

nullary, 292
as expressive as, 229, 304
assignment

array, 288
nondeterministic,
See wildcard
random, 290
rule, 156
simple, 147, 283, 284
wildcard, xiii, 288, 290, 377, 380

associativity, 83, 166
asterate, 3, 98
ATIME , 39
atom, 82
atomic

formula, 284
program, 147, 283, 284
symbol, 164
test, 147

automata PDL, 267
automaton

auxiliary pushdown, 324, 351
box, 245
counter, 63
diamond, 247
finite, 131, 266
local, 244
ω-, 266
pushdown, 227
pushdown k-ary ω-tree, 242

auxiliary pushdown automaton,
See automaton

axiom, 69
of choice, 16
of regularity, 16
scheme, 71

axiomatization
DL, 327–341
equational logic, 99
equational theory of regular sets, 420
infinitary logic, 122
μ-calculus, 417
PDL, 173–174, 203
PL, 411
predicate logic, 111

with equality, 115
propositional logic, 77, 82

bijective, 10
binary, 6

function symbol, 86
nondeterminism, 377
relation, 6–8, 420

Birkhoff’s theorem, 140
Boolean algebra, 82, 86, 93, 136, 138

of sets, 137, 138
Boolean satisfiability,

See satisfiability, propositional

MIT Press Math7X9/2010/08/25:15:15 Page 449

450 Index

bound occurrence of a variable, 104
bounded memory, 287, 369
box

automaton, 245
operator, 165, 398

branching-time TL, 398
Büchi acceptance, 243

canonical homomorphism, 96
Cantor’s set theory, 5
capture

of a complexity class by a spectrum, 322
of a variable by a quantifier, 104

cardinality, 4
of FL(ϕ), 194

carrier, 88, 105, 291
Cartesian

power, 4
product, 4

chain, 16
of sets, 17

change of bound variable, 109
choice

axiom of, 16
operator, xiv, 164

class, 5
closed, 18

formula, 105
closure

congruence, 95, 99
Fischer–Ladner, 191–195, 267
of a variety under homomorphic images, 93
operator, 19
ordinal, 21, 51
universal, 105

CLPDL, 274
co-r.e., 42

in B, 41
coarsest common refinement, 9
coding of finite structures, 318, 320
coinductive, 50
commutativity, 83
compactness, 122, 142, 181, 210, 220, 303

first-order, 115–116
propositional, 81–82

comparative schematology, 347, 378
complete disjunctive normal form, 83
complete lattice, 13
completeness, 303

DL, 341
equational logic, 99–100
first-order, 112–115

with equality, 115
for a complexity class, 57

for termination assertions, 341
infinitary logic, 124–126
LED, 397
μ-calculus, 418
of a deductive system, 70
of a set of connectives, 75, 135
PDL, 203–209
propositional logic, 79–81
relative, 341
TL, 407

complexity, 38–40
class, 57
of DL, 313
of DL, 313–324
of infinitary logic, 126–127
of PDL, 211–224
of spectra, 321

composition, 148, 175
functional, 10, 54
operator, 164
relational, 7, 168
rule, 156, 186
sequential, xiv

compositionality, 157
comprehension, 5
computability, 27

relative, 40–41
computation, 356, 364

formal, 356
history, 44
legal, 365
on an infinite tree, 243
sequence, 150, 170
strongly r-periodic, 365
terminating, 356
upward periodic, 365

computational complexity, 64
conclusion, 70
concurrent DL, 393
concurrent PDL, 277
concurrent systems, 406
conditional, 148, 167

rule, 156, 186
configuration, 29, 243

n-, 370
congruence, 94

class, 94
closure,
See closure

connective, 71
coNP , 57

-completeness, 57
-hardness, 57

consequence

MIT Press Math7X9/2010/08/25:15:15 Page 450

Index 451

deductive, 70
logical, 69, 91

consistency, 70, 138, 174, 203
constant, 86, 284

test, 148
constructive Lω1ω , 305
context-free

DL, 298
language

simple-minded, 238
PDL, 230
program, 227, 230
set of seqs, 151

continuity, 11, 17, 417
*- (star-),
See *-continuity
of <> in presence of converse, 179

contraposition, 136
converse, 7, 10, 177, 203, 270
Cook’s theorem, 57
correctness

partial,
See partial correctness
specification, 152
total,
See total correctness

countable, 16
ordinal,
See ordinal

countably infinite, 16
counter automaton,

See automaton
counter machine,

See Turing machine
CRPDL, 274
currying, 25, 142

dag, 13
De Morgan law, 83, 137

infinitary, 123, 143
decidability, 37, 42

of PDL, 191, 199
of propositional logic, 75

deduction theorem, 79, 209
first-order, 111–112
infinitary, 124

deductive consequence, 70
deductive system, 67
Δ0

1, 43

Δ0
n, 43

Δ1
1, 45, 51

ΔPDL, 272
dense, 6, 120
descriptive set theory, 64

deterministic
Kripke frame, 259
semantically, 188, 259
while program, 147

diagonalization, 38, 63
diamond

automaton, 247
operator, 166, 398

difference sequence, 250
directed graph, 13
disjunctive normal form, 83
distributivity, 83

infinitary, 123, 143
divergence-closed, 350
DL,

See Dynamic Logic
concurrent, 393

DN, 77
domain, 88, 105

of a function, 9
of computation, 145, 283, 291

double negation, 77, 83, 136
double-exponential time, 39
DPDL, 260
DSPACE , 39
DTIME , 39
duality, 135–136, 166, 172
duplicator, 119
DWP, 259
dyadic, 6
dynamic

formula, 383
term, 383

dynamic algebra, 389–391
*-continuous, 390
separable, 390

Dynamic Logic, 133
axiomatization, 329
basic, 284
context-free, 298
poor test, 148, 284
probabilistic, 391
rich test, 148, 285, 286

of r.e. programs, 304

edge, 13
effective definitional scheme, 397
EFQ, 78
Ehrenfeucht–Fräıssé games, 119–120
emptiness problem

for PTA, 243
empty

relation, 6
sequence, 3

MIT Press Math7X9/2010/08/25:15:15 Page 451

452 Index

set, 4
string, 3

endogenous, 157, 398
enumeration machine, 63
epimorphism, 90
equal expressive power, 304
equality symbol, 284
equation, 88
equational logic, 86–102

axiomatization, 99
equational theory, 91
equationally defined class,

See variety
equivalence

class, 9
of Kripke frames, 132
of logics, 304, 380
relation, 6, 8–9

eventuality, 402
excluded middle, 136
exogenous, 157
expanded vocabulary, 318
exponential time, 39
expressive structure, 334
expressiveness

of DL, 353
relative, 343, 378

over N, 308
EXPSPACE , 40
EXPTIME , 40

fairness, 290
filter, 138
filtration, 191, 195–201, 273

for nonstandard models, 199–201, 204
finitary, 17
finite

automaton, 131, 266
branching, 65
intersection property, 81
model property,
See small model property
model theorem,
See small model theorem
satisfiability, 81, 115
variant, 293

first-order
logic,
See predicate logic
spectrum, 325
test, 380
vocabulary, 283

Fischer–Ladner closure, 191–195, 267
fixpoint, 18

forced win, 119
formal computation, 356
formula, 283

atomic, 284
DL, 286, 297
dynamic, 383
first-order, 103
Horn, 88
positive in a variable, 416

free, 97
algebra, 97–99
Boolean algebra, 137
commutative ring, 98
for a variable in a formula, 104
monoid, 98
occurrence of a variable, 104

in DL, 329
variable, 105
vector space, 99

function, 9–10
patching, 10, 105, 106, 292
projection, 4
Skolem, 142
symbol, 283

functional composition,
See composition

fusion of traces, 409

Galois connection, 25
game, 48
generalization rule, 111, 173, 203
generate, 89
generating set, 89
graph, 13

directed, 13
greatest lower bound,

See infimum
ground term, 87, 103
guarded command, 167, 187
guess and verify, 34, 40

halt, 30
halt, 272, 386
halting problem, 37, 55

for IND programs, 65
over finite interpretations, 322
undecidability of, 63

hard dag, 371
hardness, 57
Herbrand-like state, 317, 349
Hilbert system, 69
Hoare Logic, 133, 156, 186
homomorphic image, 90
homomorphism, 76, 89

MIT Press Math7X9/2010/08/25:15:15 Page 452

Index 453

canonical, 96
Horn formula, 88, 140

infinitary, 140
HSP theorem, 100–102
hyperarithmetic relation, 50
hyperelementary relation, 50, 51

ideal
of a Boolean algebra, 138
of a commutative ring, 95

idempotence, 83
infinitary, 143

identity relation, 7, 88
image of a function, 10
IND, 45–51, 64
independence, 16
individual, 88

variable, 284, 286
induction

axiom
PDL, 173, 182, 183, 201
Peano arithmetic, 174, 183

principle, 12, 13
for temporal logic, 401
transfinite, 14

structural, 12, 157
transfinite, 12, 15–16, 117
well-founded, 12–13

inductive
assertions method, 399, 401
definability, 45–53, 64
relation, 49, 51

infimum, 13
infinitary completeness

for DL, 341
infinitary logic, 120–127
infinite descending chain, 24
infix, 87
initial state, 293, 304, 317
injective, 10
input variable, 147
input/output

pair, 168, 291
relation, 147, 169, 287, 293
specification, 153, 154

intermittent assertions method, 398, 402
interpretation of temporal operators in PL, 409
interpreted reasoning, 307, 333
intuitionistic propositional logic, 79, 136
invariant, 399, 401
invariant assertions method, 157, 401
inverse, 10
IPDL,

See PDL with intersection

irreflexive, 6
isomorphism, 90

local, 119
iteration operator, xiv, 164, 181, 390

join, 11

K, 77
k-counter machine,

See Turing machine
k-fold exponential time, 39
k-neighborhood, 371
KA,

See Kleene algebra
KAT,

See Kleene algebra with tests
kernel, 90
Kleene algebra, 389, 418

*-continuous, 390, 419
typed, 423
with tests, 421

Kleene’s theorem, 51, 63, 64
Knaster–Tarski theorem, 20–22, 37, 416
König’s lemma, 61, 65, 387, 388
Kripke frame, 127, 167, 291, 292

nonstandard, 199, 204, 205, 210, 211

LOGSPACE , 39
L-trace, 356
language, 67–68

first-order DL, 283
lattice, 13, 92

complete, 13
LDL, 386
leaf, 50
least fixpoint, 49, 415, 416
least upper bound, 11
LED, 397
legal computation, 365
lexicographic order, 23
limit ordinal,

See ordinal
linear

order,
See total order
recurrence, 255, 257

linear-time TL, 398
literal, 82
liveness property, 402
local

automaton, 244
isomorphism, 119

logarithmic space, 39

MIT Press Math7X9/2010/08/25:15:15 Page 453

454 Index

logic, 67
Logic of Effective Definitions, 397
logical consequence, 69, 91, 106, 172

in PDL, 209, 216, 220–224
logical equivalence, 106, 163
Lω1ω, 120, 142, 305

constructive, 305
Lωck

1 ω , 120, 142, 304, 305

Lωω ,
See predicate logic

loop, 30
-free program, 385
invariance rule, 182, 184, 201

loop, 272, 386
Löwenheim–Skolem theorem, 116–117, 302

downward, 116, 122, 126
upward, 116, 122, 142, 346

lower bound
for PDL, 216–220

LPDL, 272

m-state, 317
many-one reduction, 53
maximal consistent set, 204
meaning,

See semantics
function, 167, 291

meet, 13
membership problem, 37, 55
meta-equivalence, 3
meta-implication, 3, 73
method of well-founded sets, 402
min,+ algebra, 420
modal logic, xiv, 127–134, 164, 167, 191
modal μ-calculus,

See μ-calculus
modality, 130
model, 68, 106

nonstandard, 384
model checking, 199, 202, 211

for the μ-calculus, 418
model theory, 68
modus ponens, 77, 111, 173, 203
monadic, 6
mono-unary vocabulary, 319
monoid, 92

free, 98
monomorphism, 90
monotone, 11, 17

Boolean formula, 135
monotonicity, 416
MP, 77
mth spectrum, 320
μ operator, 415

μ-calculus, 271, 415, 417
multimodal logic, 130–132
multiprocessor systems, 406

n-ary
function symbol, 86
relation, 6

n-configuration, 370
n-pebble game, 120, 370
natural chain, 318, 325
natural deduction, 69
NDL, 384, 394
necessity, 127
neighborhood, 371
NEXPSPACE , 40
NEXPTIME , 40
next configuration relation, 29
nexttime operator, 398
NLOGSPACE , 39
nondeterminism, 63, 151, 158

binary, 377
unbounded, 377

nondeterministic
assignment,
See wildcard assignment
choice, xiv, 175
program, 133
Turing machine,
See Turing machine
while program, 285

nonstandard
Kripke frame, 199, 204, 205, 210, 211
model, 384

Nonstandard DL, 384–386, 394
normal subgroup, 95
not-configuration, 36
not-state, 36
NP , 40, 57

-completeness, 57, 220
-hardness, 57

NPSPACE, 39
NPTIME, 39
NTIME , 39
nullary, 6

array variable, 292
function symbol, 86

number theory, 103, 140
second-order, 45

occurrence, 104
ω-automaton, 266
ωck
1 , 50

one-to-one, 10
correspondence, 10

MIT Press Math7X9/2010/08/25:15:15 Page 454

Index 455

onto, 10
or-configuration, 35
oracle, 41

Turing machine,
See Turing machine

ord, 50, 124
ordinal, 14

countable, 50
limit, 14, 15
recursive, 45
successor, 14, 15
transfinite, 13–15

output variable, 147

P , 40
p-sparse, 367
P=NP problem, 40, 76
pairing function, 142
parameterless recursion, 227, 290
parentheses, 72, 166
partial

correctness, 154
assertion, 133, 167, 187, 313, 316, 325, 385

order, 6, 10–12
strict, 6, 11

partition, 9
path, 50, 132
PDL, 163–277

automata, 267
concurrent, 277
poor test, 263
regular, 164
rich test, 165, 263
test-free, 264
with intersection, 269

PDL(0), 224
Peano arithmetic

induction axiom of, 174
pebble game, 120, 370
Peirce’s law, 136
Π0

1, 43

Π0
n, 43

Π1
1, 45, 51, 126
-completeness, 222

PL,
See Process Logic

polyadic, 369
polynomial, 98

space, 39
time, 39

poor
test, 148, 263, 284
vocabulary, 319

positive, 49

possibility, 127
postcondition, 154
postfix, 87
precedence, 72, 103, 166
precondition, 154
predicate logic, 102–119
predicate symbol, 283
prefix, 87
prefixpoint, 18
premise, 70
prenex form, 45, 109
preorder, 6, 10
probabilistic program, 391–393
Process Logic, 408
product, 100
program, 145, 283, 287

atomic, 147, 283, 284
DL, 284
loop-free, 385
operator, 147
probabilistic, 391–393
r.e., 287, 296
regular, 148, 169, 285
schematology, 311
scheme, 302
simulation, 347
uniformly periodic, 365
variable, 286
while, 149
with Boolean arrays, 380

programming language
semi-universal, 349

projection function, 4
proof, 70
proper class,

See class
proposition, 72
propositional

formula, 72
logic, 71–86

intuitionistic, 136
operators, 71
satisfiability,
See satisfiability

Propositional Dynamic Logic,
See PDL

PSPACE , 39
PTIME , 39
pushdown

k-ary ω-tree automaton, 242
automaton, 227
store,
See stack

MIT Press Math7X9/2010/08/25:15:15 Page 455

456 Index

quantifier, 102
depth, 119

quasiorder,
See preorder

quasivariety, 140
quotient

algebra, 96
construction, 96–97

Ramsey’s theorem, 24
random assignment,

See assignment
range of a function, 9
RDL, 386
r.e., 30, 42, 63

in B, 41
program, 287, 296

reasoning
interpreted, 307, 333
uninterpreted, 301, 327

recursion, 149, 289
parameterless, 227, 290

recursive, 30, 42
call, 149
function theory, 63
in B, 41
ordinal, 45, 50–51
tree, 50–51

recursively enumerable,
See r.e.

reducibility, 54
relation, 53–56, 63

reductio ad absurdum, 136
reduction

many-one, 53
refinement, 6, 9
reflexive, 6
reflexive transitive closure, 8, 20, 47, 182, 183,

200
refutable, 70
regular

expression, 164, 169, 190
program, 148, 169, 285

with arrays, 288
with Boolean stack, 364
with stack, 289

set, 170, 420
reject configuration, 35
rejection, 28, 30
relation, 5

binary, 6–8
empty, 6
hyperarithmetic, 50
hyperelementary, 50, 51

next configuration, 29
reducibility, 53–56, 63
symbol, 283
universal, 45
well-founded,
See well-founded

relational
composition,
See composition
structure, 105

relative
completeness, 341
computability, 40–41
expressiveness, 343, 378

over N, 308
repeat, 272, 386
representation by sets, 76–77
resolution, 69
rich

test, 148, 165, 263, 285, 286
vocabulary, 319

ring, 92
commutative, 92

RPDL, 272
rule of inference, 69
run, 386
Russell’s paradox, 5

S, 77
safety property, 401
satisfaction

equational logic, 90
first-order, 106
PDL, 168
propositional, 74
relation, 106
TL, 400

satisfiability
algorithm for PDL, 191, 213
Boolean,
See satisfiability, propositional
DL, 297, 298
finite, 81
modal logic, 128
PDL, 171, 191, 211
propositional, 57, 74, 76, 129, 220

scalar multiplication, 390
schematology, 302, 347, 378
scope, 104
SDPDL, 224, 260
second-order number theory, 45
Segerberg axioms,

See axiomatization, PDL
semantic determinacy, 188, 259

MIT Press Math7X9/2010/08/25:15:15 Page 456

Index 457

semantics, 67, 68
abstract programs, 344
DL, 291–298
equational logic, 88
infinitary logic, 120
modal logic, 127
multimodal logic, 131
PDL, 167–170
predicate logic, 105–109

with equality, 115
propositional logic, 73–74

semi-universal, 349, 350
semigroup, 92
semilattice, 13, 92
sentence, 69, 105
separable dynamic algebra,

See dynamic algebra
seq, 150, 170, 287
sequent, 69
sequential composition,

See composition
set operator, 16–22
Σ-algebra, 88
Σ0

1, 43

Σ0
n, 43

signature,
See vocabulary

simple assignment,
See assignment

simple-minded
context-free language, 238, 256
pushdown automaton, 238

simulation, 37, 347
Skolem function, 142
Skolemization, 142
SkS, 229
small model

property, 191, 198, 227
theorem, 198, 211

soundness, 70
equational logic, 99–100
modal logic, 128
PDL, 172, 174

SPDL, 260
specification

correctness, 152
input/output, 153, 154

spectral
complexity, 317, 321, 322
theorem, 353, 379

spectrum, 379
first-order, 325
mth, 320
of a formula, 320

second-order, 325
spoiler, 119
stack, 149, 288, 289

algebraic, 290
automaton, 249
Boolean, 290
configuration, 243
higher-order, 325
operation, 289

standard Kripke frame, 390
* operator,

See iteration operator
*-continuity, 419
*-continuous dynamic algebra,

See dynamic algebra
*-continuous Kleene algebra,

See Kleene algebra
start configuration, 29
state, 127, 146, 167, 291, 293, 400

Herbrand-like, 317, 349
initial, 293, 304, 317
m-, 317

static logic, 304
stored-program computer, 37
strict partial order, 6, 11
strictly more expressive than, 229, 304
strongly r-periodic, 365
structural induction,

See induction
structure, 68

acceptable, 311
Adian, 365
arithmetical, 308
expressive, 334
p-sparse, 367
relational, 105
treelike, 261, 262, 355, 367

subalgebra, 89
generated by, 89

subexpression relation, 191
substitution, 90

in DL formulas, 329
instance, 90, 222
operator, 105, 106
rule, 84, 138

succession, 370
successor ordinal,

See ordinal
supremum, 11
surjective, 10
symbol

atomic, 164
constant, 284
equality, 284

MIT Press Math7X9/2010/08/25:15:15 Page 457

458 Index

function, 283
predicate, 283
relation, 102, 283

symmetric, 6
syntactic

continuity, 416
interpretation, 89
monotonicity, 416

syntax, 67

tableau, 69
tail recursion, 150
tautology, 74, 129

infinitary, 142
Temporal Logic, 133, 157, 398

branching-time, 133
linear-time, 133

temporal operators, 401
interpretation in PL, 409

term, 87, 103
algebra, 89
dynamic, 383
ground, 87, 103

termination, 166, 356
assertion, 327
properties of finite interpretations, 351
subsumption, 348, 379

ternary, 6
function symbol, 86

test, 147, 175
-free, 264
atomic, 147
first-order, 380
operator, xiv, 165, 284
poor,
See poor test
rich,
See rich test

theorem, 70
theory, 69
tile, 58
tiling problem, 58–63, 117, 126, 222
time model, 385
time-sharing, 42, 53
TL,

See temporal logic
topology, 81
total, 30

correctness, 155, 271, 327
assertion, 313

order, 6, 11
trace, 146

in PL, 409
L-, 356

quantifier, 406
transfinite

induction,
See induction
ordinal,
See ordinal

transition function, 28
transitive, 6

closure, 8, 19
set, 14

transitivity, 192
of implication, 78
of reductions, 54

translatability, 347
trap, 366
tree, 50

model, 143, 239
model property, 239
structure, 239
well-founded, 50

tree-parent, 371
treelike structure, 132, 261, 262, 355, 367
truth, 106

assignment, 74
table, 134
value, 73, 74

Turing machine, 27–37, 63
alternating, 34–37, 46, 216, 225

with negation, 36–37
deterministic, 28
nondeterministic, 33–34
oracle, 40–42
universal, 37, 63
with k counters, 32–33
with two stacks, 31–32

typed Kleene algebra,
See Kleene algebra

UDH tree, 241
ultrafilter, 138
unary, 6

function symbol, 86
unbounded nondeterminism, 377
undecidability, 37, 42

of predicate logic, 117–119
of the halting problem, 63

uniform
periodicity, 365
simulation, 37

uninterpreted reasoning, 301, 327
unique diamond path Hintikka tree,

See UDH tree
universal

closure,

MIT Press Math7X9/2010/08/25:15:15 Page 458

Index 459

See closure
formula, 141
model, 208, 211
relation, 7, 45
Turing machine,
See Turing machine

universality problem, 62
universe, 127
until operator, 405
unwind property, 344, 379
unwinding, 132
upper bound, 11

least, 11
upper semilattice, 13
upward periodic, 365
use vs. mention, 73

validity, 69
A-, 297
DL, 297, 298, 313
equational logic, 91
first-order, 106
modal logic, 128
PDL, 171
propositional, 74

valuation, 90, 105, 146, 283, 291, 292
value of a function, 9
variable, 145

array, 288
individual, 87, 284, 286
program, 286
work, 147

variety, 92
vector space, 93
verification conditions, 333
vertex, 13
vocabulary, 86

expanded, 318
first-order, 102, 283
monadic, 369
mono-unary, 319
polyadic, 369
poor, 319
rich, 319

weakening rule, 156, 186
well order, 6
well ordering principle, 16
well partial order, 12
well quasiorder, 12
well-founded, 6, 11, 121, 271, 402

induction,
See induction
relation, 12, 48

tree, 50
well-foundedness, 386–389
wf , 272, 386
while

loop, 167, 260
operator, 148
program, 149, 259

deterministic, 285
nondeterministic, 285
with arrays, 288
with stack, 289

rule, 156, 186
wildcard assignment,

See assignment
work variable, 147
world, 127
WP, 260

Zermelo’s theorem, 16
Zermelo–Fraenkel set theory, 4, 16
ZF, 16
ZFC, 4, 16
Zorn’s lemma, 16, 138

MIT Press Math7X9/2010/08/25:15:15 Page 459

	Acr683.tmp
	Acr6B6.tmp

