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1 Mathematical Preliminaries

1.1 Notational Conventions

The integers, the rational numbers, and the real numbers are denoted Z, Q, and R,
respectively. The natural numbers are denoted N or ω; we usually use the former

when thinking of them as an algebraic structure with arithmetic operations + and

· and the latter when thinking of them as the set of finite ordinal numbers. We

reserve the symbols i, j, k,m, n to denote natural numbers.

We use the symbols =⇒, → for implication (if-then) and ⇐⇒, ↔ for bidirec-

tional implication (equivalence, if and only if). The single-line versions will denote

logical symbols in the systems under study, whereas the double-line versions are

metasymbols standing for the English “implies” and “if and only if” in verbal

proofs. Some authors use ⊃ and ≡, but we will reserve these symbols for other

purposes. The symbol → is also used in the specification of the type of a function,

as in f : A→ B, indicating that f has domain A and range B.

The word “iff” is an abbreviation for “if and only if.”

We use the notation
def
= and

def⇐⇒ to indicate that the object on the left is being

defined in terms of the object on the right. When a term is being defined, it is

written in italics.

We adopt the convention that for any associative binary operation · with left

and right identity ι, the empty product is ι. For example, for the operation of

addition in R, we take the empty sum
∑

a∈∅
a to be 0, and we take the empty

union
⋃
A∈∅

A to be ∅.

The length of a finite sequence σ of objects is denoted |σ|. The set of all finite

sequences of elements of A is denoted A∗. Elements of A∗ are also called strings.

The unique element of A∗ of length 0 is called the empty string or empty sequence

and is denoted ε. The set A∗ is called the asterate of A, and the set operator ∗ is

called the asterate operator.

The reverse of a string w, denoted wR, is w written backwards.

1.2 Sets

Sets are denoted A,B,C, . . ., possibly with subscripts. The symbol ∈ denotes set

containment: x ∈ A means x is an element of A. The symbol ⊆ denotes set

inclusion: A ⊆ B means A is a subset of B. We write x 
∈ B and A 
 ⊆ B to

indicate that x is not an element of B and A is not a subset of B, respectively.
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4 Chapter 1

Strict inclusion is denoted ⊂. The cardinality of a set A is denoted #A.

The powerset of a set A is the set of all subsets of A and is denoted 2A. The

empty set is denoted ∅. The union and intersection of sets A and B are denoted

A ∪B and A ∩B, respectively. If A is a set of sets, then
⋃
A and

⋂
A denote the

union and the intersection, respectively, of all sets in A (for the latter, we require

A 
= ∅). That is,⋃
A

def
= {x | ∃B ∈ A x ∈ B}⋂

A
def
= {x | ∀B ∈ A x ∈ B}.

The complement of A in B is the set of all elements of B that are not in A and is

denoted B −A. If B is understood, then we sometimes write ∼A for B −A.
We use the standard set-theoretic notation {x | ϕ(x)} and {x ∈ A | ϕ(x)} for

the class of all x satisfying the property ϕ and the set of all x ∈ A satisfying ϕ,

respectively.

The Cartesian product of sets A and B is the set of ordered pairs

A×B def
= {(a, b) | a ∈ A and b ∈ B}.

More generally, if Aα is an indexed family of sets, α ∈ I, then the Cartesian product

of the sets Aα is the set
∏
α∈I Aα consisting of all I-tuples whose αth component

is in Aα for all α ∈ I.
In particular, if all Aα = A, we write AI for

∏
α∈I Aα; if in addition I is the

finite set {0, 1, . . . , n− 1}, we write

An
def
=

n−1∏
i=0

Ai

= A× · · · ×A︸ ︷︷ ︸
n

= {(a0, . . . , an−1) | ai ∈ A, 0 ≤ i ≤ n− 1}.
The set An is called the nth Cartesian power of A.

Along with the Cartesian product
∏
α∈I Aα come the projection functions πβ :∏

α∈I Aα → Aβ . The function πβ applied to x ∈ ∏
α∈I Aα gives the βth component

of x. For example, the projection function π0 : N3 → N gives π0(3, 5, 7) = 3.

A Note on Foundations

We take Zermelo–Fraenkel set theory with the axiom of choice (ZFC) as our

foundational system. In pure ZFC, everything is built out of sets, and sets are
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Mathematical Preliminaries 5

the only objects that can be elements of other sets. We will not give a systematic

introduction to ZFC, but just point out a few relevant features.

The axioms of ZFC allow the formation of unions, ordered pairs, powersets,

and Cartesian products. Infinite sets are allowed. Representations of all common

datatypes and operations on them, such as strings, natural numbers, real numbers,

trees, graphs, lists, and so forth, can be defined from these basic set operations. One

important feature is the construction of the ordinal numbers and the transfinite

induction principle, which we discuss in more detail in Section 1.6 below.

Sets and Classes

In ZFC, there is a distinction between sets and classes . For any property ϕ of sets,

one can form the class

{X | ϕ(X)} (1.2.1)

of all sets satisfying ϕ, along with the corresponding deduction rule

A ∈ {X | ϕ(X)} ⇐⇒ ϕ(A) (1.2.2)

for any set A. Any set B is a class {X | X ∈ B}, but classes need not be sets.

Early versions of set theory assumed that any class of the form (1.2.1) was a set;

this assumption is called comprehension. Unfortunately, this assumption led to

inconsistencies such as Russell’s paradox involving the class of all sets that do not

contain themselves:

{X | X 
∈ X}. (1.2.3)

If this were a set, sayB, then by (1.2.2), B ∈ B if and only if B 
∈ B, a contradiction.

Russell’s paradox and other similar paradoxes were resolved by weakening

Cantor’s original version of set theory. Comprehension was replaced by a weaker

axiom that states that if A is a set, then so is {X ∈ A | ϕ(X)}, the class of all

elements of A satisfying ϕ. Classes that are not sets, such as (1.2.3), are called

proper classes .

1.3 Relations

A relation is a subset of a Cartesian product. For example, the relation “is a

daughter of” is a subset of the product {female humans} × {humans}. Relations
are denoted P,Q,R, . . ., possibly with subscripts. If A is a set, then a relation on A

is a subset R of An for some n. The number n is called the arity of R. The relation
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6 Chapter 1

R on A is called nullary, unary (or monadic), binary (or dyadic), ternary, or n-ary

if its arity is 0, 1, 2, 3, or n, respectively. A unary relation on A is just a subset of

A. The empty relation ∅ is the relation containing no tuples. It can be considered

as a relation of any desired arity; all other relations have a unique arity.

If R is an n-ary relation, we sometimes write R(a1, . . . , an) to indicate that

the tuple (a1, . . . , an) is in R. For binary relations, we may write a R b instead

of R(a, b), as dictated by custom; this is particularly common for binary relations

such as ≤, ⊆ , and =.

Henceforth, we will assume that the use of any expression of the form

R(a1, . . . , an) carries with it the implicit assumption that R is of arity n. We

do this to avoid having to write “. . . where R is n-ary.”

A relation R is said to refine or be a refinement of another relation S if R ⊆ S,

considered as sets of tuples.

Binary Relations

A binary relation R on U is said to be

• reflexive if (a, a) ∈ R for all a ∈ U ;

• irreflexive if (a, a) 
∈ R for all a ∈ U ;

• symmetric if (a, b) ∈ R whenever (b, a) ∈ R;
• antisymmetric if a = b whenever both (a, b) ∈ R and (b, a) ∈ R;
• transitive if (a, c) ∈ R whenever both (a, b) ∈ R and (b, c) ∈ R;
• well-founded if every nonempty subset X ⊆ U has an R-minimal element; that

is, an element b ∈ X such that for no a ∈ X is it the case that a R b.

A binary relation R on U is called

• a preorder or quasiorder if it is reflexive and transitive;

• a partial order if it is reflexive, antisymmetric, and transitive;

• a strict partial order if it is irreflexive and transitive;

• a total order or linear order if it is a partial order and for all a, b ∈ U either a R b

or b R a;

• a well order if it is a well-founded total order; equivalently, if it is a partial order

and every subset of U has a unique R-least element;

• an equivalence relation if it is reflexive, symmetric, and transitive.

A partial order is dense if there is an element strictly between any two distinct

comparable elements; that is, if a R c and a 
= c, then there exists an element b
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Mathematical Preliminaries 7

such that b 
= a, b 
= c, a R b, and b R c.

The identity relation ι on a set U is the binary relation

ι
def
= {(s, s) | s ∈ U}.

Note that a relation is reflexive iff ι refines it.

The universal relation on U of arity n is Un, the set of all n-tuples of elements

of U .

An important operation on binary relations is relational composition ◦. If P
and Q are binary relations on U , their composition is the binary relation

P ◦Q def
= {(u,w) | ∃v ∈ U (u, v) ∈ P and (v, w) ∈ Q}.

The identity relation ι is a left and right identity for the operation ◦; in other words,

for any R, ι ◦R = R ◦ ι = R. A binary relation R is transitive iff R ◦R ⊆ R.

One can generalize ◦ to the case where P is an m-ary relation on U and Q is an

n-ary relation on U . In this case we define P ◦Q to be the (m+n− 2)-ary relation

P ◦Q def
= {(u,w) | ∃v ∈ U (u, v) ∈ P, (v, w) ∈ Q}.

In Dynamic Logic, we will find this extended notion of relational composition useful

primarily in the case where the left argument is binary and the right argument is

unary. In this case,

P ◦Q = {s | ∃t ∈ U (s, t) ∈ P and t ∈ Q}.

We abbreviate the n-fold composition of a binary relation R by Rn. Formally,

R0 def
= ι,

Rn+1 def
= R ◦Rn.

This notation is the same as the notation for Cartesian powers described in Section

1.2, but both notations are standard, so we will rely on context to distinguish them.

One can show by induction that for all m,n ≥ 0, Rm+n = Rm ◦Rn.
The converse operation − on a binary relation R reverses its direction:

R− def
= {(t, s) | (s, t) ∈ R}.

Note that R−− = R. A binary relation R is symmetric iff R− ⊆ R; equivalently, if

R− = R.
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8 Chapter 1

Two important operations on binary relations are

R∗ def
=

⋃
n≥0

Rn

R+ def
=

⋃
n≥1

Rn.

The relationsR+ and R∗ are called the transitive closure and the reflexive transitive

closure of R, respectively. The reason for this terminology is that R+ is the smallest

(in the sense of set inclusion ⊆ ) transitive relation containing R, and R∗ is the

smallest reflexive and transitive relation containing R (Exercise 1.13).

We will develop some basic properties of these constructs in the exercises. Here

is a useful lemma that can be used to simplify several of the arguments involving

the ∗ operation.

Lemma 1.1: Relational composition distributes over arbitrary unions. That is,

for any binary relation P and any indexed family of binary relations Qα,

P ◦ (
⋃
α

Qα) =
⋃
α

(P ◦Qα),

(
⋃
α

Qα) ◦ P =
⋃
α

(Qα ◦ P ).

Proof For the first equation,

(u, v) ∈ P ◦ (
⋃
α

Qα) ⇐⇒ ∃w (u,w) ∈ P and (w, v) ∈
⋃
α

Qα

⇐⇒ ∃w ∃α (u,w) ∈ P and (w, v) ∈ Qα
⇐⇒ ∃α ∃w (u,w) ∈ P and (w, v) ∈ Qα
⇐⇒ ∃α (u, v) ∈ P ◦Qα
⇐⇒ (u, v) ∈

⋃
α

(P ◦Qα).

The proof of the second equation is similar.

Equivalence Relations

Recall from Section 1.3 that a binary relation on a set U is an equivalence relation

if it is reflexive, symmetric, and transitive. Given an equivalence relation ≡ on U ,
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Mathematical Preliminaries 9

the ≡-equivalence class of a ∈ U is the set

{b ∈ U | b ≡ a},

typically denoted [a]. By reflexivity, a ∈ [a]; and if a, b ∈ U , then

a ≡ b ⇐⇒ [a] = [b]

(Exercise 1.10).

A partition of a set U is a collection of pairwise disjoint subsets of U whose

union is U . That is, it is an indexed collection Aα ⊆ U such that
⋃
αAα = U and

Aα ∩ Aβ = ∅ for all α 
= β.

There is a natural one-to-one correspondence between equivalence relations and

partitions. The equivalence classes of an equivalence relation on U form a partition

of U ; conversely, any partition of U gives rise to an equivalence relation by declaring

two elements to be equivalent if they are in the same set of the partition.

Recall that a binary relation ≡1 on U refines another binary relation ≡2 on

U if for any a, b ∈ U , if a ≡1 b then a ≡2 b. For equivalence relations, this is the

same as saying that every equivalence class of ≡1 is included in an equivalence

class of ≡2; equivalently, every ≡2-class is a union of ≡1-classes. Any family E of

equivalence relations has a coarsest common refinement , which is the ⊆ -greatest

relation refining all the relations in E. This is just
⋂
E, thinking of elements of E as

sets of ordered pairs. Each equivalence class of the coarsest common refinement is

an intersection of equivalence classes of relations in E.

Functions

Functions are denoted f, g, h, . . ., possibly with subscripts. Functions, like relations,

are formally sets of ordered pairs. More precisely, a function f is a binary relation

such that no two distinct elements have the same first component; that is, for all a

there is at most one b such that (a, b) ∈ f . In this case we write f(a) = b. The a is

called the argument and the b is called the value.

The domain of f is the set {a | ∃b (a, b) ∈ f} and is denoted dom f . The

function f is said to be defined on a if a ∈ dom f . The range of f is any set

containing {b | ∃a (a, b) ∈ f} = {f(a) | a ∈ dom f}. We use the phrase “the range”

loosely; the range is not unique. We write f : A→ B to denote that f is a function

with domain A and range B. The set of all functions f : A→ B is denoted A→ B

or BA.

A function can be specified anonymously with the symbol �→. For example, the

function x �→ 2x on the integers is the function Z → Z that doubles its argument.
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10 Chapter 1

Formally, it is the set of ordered pairs {(x, 2x) | x ∈ Z}. The symbol � is used

to restrict a function to a smaller domain. For example, if f : R → R, then

f � Z : Z → R is the function that agrees with f on the integers but is otherwise

undefined.

If C ⊆ A and f : A→ B, then f(C) denotes the set

f(C)
def
= {f(a) | a ∈ C} ⊆ B.

This is called the image of C under f . The image of f is the set f(A).

The composition of two functions f and g is just the relational composition f ◦g
as defined in Section 1.3. If f : A→ B and g : B → C, then f ◦ g : A→ C, and

(f ◦ g)(a) = g(f(a)).1

A function f : A → B is one-to-one or injective if f(a) 
= f(b) whenever a, b ∈ A
and a 
= b. A function f : A → B is onto or surjective if for all b ∈ B there

exists a ∈ A such that f(a) = b. A function is bijective if it is both injective and

surjective. A bijective function f : A→ B has an inverse f−1 : B → A in the sense

that f ◦ f−1 is the identity function on A and f−1 ◦ f is the identity function on

B. Thinking of f as a binary relation, f−1 is just the converse f− as defined in

Section 1.3. Two sets are said to be in one-to-one correspondence if there exists a

bijection between them.

We will find the following function-patching operator useful. If f : A → B is

any function, a ∈ A, and b ∈ B, then we denote by f [a/b] : A → B the function

defined by

f [a/b](x)
def
=

{
b, if x = a

f(x), otherwise.

In other words, f [a/b] is the function that agrees with f everywhere except possibly

a, on which it takes the value b.

Partial Orders

Recall from Section 1.3 that a binary relation ≤ on a set A is a preorder (or

quasiorder) if it is reflexive and transitive, and it is a partial order if in addition it

is antisymmetric. Any preorder ≤ has a natural associated equivalence relation

a ≡ b ⇐⇒ a ≤ b and b ≤ a.

1 Unfortunately, the definition (f ◦g)(a) = f(g(a)) is fairly standard, but this conflicts with other
standard usage, namely the definition of ◦ for binary relations and the definition of functions as
sets of (argument,value) pairs.

MIT Press Math7X9/2010/08/25:15:15 Page 10



Mathematical Preliminaries 11

The order ≤ is well-defined on ≡-equivalence classes; that is, if a ≤ b, a ≡ a′, and
b ≡ b′, then a′ ≤ b′. It therefore makes sense to define [a] ≤ [b] if a ≤ b. The

resulting order on ≡-classes is a partial order.

A strict partial order is a binary relation < that is irreflexive and transitive.

Any strict partial order < has an associated partial order ≤ defined by a ≤ b if

a < b or a = b. Any preorder ≤ has an associated strict partial order defined by

a < b if a ≤ b but b 
≤ a. For partial orders ≤, these two operations are inverses.

For example, the strict partial order associated with the set inclusion relation ⊆
is the proper inclusion relation ⊂.

A function f : (A,≤)→ (A′,≤) between two partially ordered sets is monotone

if it preserves order: if a ≤ b then f(a) ≤ f(b).

Let ≤ be a partial order on A and let B ⊆ A. An element x ∈ A is an upper

bound of B if y ≤ x for all y ∈ B. The element x itself need not be an element of B.

If in addition x ≤ z for every upper bound z of B, then x is called the least upper

bound , supremum, or join of B, and is denoted supy∈B y or supB. The supremum

of a set need not exist, but if it does, then it is unique.

A function f : (A,≤)→ (A′,≤) between two partially ordered sets is continuous

if it preserves all existing suprema: whenever B ⊆ A and supB exists, then

supx∈B f(x) exists and is equal to f(supB).

Any partial order extends to a total order. In fact, any partial order is the

intersection of all its total extensions (Exercise 1.14).

Recall that a preorder ≤ is well-founded if every subset has a ≤-minimal

element. An antichain is a set of pairwise ≤-incomparable elements.

Proposition 1.2: Let ≤ be a preorder on a set A. The following four conditions

are equivalent:

(i) The relation ≤ is well-founded and has no infinite antichains.

(ii) For any infinite sequence x0, x1, x2, . . ., there exist i, j such that i < j and

xi ≤ xj .

(iii) Any infinite sequence has an infinite nondecreasing subsequence; that is, for

any sequence x0, x1, x2, . . ., there exist i0 < i1 < i2 < · · · such that xi0 ≤ xi1 ≤
xi2 ≤ · · · .
(iv) Any set X ⊆ A has a finite base X0 ⊆ X ; that is, a finite subset X0 such

that for all y ∈ X there exists x ∈ X0 such that x ≤ y.

In addition, if ≤ is a partial order, then the four conditions above are equivalent to

the fifth condition:
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12 Chapter 1

(v) Any total extension of ≤ is a well order.

Proof Exercise 1.16.

A preorder or partial order is called a well quasiorder or well partial order ,

respectively, if it satisfies any of the four equivalent conditions of Proposition 1.2.

Well-Foundedness and Induction

Everyone is familiar with the set ω = {0, 1, 2, . . .} of finite ordinals, also known

as the natural numbers. An essential mathematical tool is the induction principle

on this set, which states that if a property is true of zero and is preserved by the

successor operation, then it is true of all elements of ω.

There are more general notions of induction that we will find useful. Transfinite

induction extends induction on ω to higher ordinals. We will discuss transfinite

induction later on in Section 1.6. Structural induction is used to establish properties

of inductively defined objects such as lists, trees, or logical formulas.

All of these types of induction are instances of a more general notion called

induction on a well-founded relation or just well-founded induction. This is in a

sense the most general form of induction there is (Exercise 1.15). Recall that a

binary relation R on a set X is well-founded if every subset of X has an R-minimal

element. For such relations, the following induction principle holds:

(WFI) If ϕ is a property that holds for x whenever it holds for all R-predecessors

of x—that is, if ϕ is true of x whenever it is true of all y such that y R x—then ϕ

is true of all x.

The “basis” of the induction is the case of R-minimal elements; that is, those with

no R-predecessors. In this case, the premise “ϕ is true of all R-predecessors of x”

is vacuously true.

Lemma 1.3 (Principle of well-founded induction): IfR is a well-founded

relation on a set X , then the well-founded induction principle (WFI) is sound.

Proof Suppose ϕ is a property such that, whenever ϕ is true of all y such that

y R x, then ϕ is also true of x. Let S be the set of all elements of X satisfying

property ϕ. Then X − S is the set of all elements of X not satisfying property ϕ.

Since R is well-founded, if X−S were nonempty, it would have a minimal element x.

But then ϕ would be true of all R-predecessors of x but not of x itself, contradicting

our assumption. Therefore X − S must be empty, and consequently S = X .
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In fact, the converse holds as well: if R is not well-founded, then there is a

property on elements of X that violates the principle (WFI) (Exercise 1.15).

1.4 Graphs and Dags

For the purposes of this book, we define a directed graph to be a pair D = (D,→D),

whereD is a set and→D is a binary relation onD. Elements of D are called vertices

and elements of →D are called edges . In graph theory, one often sees more general

types of graphs allowing multiple edges or weighted edges, but we will not need

them here.

A directed graph is called acyclic if for no d ∈ D is it the case that d →+
D d,

where→+
D is the transitive closure of→D. A directed acyclic graph is called a dag.

1.5 Lattices

An upper semilattice is a partially ordered set in which every finite subset has a

supremum (join). Every semilattice has a unique smallest element, namely the join

of the empty set.

A lattice is a partially ordered set in which every finite subset has both a

supremum and an infimum, or greatest lower bound . The infimum of a set is often

called its meet . Every lattice has a unique largest element, which is the meet of the

empty set.

A complete lattice is a lattice in which all joins exist; equivalently, in which all

meets exist. Each of these assumptions implies the other: the join of a set B is the

meet of the set of upper bounds of B, and the meet of B is the join of the set of

lower bounds of B. Every set B has at least one upper bound and one lower bound,

namely the top and bottom elements of the lattice, respectively.

For example, the powerset 2A of a set A is a complete lattice under set inclusion

⊆ . In this lattice, for any B ⊆ 2A, the supremum of B is
⋃
B and its infimum is⋂

B.

1.6 Transfinite Ordinals

The induction principle on the natural numbers ω = {0, 1, 2, . . .} states that if a

property is true of zero and is preserved by the successor operation, then it is true

of all elements of ω.
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14 Chapter 1

In the study of logics of programs, we often run into higher ordinals, and it

is useful to have a transfinite induction principle that applies in those situations.

Cantor recognized the value of such a principle in his theory of infinite sets. Any

modern account of the foundations of mathematics will include a chapter on ordinals

and transfinite induction.

Unfortunately, a complete understanding of ordinals and transfinite induction

is impossible outside the context of set theory, since many issues impact the very

foundations of the subject. A thorough treatment would fill a large part of a basic

course in set theory, and is well beyond the scope of this introduction. We provide

here only a cursory account of the basic facts, tools and techniques we will need

in the sequel. We encourage the student interested in foundations to consult the

references at the end of the chapter for a more detailed treatment.

Set-Theoretic Definition of Ordinals

Ordinals are defined as certain sets of sets. The key facts we will need about ordinals,

succinctly stated, are:

(i) There are two kinds: successors and limits .

(ii) They are well-ordered.

(iii) There are a lot of them.

(iv) We can do induction on them.

We will explain each of these statements in more detail below.

A set C of sets is said to be transitive if C ⊆ 2C ; that is, every element of C

is a subset of C. In other words, if A ∈ B and B ∈ C, then A ∈ C. Formally, an

ordinal is defined to be a set A such that

• A is transitive

• all elements of A are transitive.

It follows that any element of an ordinal is an ordinal. We use α, β, γ, . . . to refer

to ordinals. The class of all ordinals is denoted Ord. It is not a set, but a proper

class.

This rather neat but perhaps obscure definition of ordinals has some far-reaching

consequences that are not at all obvious. For ordinals α, β, define α < β if α ∈ β.
Then every ordinal is equal to the set of all smaller ordinals (in the sense of <).

The relation < is a strict partial order in the sense of Section 1.3.

If α is an ordinal, then so is α∪{α}. The latter is called the successor of α and

is denoted α+1. Also, if A is any set of ordinals, then
⋃
A is an ordinal and is the
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supremum of the ordinals in A under the relation ≤.
The smallest few ordinals are

0
def
= ∅

1
def
= {0} = {∅}

2
def
= {0, 1} = {∅, {∅}}

3
def
= {0, 1, 2} = {∅, {∅}, {∅, {∅}}}
...

The first infinite ordinal is

ω
def
= {0, 1, 2, 3, . . .}.
An ordinal is called a successor ordinal if it is of the form α+1 for some ordinal

α, otherwise it is called a limit ordinal . The smallest limit ordinal is 0 and the next

smallest is ω. Of course, ω + 1 = ω ∪ {ω} is an ordinal, so it does not stop there.

It follows from the axioms of ZFC that the relation < on ordinals is a linear

order. That is, if α and β are any two ordinals, then either α < β, α = β, or β < α.

This is most easily proved by induction on the well-founded relation

(α, β) ≤ (α′, β′) def⇐⇒ α ≤ α′ and β ≤ β′.

The class of ordinals is well-founded in the sense that any nonempty set of ordinals

has a least element.

Since the ordinals form a proper class, there can be no one-to-one function

Ord→ A into a set A. This is what is meant in clause (iii) above. In practice, this

fact will come up when we construct functions f : Ord → A from Ord into a set

A by induction. Such an f , regarded as a collection of ordered pairs, is necessarily

a class and not a set. We will always be able to conclude that there exist distinct

ordinals α, β with f(α) = f(β).

Transfinite Induction

The transfinite induction principle is a method of establishing that a particular

property is true of all ordinals. It states that in order to prove that the property

is true of all ordinals, it suffices to show that the property is true of an arbitrary

ordinal α whenever it is true of all ordinals β < α. Proofs by transfinite induction

typically contain two cases, one for successor ordinals and one for limit ordinals.

The basis of the induction is often a special case of the case for limit ordinals, since

0 = ∅ is a limit ordinal; here the premise that the property holds of all ordinals
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β < α is vacuously true.

The validity of this principle follows ultimately from the well-foundedness of the

set containment relation ∈. This is an axiom of ZFC called the axiom of regularity.

We will see many examples of definitions and proofs by transfinite induction in

subsequent sections.

Zorn’s Lemma and the Axiom of Choice

Related to the ordinals and transfinite induction are the axiom of choice and Zorn’s

lemma.

The axiom of choice is an axiom of ZFC. It states that for every set A of

nonempty sets, there exists a function f with domain A that picks an element out

of each set in A; that is, for every B ∈ A, f(B) ∈ B. Equivalently, any Cartesian

product of nonempty sets is nonempty.

Zorn’s lemma states that every set of sets closed under unions of chains contains

a ⊆ -maximal element. Here a chain is a family of sets linearly ordered by the

inclusion relation ⊆ , and to say that a set C of sets is closed under unions of

chains means that if B ⊆ C and B is a chain, then
⋃
B ∈ C. An element B ∈ C

is ⊆ -maximal if it is not properly included in any B′ ∈ C.
The well ordering principle, also known as Zermelo’s theorem, states that every

set is in one-to-one correspondence with some ordinal. A set is countably infinite

if it is in one-to-one correspondence with ω. A set is countable if it is finite or

countably infinite.

The axiom of choice, Zorn’s lemma, and the well ordering principle are equiv-

alent to one another and independent of ZF set theory (ZFC without the axiom of

choice) in the sense that if ZF is consistent, then neither they nor their negations

can be proven from the axioms of ZF.

In subsequent sections, we will use the axiom of choice, Zorn’s lemma, and the

transfinite induction principle freely.

1.7 Set Operators

A set operator is a function that maps sets to sets. Set operators arise everywhere

in mathematics, and we will see many applications in subsequent sections. Here we

introduce some special properties of set operators such as monotonicity and closure

and discuss some of their consequences. We culminate with a general theorem due

to Knaster and Tarski concerning inductive definitions.

Let U be a fixed set. Recall that 2U denotes the powerset of U , or the set of
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subsets of U :

2U
def
= {A | A ⊆ U}.

A set operator on U is a function τ : 2U → 2U .

Monotone, Continuous, and Finitary Operators

A set operator τ is said to be monotone if it preserves set inclusion:

A ⊆ B =⇒ τ(A) ⊆ τ(B).

A chain of sets in U is a family of subsets of U totally ordered by the inclusion

relation ⊆ ; that is, for every A and B in the chain, either A ⊆ B or B ⊆ A. A

set operator τ is said to be (chain-)continuous if for every chain of sets C,

τ(
⋃

C) =
⋃
A∈C

τ(A).

A set operator τ is said to be finitary if its action on a set A depends only on

finite subsets of A in the following sense:

τ(A) =
⋃
B⊆A

B finite

τ(B).

A set operator is finitary iff it is continuous, and every continuous operator is

monotone, but not vice versa (Exercise 1.17). In many applications, the appropriate

operators are finitary.

Example 1.4: For a binary relation R on a set V , let

τ(R) = {(a, c) | ∃b (a, b), (b, c) ∈ R}
= R ◦R.

The function τ is a set operator on V 2; that is,

τ : 2V
2 → 2V

2

.

The operator τ is finitary, because τ(R) is determined by the action of τ on two-

element subsets of R.
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Prefixpoints and Fixpoints

A prefixpoint of a set operator τ is a set A such that τ(A) ⊆ A. A fixpoint of τ is a

set A such that τ(A) = A. We say that a set A is closed under the operator τ if A

is a prefixpoint of τ . Every set operator on U has at least one prefixpoint, namely

U . Monotone set operators also have fixpoints, as we shall see.

Example 1.5: By definition, a binary relation R on a set V is transitive if

(a, c) ∈ R whenever (a, b) ∈ R and (b, c) ∈ R. Equivalently, R is transitive iff

it is closed under the finitary set operator τ defined in Example 1.4.

Lemma 1.6: The intersection of any set of prefixpoints of a monotone set operator

τ is a prefixpoint of τ .

Proof Let C be any set of prefixpoints of τ . We wish to show that
⋂
C is a

prefixpoint of τ . For any A ∈ C,
⋂
C ⊆ A, therefore

τ(
⋂

C) ⊆ τ(A) monotonicity of τ

⊆ A since A is a prefixpoint.

Since A ∈ C was arbitrary, τ(
⋂

C) ⊆ ⋂
C.

It follows from Lemma 1.6 and the characterization of complete lattices of

Section 1.5 that the set of prefixpoints of a monotone operator τ forms a complete

lattice under the inclusion ordering ⊆ . In this lattice, the meet of any set of

prefixpoints C is the set
⋂
C, and the join of any set of prefixpoints C is the set⋂

{A ⊆ U |
⋃

C ⊆ A, A is a prefixpoint of τ}.

Note that the join of C is not
⋃
C in general; this is not necessarily a prefixpoint

(Exercise 1.23).

By Lemma 1.6, for any set A, the meet of all prefixpoints containing A is a

prefixpoint of τ containing A and is necessarily the least prefixpoint of τ containing

A. That is, if we define

C(A)
def
= {B ⊆ U | A ⊆ B and τ(B) ⊆ B} (1.7.1)

τ†(A) def
=

⋂
C(A), (1.7.2)

then τ†(A) is the least prefixpoint of τ containing A with respect to ⊆ . Note that

the set C(A) is nonempty, since it contains U at least.
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Lemma 1.7: Any monotone set operator τ has a ⊆ -least fixpoint.

Proof We show that τ†(∅) is the least fixpoint of τ . By Lemma 1.6, it is the least

prefixpoint of τ . If it is a fixpoint, then it is the least one, since every fixpoint is a

prefixpoint. But if it were not a fixpoint, then by monotonicity, τ(τ†(∅)) would be

a smaller prefixpoint, contradicting the fact that τ†(∅) is the least.

Closure Operators

A set operator σ on U is called a closure operator if it satisfies the following three

properties:

(i) σ is monotone

(ii) A ⊆ σ(A)

(iii) σ(σ(A)) = σ(A).

Because of clause (ii), fixpoints and prefixpoints coincide for closure operators.

Thus a set is closed with respect to a closure operator σ iff it is a fixpoint of σ. As

shown in Lemma 1.6, the set of closed sets of a closure operator forms a complete

lattice.

Lemma 1.8: For any monotone set operator τ , the operator τ† defined in (1.7.2)

is a closure operator.

Proof The operator τ† is monotone, since

A ⊆ B =⇒ C(B) ⊆ C(A) =⇒
⋂

C(A) ⊆
⋂

C(B),

where C(A) is the set defined in (1.7.1).

Property (ii) of closure operators follows directly from the definition of τ†.
Finally, to show property (iii), since τ†(A) is a prefixpoint of τ , it suffices to show

that any prefixpoint of τ is a fixpoint of τ†. But

τ(B) ⊆ B ⇐⇒ B ∈ C(B)

⇐⇒ B =
⋂

C(B) = τ†(B).

Example 1.9: The transitive closure of a binary relation R on a set V is the

least transitive relation containing R; that is, it is the least relation containing R

and closed under the finitary transitivity operator τ of Example 1.4. This is the
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relation τ†(R). Thus the closure operator τ† maps an arbitrary binary relation R

to its transitive closure.

Example 1.10: The reflexive transitive closure of a binary relation R on a set

V is the least reflexive and transitive relation containing R; that is, it is the least

relation that contains R, is closed under transitivity, and contains the identity

relation ι = {(a, a) | a ∈ V }. Note that “contains the identity relation” just means

closed under the constant-valued monotone set operator R �→ ι. Thus the reflexive

transitive closure of R is σ†(R), where σ denotes the finitary operator R �→ τ(R)∪ι.

The Knaster–Tarski Theorem

The Knaster–Tarski theorem is a useful theorem that describes how least fixpoints

of monotone set operators can be obtained either “from above,” as in the proof of

Lemma 1.7, or “from below,” as a limit of a chain of sets defined by transfinite

induction. In general, the Knaster–Tarski Theorem holds for monotone operators

on an arbitrary complete lattice, but we will find it most useful for the lattice of

subsets of a set U , so we prove it only for that case.

Let U be a set and let τ be a monotone operator on U . Let τ† be the associated

closure operator defined in (1.7.2). We show how to attain τ†(A) starting from A

and working up. The idea is to start with A, then apply τ repeatedly, adding new

elements until achieving closure. In most applications, the operator τ is continuous,

in which case this takes only countably many iterations; but for monotone operators

in general, it can take more.

Formally, we construct by transfinite induction a chain of sets τα(A) indexed

by ordinals α:

τα+1(A)
def
= A ∪ τ(τα(A))

τλ(A)
def
=

⋃
α<λ

τα(A), λ a limit ordinal

τ∗(A) def
=

⋃
α∈Ord

τα(A).

The base case is included in the case for limit ordinals:

τ0(A) = ∅.

Intuitively, τα(A) is the set obtained by applying τ to A α times, reincluding A at

successor stages.
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Lemma 1.11: If α ≤ β, then τα(A) ⊆ τβ(A).

Proof We proceed by transfinite induction. For two successor ordinals α + 1 and

β + 1 with α+ 1 ≤ β + 1,

τα+1(A) = A ∪ τ(τα(A))
⊆ A ∪ τ(τβ(A)) induction hypothesis and monotonicity

= τβ+1(A).

If α ≤ β and α is a limit ordinal,

τα(A) =
⋃
γ<α

τγ(A)

⊆ τβ(A) induction hypothesis.

Finally, if α ≤ β and β is a limit ordinal, the result is immediate from the definition

of τβ(A).

Lemma 1.11 says that the τα(A) form a chain of sets. The set τ∗(A) is the

union of this chain over all ordinals α.

Now there must exist an ordinal κ such that τκ+1(A) = τκ(A), because there

is no one-to-one function from the class of ordinals to the powerset of U . The

least such κ is called the closure ordinal of τ . If κ is the closure ordinal of τ , then

τβ(A) = τκ(A) for all β > κ, therefore τ∗(A) = τκ(A).

If τ is continuous, then its closure ordinal is at most ω, but not for monotone

operators in general (Exercise 1.18).

Theorem 1.12 (Knaster–Tarski): τ†(A) = τ∗(A).

Proof First we show the forward inclusion. Let κ be the closure ordinal of τ .

Since τ†(A) is the least prefixpoint of τ containing A, it suffices to show that

τ∗(A) = τκ(A) is a prefixpoint of τ . But

τ(τκ(A)) ⊆ A ∪ τ(τκ(A))
= τκ+1(A)

= τκ(A).

Conversely, we show by transfinite induction that for all ordinals α, τα(A) ⊆

MIT Press Math7X9/2010/08/25:15:15 Page 21



22 Chapter 1

τ†(A), therefore τ∗(A) ⊆ τ†(A). For successor ordinals α+ 1,

τα+1(A) = A ∪ τ(τα(A))
⊆ A ∪ τ(τ†(A)) induction hypothesis and monotonicity

⊆ τ†(A) definition of τ†.

For limit ordinals λ, τα(A) ⊆ τ†(A) for all α < λ by the induction hypothesis;

therefore

τλ(A) =
⋃
α<λ

τα(A) ⊆ τ†(A).

1.8 Bibliographical Notes

Most of the result of this chapter can be found in any basic text on discrete

structures such as Gries and Schneider (1994); Rosen (1995); Graham et al. (1989).

A good reference for introductory axiomatic set theory is Halmos (1960).

Exercises

1.1. Prove that relational composition is associative:

P ◦ (Q ◦R) = (P ◦Q) ◦R.

1.2. Prove that ι is an identity and ∅ an annihilator for relational composition:

ι ◦ P = P ◦ ι = P

∅ ◦ P = P ◦∅ = ∅.

1.3. Prove that relational composition is monotone in both arguments with respect

to the inclusion order ⊆ : if P ⊆ P ′ and Q ⊆ Q′, then P ◦Q ⊆ P ′ ◦Q′.

1.4. Prove that relational composition is continuous in both arguments with respect

to the inclusion order ⊆ : for any indexed families Pα and Qβ of binary relations

on a set U ,

(
⋃
α

Pα) ◦ (
⋃
β

Qβ) =
⋃
α,β

(Pα ◦Qβ).
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1.5. Prove that the converse operation − commutes with ∪ and with ∗:

(
⋃
α

Rα)
− =

⋃
α

R−
α

(R∗)− = (R−)∗.

1.6. Prove that the converse operation commutes with relational composition,

provided the order of the composition factors is reversed:

(P ◦Q)− = Q− ◦ P−.

1.7. Prove the following identities for binary relations:

Pn ◦ Pm = Pm+n, m, n ≥ 0

P ◦ P∗ = P∗ ◦ P
P = P−−

P ⊆ P ◦ P− ◦ P.

1.8. Give an example of a set U and a nonempty binary relation R on U such that

for all m,n with m 
= n, Rm ∩ Rn = ∅. On the other hand, show that for any

binary relation R, if m ≤ n then (ι ∪R)m ⊆ (ι ∪R)n, and that

R∗ =
⋃
n

(ι ∪R)n.

1.9. Prove that P∗ is the least prefixpoint of the monotone set operator

X �→ ι ∪ (P ◦X).

1.10. Let ≡ be an equivalence relation on a set U with equivalence classes [a], a ∈ U .

Show that for any a, b ∈ U ,

a ≡ b ⇐⇒ [a] = [b].

1.11. Let (A,≤) be a total order with associated strict order <. Define an order on

A∗ by: a1, . . . , am ≤ b1, . . . , bn if either a1, . . . , am is a prefix of b1, . . . , bn, or there

exists i ≤ m,n such that aj = bj for all j < i and ai < bi. Prove that this is a total

order on An. This order is called lexicographic order on An.

MIT Press Math7X9/2010/08/25:15:15 Page 23



24 Chapter 1

1.12. Prove the following properties of binary relations R:

ι ⊆ R∗
R ⊆ R∗

R∗ ◦R∗ = R∗
R∗∗ = R∗

ι ∪ (R ◦R∗) = R∗.

Give purely equational proofs using Lemma 1.1 and the definition R∗ = ⋃
nR

n.

1.13. Prove that for any binary relation R, R+ is the smallest (in the sense of set

inclusion ⊆ ) transitive relation containing R, and R∗ is the smallest reflexive and

transitive relation containing R.

1.14. Prove that any partial order is equal to the intersection of all its total

extensions. That is, for any partial order R on a set X ,

R =
⋂
{T ⊆ X ×X | R ⊆ T, T is a total order on X}.

1.15. Let R be a binary relation on a set X . An infinite descending R-chain is an

infinite sequence x0, x1, x2, . . . of elements of X such that xi+1 R xi for all i ≥ 0.

Prove that the following two statements are equivalent:

(i) The relation R is well-founded.

(ii) There are no infinite descending R-chains.

1.16. Prove Proposition 1.2. Hint. Prove the four statements in the first part of

the theorem in the order (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (i). For (ii) =⇒ (iii),

use Ramsey’s theorem: if we color each element of {(i, j) | i, j ∈ ω, i < j} either

red or green, then there exists an infinite set A ⊆ ω such that either all elements

of {(i, j) | i, j ∈ A, i < j} are red or all elements are green. In the language of

graph theory, if we color the edges of the complete undirected graph on countably

many vertices either red or green, then there exists either an infinite complete red

subgraph or an infinite complete green subgraph. You may use Ramsey’s theorem

without proof.

1.17. (a) Prove that every finitary set operator is continuous and every continuous

set operator is monotone. Give an example showing that the latter inclusion is
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strict.

(b) Prove that every continuous set operator is finitary.

1.18. Prove that if τ is a continuous set operator, then its closure ordinal is at most

ω. Give a counterexample showing that this is not true for monotone operators in

general.

1.19. Show that there is a natural one-to-one correspondence between the sets of

functions A→ (B → C) and (A×B)→ C. Hint. Given f : A→ (B → C), consider

the function curry(f) defined by

curry(f)(x, y)
def
= f(x)(y).

Applying the operator curry is often called “currying.” These terms are named

after Haskell B. Curry.

1.20. Prove that

(i, j) �→ (i+ j + 1)(i+ j)

2
+ j

is a one-to-one and onto function. Conclude that #ω = #(ω2).

1.21. Prove that a countable union of countable sets is countable. That is, if each

Ai is countable, then
⋃∞
i=0 Ai is countable. (Hint. Use Exercise 1.20).

1.22. Show that the map τ �→ τ∗ is a closure operator on the set 2U → 2U curried

to 22
U×U , and that τ∗ is the least closure operator on U containing τ . (See Exercise

1.19 for a definition of currying.)

1.23. Show that in the lattice of prefixpoints of a monotone set operator τ con-

structed in Lemma 1.6, join is not necessarily union. That is, show that if C is a set

of prefixpoints of τ , then
⋃
C is not necessarily a prefixpoint of τ .

1.24. (Birkhoff (1973)) Let X and Y be two partially ordered sets. A pair of

functions f : X → Y and g : Y → X is called a Galois connection if for all

x ∈ X and y ∈ Y ,

x ≤ g(y) ⇐⇒ y ≤ f(x).

(a) Suppose f and g form a Galois connection. Prove that f and g are anti-
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monotone in the sense that

x1 ≤ x2 =⇒ f(x1) ≥ f(x2)

y1 ≤ y2 =⇒ g(y1) ≥ g(y2),

and that for all x ∈ X and y ∈ Y ,

x ≤ g(f(x)) y ≤ f(g(y))

g(y) = g(f(g(y))) f(x) = f(g(f(x))).

(b) Let U and V be sets, R ⊆ U × V . Define f : 2U → 2V and g : 2V → 2U by:

f(A)
def
= {y ∈ V | for all x ∈ A, x R y}

g(B)
def
= {x ∈ U | for all y ∈ B, x R y}.

Prove that f and g form a Galois connection between 2U and 2V ordered by set

inclusion. Conclude from (a) that f ◦ g and g ◦ f are closure operators in the sense

of Section 1.7.
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2 Computability and Complexity

In this chapter we review the basic definitions and results of machine models,

computability theory, and complexity theory that we will need in later chapters.

2.1 Machine Models

Deterministic Turing Machines

Our basic model of computation is the Turing machine, named after Alan Turing,

who invented it in 1936. Turing machines can compute any function normally

considered computable; in fact, we normally define computable to mean computable

by a Turing machine.

Formally, Turing machines manipulate strings over a finite alphabet. However,

there is a natural one-to-one correspondence between strings in {0, 1}∗ and natural

numbers N = {0, 1, 2, . . .} defined by

x �→ N(1x)− 1

where N(y) is the natural number represented by the string y in binary. It is just as

easy to encode other reasonable forms of data (strings over larger alphabets, trees,

graphs, dags, etc.) as strings in {0, 1}∗.
We describe below the basic model. There are many apparently more powerful

variations (multitape, nondeterministic, two-way infinite tape, two-dimensional

tape, . . . ) that can be simulated by this basic model. There are also many apparently

less powerful variations (two-stack machines, two counter machines) that can

simulate the basic model. All these models are equivalent in the sense that they

compute all the same functions, although not with equal efficiency. One can include

suitably abstracted versions of modern programming languages in this list.

Informally, a Turing machine consists of a finite set Q of states, an input tape

consisting of finitely many cells delimited on the left and right by endmarkers �
and �, a semi-infinite worktape delimited on the left by an endmarker � and infinite

to the right, and heads that can move left and right over the two tapes. The input

string is a finite string of symbols from a finite input alphabet Σ and is written

on the input tape between the endmarkers, one symbol per cell. The input head is

read-only and must stay between the endmarkers. The worktape is initially blank.

The worktape head can read and write symbols from a finite worktape alphabet Γ

and must stay to the right of the left endmarker, but can move arbitrarily far to

the right.
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� a b b a b a �

�
�

Q

two-way, read only

� A B A B B A �� �� �� �� · · ·

�
�
two-way, read/write

The machine starts in its start state s with its heads scanning the left end-

markers � on both tapes. The worktape is initially blank. In each step it reads

the symbols on the tapes under its heads, and depending on those symbols and its

current state, writes a new symbol on the worktape cell, moves its heads left or

right one cell or leaves them stationary, and enters a new state. The action it takes

in each situation is determined by a finite transition function δ. It accepts its input

by entering a special accept state t and rejects by entering a special reject state r.

On some inputs it may run infinitely without ever accepting or rejecting.

Formally, a deterministic Turing machine is a 10-tuple

M = (Q, Σ, Γ, ��, �, �, δ, s, t, r)
where:

• Q is a finite set of states

• Σ is a finite input alphabet

• Γ is a finite worktape alphabet

• �� ∈ Γ is the blank symbol

• � ∈ Γ− Σ is the left endmarker

• � 
∈ Σ is the right endmarker

• δ : Q× (Σ ∪ {�,�})× Γ→ Q × Γ× {−1, 0, 1}2 is the transition function

• s ∈ Q is the start state

• t ∈ Q is the accept state

• r ∈ Q is the reject state, r 
= t.

The −1, 0, 1 in the definition of δ stand for “move left one cell,” “remain stationary,”

and “move right one cell,” respectively. Intuitively, δ(p, a, b) = (q, c, d, e) means,
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“When in state p scanning symbol a on the input tape and b on the worktape,

write c on that worktape cell, move the input and work heads in direction d and e,

respectively, and enter state q.”

We restrict Turing machines so that the left endmarker on the worktape is never

overwritten with another symbol and the machine never moves its heads outside

the endmarkers. We also require that once the machine enters its accept state, it

remains in that state, and similarly for its reject state. This translates into certain

formal constraints on the above definition.

Configurations and Acceptance

Intuitively, at any point in time, the worktape of the machine contains a semi-

infinite string of the form � y��ω, where y ∈ Γ∗ (that is, y is a finite-length string)

and ��ω denotes the semi-infinite string of blanks

�� �� �� �� �� �� �� �� · · ·

(recall that ω denotes the smallest infinite ordinal). Although the string � y��ω
is infinite, it always has a finite representation, since all but finitely many of the

symbols are the blank symbol ��.
Let x ∈ Σ∗, |x| = n. We define a configuration of the machine on input x to be an

element of Q×{y��ω | y ∈ Γ∗}×{0, 1, 2, . . . , n+1}×ω. Intuitively, a configuration is

a global state giving a snapshot of all relevant information about a Turing machine

computation at some instant in time. The configuration (p, z, i, j) specifies a current

state p of the finite control, current worktape contents z, and current positions i, j of

the input and worktape heads, respectively. We denote configurations by α, β, γ, . . . .

The start configuration on input x ∈ Σ∗ is the configuration

(s, ���ω, 0, 0).

The last two components 0,0 mean that the machine is initially scanning the left

endmarkers � on its two tapes.

We define a binary relation
1−→

M,x
on configurations, called the next configuration

relation, as follows. For a string z ∈ Γω, let zj be the jth symbol of z (the leftmost

symbol is z0), and let z[j/b] denote the string obtained by replacing zj by b in z.

For example,

� b a a a c a b c a · · · [4/b] = � b a a b c a b c a · · ·
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Let x0 = � and xn+1 = �. The relation
1−→

M,x
is defined by:

(p, z, i, j)
1−→

M,x
(q, z[j/b], i+ d, j + e)

def⇐⇒ δ(p, xi, zj) = (q, b, d, e).

Intuitively, if the worktape contains z and if M is in state p scanning the ith cell

of the input tape and the jth cell of the worktape, and δ says that in that case M

should print b on the worktape, move the input head in direction d (either −1, 0,
or 1), move the worktape head in direction e, and enter state q, then immediately

after that step the worktape will contain z[j/b], the input head will be scanning

the i + dth cell of the input tape, the worktape head will be scanning the j + eth

cell of the worktape, and the new state will be q.

We define the relation
∗−→

M,x
to be the reflexive transitive closure of

1−→
M,x

. In other

words,

• α 0−→
M,x

α

• α n+1−→
M,x

β if α
n−→
M,x

γ
1−→

M,x
β for some γ

• α ∗−→
M,x

β if α
n−→
M,x

β for some n ≥ 0.

The machine M is said to accept input x ∈ Σ∗ if

(s,� ��ω, 0, 0) ∗−→
M,x

(t, y, i, j)

for some y, i, and j, and to reject x if

(s,� ��ω, 0, 0) ∗−→
M,x

(r, y, i, j)

for some y, i, and j. It is said to halt on input x if it either accepts x or rejects x.

Note that it may do neither, but run infinitely on input x without ever accepting or

rejecting. In that case it is said to loop on input x. A Turing machine M is said to

be total if it halts on all inputs. The set L(M) denotes the set of strings accepted

by M .

A set of strings is called recursively enumerable (r.e.) if it is L(M) for some

Turing machine M , and recursive if it is L(M) for some total Turing machine M .

Example 2.1: Here is a total Turing machine that accepts the set {anbncn | n ≥
1}. Informally, the machine starts in its start state s, then scans to the right over

the input string, writing an A on its worktape for every a it sees on the input
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tape. When it sees the first symbol that is not an a on the input tape, it starts to

move its worktape head to the left over the A’s it has written, and continues to

move its input head to the right, checking that the number of A’s written on the

worktape is equal to the number of b’s occurring after the a’s. It checks that it sees

the left endmarker � on the worktape at the same time that it sees the first non-b

on the input tape. It then continues to scan the input tape, meanwhile moving its

worktape head to the right again, checking that the number of c’s on the input tape

is the same as the number of A’s on the worktape. It accepts if it sees the right

endmarker � on the input tape at the same time as it sees the first blank symbol ��
on the worktape.

Formally, this machine has

Q = {s, q1, q2, q3, t, r}
Σ = {a, b, c}
Γ = {A,�, ��}.

The start state, accept state, and reject state are s, t, r, respectively. The left and

right endmarkers and blank symbol are �,�, ��, respectively. The transition function

δ is given by

δ(s,�,�) = (q1,�, 1, 1) δ(q2, c, A) = (r,−,−,−)
δ(q1, a, ��) = (q1, A, 1, 1) δ(q2, c,�) = (q3,�, 0, 1)
δ(q1, b, ��) = (q2, ��, 0,−1) δ(q3, a,−) = (r,−,−,−)
δ(q1, c, ��) = (r,−,−,−) δ(q3, b,−) = (r,−,−,−)
δ(q1,�, ��) = (r,−,−,−) δ(q3, c, A) = (q3, A, 1, 1)

δ(q2, a,−) = (r,−,−,−) δ(q3, c, ��) = (r,−,−,−)
δ(q2, b, A) = (q2, A, 1,−1) δ(q3,�, A) = (r,−,−,−)
δ(q2, b,�) = (r,−,−,−) δ(q3,�, ��) = (t,−,−,−).

The symbol − above means “don’t care.” Any legal value may be substituted for

− without affecting the behavior of the machine. Also, transitions that can never

occur (for example, δ(q1, a, A)) are omitted.

Two Stacks

A machine with a read-only input head and two stacks is as powerful as a Turing

machine. Intuitively, the worktape of a Turing machine can be simulated with two

stacks by storing the tape contents to the left of the head on one stack and the

tape contents to the right of the head on the other stack. The motion of the head
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is simulated by popping a symbol off one stack and pushing it onto the other. For

example,

� a b a a b a b b b b b b b a a a b · · ·
�

is simulated by

� a b a a b a b b b

�

stack 1

b b b b a a a b �
�

stack 2

Counter Machines

A k-counter machine is a machine equipped with a two-way read-only input head

and k integer counters, each of which can store an arbitrary nonnegative integer. In

each step, the machine can test each counter for 0, and based on this information,

the input symbol it is currently scanning, and its current state, it can increment or

decrement its counters, move its input head one cell in either direction, and enter

a new state.

A stack can be simulated with two counters as follows. We can assume without

loss of generality that the stack alphabet of the stack to be simulated contains only

two symbols, say 0 and 1. This is because we can encode each stack symbol as a

binary number of some fixed length k, roughly the base 2 logarithm of the size of

the stack alphabet; then pushing or popping one symbol is simulated by pushing

or popping k binary digits. The contents of the stack can thus be regarded as a

binary number whose least significant bit is on top of the stack. We maintain this

binary number in the first of the two counters, and use the second to effect the

stack operations. To simulate pushing a 0 onto the stack, we need to double the

value in the first counter. This is done by entering a loop that repeatedly subtracts

one from the first counter and adds two to the second until the first counter is 0.

The value in the second counter is then twice the original value in the first counter.

We can then transfer that value back to the first counter (or just switch the roles

of the two counters). To push 1, the operation is the same, except that the value

of the second counter is incremented once after doubling. To simulate popping, we

need to divide the counter value by 2; this is done in a similar fashion.
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Since a two-stack machine can simulate an arbitrary Turing machine, and since

two counters can simulate a stack, it follows that a four-counter machine can

simulate an arbitrary Turing machine.

However, we can do even better: a two-counter machine can simulate a four-

counter machine. When the four-counter machine has the values i, j, k, � in its

counters, the two-counter machine will have the value 2i3j5k7� in its first counter. It

uses its second counter to effect the counter operations of the four-counter machine.

For example, if the four-counter machine wanted to increment k (the value of the

third counter), then the two-counter machine would have to multiply the value in

its first counter by 5. This is done in the same way as above, adding 5 to the second

counter for every 1 we subtract from the first counter. To simulate a test for zero,

the two-counter machine has to determine whether the value in its first counter is

divisible by 2, 3, 5, or 7, depending on which counter of the four-counter machine

is being tested.

Combining these simulations, we see that two-counter machines are as powerful

as arbitrary Turing machines (one-counter machines are strictly less powerful; see

Exercise 2.10). However, as one can imagine, it takes an enormous number of steps

of the two-counter machine to simulate one step of the Turing machine.

Nondeterministic Turing Machines

Nondeterministic Turing machines differ from deterministic Turing machines only

in that the transition relation δ is not necessarily single-valued. Formally, the type

of δ is now a relation

δ ⊆ (Q× (Σ ∪ {�,�})× Γ)× (Q× Γ× {−1, 0, 1}2).
Intuitively, ((p, a, b), (q, c, d, e)) ∈ δ means, “When in state p scanning symbols a

and b on the input and worktapes, respectively, one possible move is to write c

on that worktape cell, move the input and worktape heads in direction d and e,

respectively, and enter state q.” Since there may now be several pairs in δ with the

same left-hand side (p, a, b), the next transition is not uniquely determined.

The next configuration relation
1−→

M,x
on input x and its reflexive transitive closure

∗−→
M,x

are defined exactly as with deterministic machines. A nondeterministic Turing

machine M is said to accept its input x if

(s,� ��ω, 0, 0) ∗−→
M,x

(t, y, i, j)

for some y, i, and j; that is, if there exists a computation path from the start
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configuration to an accept configuration. The main difference here is that the next

configuration is not necessarily uniquely determined.

Nondeterministic algorithms are often described in terms of a “guess and verify”

paradigm. This is a good way to think of nondeterministic computation informally.

The machine guesses which transition to take whenever there is a choice, then

checks at the end whether its sequence of guesses was correct, rejecting if not and

accepting if so.

For example, to accept the set of (encodings over Σ∗ of) satisfiable proposi-

tional formulas, a nondeterministic machine might guess a truth assignment to the

variables of the formula, then verify its guess by evaluating the formula on that

assignment, accepting if the guessed assignment satisfies the formula and rejecting

if not. Each guess is a binary choice of a truth value to assign to one of the vari-

ables. This would be represented formally as a configuration with two successor

configurations.

Although next configurations are not uniquely determined, the set of possible

next configurations is. Thus there is a uniquely determined tree of possible com-

putation sequences on any input x. The nodes of the tree are configurations, the

root is the start configuration on input x, and the edges are the next configuration

relation
1−→

M,x
. This tree contains an accept configuration iff the machine accepts x.

The tree might also contain a reject configuration, and might also have looping

computations; that is, infinite paths that neither accept nor reject. However, as

long as there is at least one path that leads to acceptance, the machine is said to

accept x.

Alternating Turing Machines

Another useful way to think of a nondeterministic Turing machine is as a kind

of parallel machine consisting of a potentially unbounded number of processes

which can spawn new subprocesses at branch points in the computation tree.

Intuitively, we associate a process with each configuration in the tree. As long as the

next configuration is uniquely determined, the process computes like an ordinary

deterministic machine. When a branch point is encountered, say a configuration

with two possible next configurations, the process spawns two subprocesses and

assigns one to each next configuration. It then suspends, waiting for reports from

its subprocesses. If a process enters the accept state, it reports success to its parent

process and terminates. If a process enters the reject state, it reports failure to

its parent and terminates. A suspended process, after receiving a report of success

from at least one of its subprocesses, reports success to its parent and terminates.
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If a suspended process receives a report of failure from all its subprocesses, it

reports failure to its parent and terminates. Of course, it is possible that neither of

these things happens. The machine accepts the input if the root process receives

a success report. There is no explicit formal mechanism for reporting success or

failure, suspending, or terminating.

Now we extend this idea to allow machines to test whether all subprocesses

lead to success as well as whether some subprocess lead to success. Intuitively,

each branch point in the computation tree is either an or-branch or an and-branch,

depending on the state. The or-branches are handled as described above. The and-

branches are just the same, except that a process suspended at an and-branch

reports success to its parent iff all of its subprocesses report success, and reports

failure to its parent iff at least one of its subprocesses reports failure.

Machines with this capability are called alternating Turing machines in refer-

ence to the alternation of and- and or-branches. They are useful in analyzing the

complexity of problems with a natural alternating and/or structure, such as games

or logical theories.

Formally, an alternating Turing machine is just like a nondeterministic machine,

except we include an additional function g : Q→ {∧,∨} associating either ∧ (and)

or ∨ (or) with each state. A configuration (q, y,m, n) is called an and-configuration

if g(q) = ∧ and an or-configuration if g(q) = ∨. The machine is said to accept input

x if the computation tree on input x has a finite accepting subtree, which is a finite

subtree T containing the root such that every node c of T is either

• an accept configuration (that is, a configuration whose state is the accept state);

• an or-configuration with at least one successor in T ;

• an and-configuration with all successors in T .

In fact, we can dispense with the accept and reject states entirely by defining

an accept configuration to be an and-configuration with no successors and a reject

configuration to be an or-configuration with no successors. For accept configurations

so defined, the condition “all successors in T ” is vacuously satisfied.

Alternating machines are no more powerful than ordinary deterministic Turing

machines, since an ordinary Turing machine can construct the computation tree of

an alternating machine in a breadth-first fashion and check for the existence of a

finite accepting subtree.
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Alternating Machines with Negation

Alternating machines can also be augmented to allow not-states as well as and- and

or-states. Perhaps contrary to expectation, these machines are no more powerful

than ordinary Turing machines in terms of the sets they accept.

The formal definition of alternating machines with negation requires a bit of

extra work. Here the function g is of type Q → {∧,∨,¬} and associates either

∧ (and), ∨ (or), or ¬ (not) with each state. If g(q) = ∧ (respectively, ∨, ¬),
the state q is called an and-state (respectively, or-state, not-state) and the con-

figuration (q, y,m, n) is called an and-configuration (respectively, or-configuration,

not-configuration). A not-configuration is required to have exactly one successor.

We also dispense with the accept and reject states, defining an accept configuration

to be an and-configuration with no successors and a reject configuration to be an

or-configuration with no successors.

Acceptance is defined formally in terms of a certain labeling �∗ of configurations
with 1 (true), 0 (false), or ⊥ (undefined). This labeling is defined as the �-least
solution � of the equation

�(c)
def
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∧{�(d) | c 1−→
M,x

d}, if g(c) = ∧,∨{�(d) | c 1−→
M,x

d}, if g(c) = ∨,
¬�(d), if g(c) = ¬ and c

1−→
M,x

d,

where � is the order defined by

⊥

0 1

�
�

�
�

i.e., ⊥ � ⊥ � 0 � 0 and ⊥ � 1 � 1, and

� � �′ def⇐⇒ ∀c �(c) � �′(c),

and ∧, ∨, and ¬ are computed on {0,⊥,1} according to the following tables:

∧ : 0 ⊥ 1

0 0 0 0

⊥ 0 ⊥ ⊥
1 0 ⊥ 1

∨ : 0 ⊥ 1

0 0 ⊥ 1

⊥ ⊥ ⊥ 1

1 1 1 1

¬ :

0 1

⊥ ⊥
1 0

In other words, ∧ gives the greatest lower bound and ∨ gives the least upper bound

MIT Press Math7X9/2010/08/25:15:15 Page 36



Computability and Complexity 37

in the order 0 ≤ ⊥ ≤ 1, and ¬ inverts the order.

The labeling �∗ can be computed as the �-least fixpoint of the monotone map

τ : {labelings} → {labelings}, where

τ(�)(c)
def
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∧{�(d) | c 1−→
M,x

d}, if g(c) = ∧,∨{�(d) | c 1−→
M,x

d}, if g(c) = ∨,
¬�(d), if g(c) = ¬ and c

1−→
M,x

d,

as provided by the Knaster–Tarski theorem (Section 1.7).

Universal Turing Machines and Undecidability

An important observation about Turing machines is that they can be uniformly

simulated . By this we mean that there exist a special Turing machine U and a

coding scheme that codes a complete description of each Turing machine M as a

finite string xM in such a way that U , given any such encoding xM and a string y,

can simulate the machine M on input y, accepting iff M accepts y. The machine U

is called a universal Turing machine. Nowadays this is perhaps not so surprising,

since we can easily imagine writing a Scheme interpreter in Scheme or a C compiler

in C, but it was quite an advance when it was first observed by Turing in the

1930s; it led to the notion of the stored-program computer , the basic architectural

paradigm underlying the design of all modern general-purpose computers today.

Undecidability of the Halting Problem

Recall that a set is recursively enumerable (r.e.) if it is L(M) for some Turing

machine M and recursive if it is L(M) for some total Turing machine M (one that

halts on all inputs, i.e., either accepts or rejects). A property ϕ is decidable (or

recursive) if the set {x | ϕ(x)} is recursive, undecidable if not.

Two classical examples of undecidable problems are the halting problem and

the membership problem for Turing machines. Define

HP
def
= {(xM , y) |M halts on input y}

MP
def
= {(xM , y) |M accepts input y}.

These sets are r.e. but not recursive; in other words, it is undecidable for a given

Turing machine M and input y whether M halts on y or whether M accepts y.

Proposition 2.2: The set HP is r.e. but not recursive.
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Proof The set MP is r.e., because it is the set accepted by the universal Turing

machine U . The set HP is r.e. as well, because a Turing machine can be constructed

that on input (xM , y) simulatesM on input y using U , accepting ifM either accepts

or rejects y.

We show by contradiction that HP is not recursive. This argument is called a

diagonalization argument and was first used by Cantor to show that the power set

of a set A cannot be put in one-to-one correspondence with A. The reader will also

probably notice the similarity to Russell’s paradox (1.2.3).

Suppose for a contradiction that HP were recursive. Then there would be a total

Turing machineK that decides for a given (xM , y) whetherM halts on y. Construct

a Turing machine N that on input x interprets x as xM , then determines whether

M halts on input xM by running K on (xM , xM ). The machine K is total, so it

either halts and accepts if M halts on input xM or halts and rejects if M does

not halt on input xM . If K rejects, make N halt immediately. If K accepts, make

N enter an infinite loop. Thus N halts on input xM iff K rejects (xM , xM ) iff M

does not halt on input xM . Now consider what happens when N is run on its own

description xN . By our construction, N halts on xN iff N does not halt on xN .

This is a contradiction.

We will show by a different technique that the same proposition holds of MP

(Example 2.14).

Most interesting questions about Turing machines turn out to be undecidable.

For example, it is undecidable whether a givenM accepts any string at all, whether

M accepts a finite set, or whetherM accepts a recursive set. In fact, every nontrivial

property of r.e. sets is undecidable (Exercise 2.4).

2.2 Complexity Classes

By restricting the amount of time or space a Turing machine can use, we obtain

various complexity classes. Most of these definitions are fairly robust in the sense

that they are impervious to minor changes in the model, but extra care must be

taken at lower levels of complexity.

Time and Space Complexity

Let f : N → N be a function. A (deterministic, nondeterministic, or alternating)

Turing machine M is said to run in time f(n) if for all sufficiently large n, all

computation paths starting from the start configuration on any input of length n

are of length at most f(n). It is said to run in space f(n) if for all sufficiently large
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n, all configurations reachable from the start configuration on any input of length

n use at most f(n) worktape cells.

The machine M is said to run in time (respectively, space) O(f(n)) if it runs

in time (respectively, space) cf(n) for some constant c independent of n.

The machineM is said to run in logarithmic space if it runs in space logn, where

log denotes logarithm to the base 2. It is said to run in polynomial time if it runs

in time nO(1); that is, if it runs in time nk for some constant k independent of n. It

is said to run in exponential time if it runs in time 2n
O(1)

; that is, if it runs in time

2n
k

for some constant k independent of n. It is said to run in double-exponential

time if it runs in time 22
nO(1)

. It is said to run in k-fold exponential time if it runs

in time 2 ↑k nO(1), where

2 ↑0 n def
= n

2 ↑k+1 n
def
= 22↑kn.

The corresponding space complexity bounds are defined analogously.

There is some disagreement in the literature as to the meaning of exponential

time. It is often taken to mean time 2O(n) instead of 2n
O(1)

. We will use the latter

definition, since it fits in better with results relating the complexity of deterministic

and alternating Turing machines. However, in situations in which we can derive the

stronger upper bound 2O(n), we will do so and mention the bound explicitly.

The class DTIME (f(n)) (respectively, NTIME (f(n)), ATIME (f(n))) is the

family of all sets L(M) for deterministic (respectively, nondeterministic, alter-

nating) Turing machines M running in time f(n). The space complexity classes

DSPACE(f(n)), NSPACE(f(n)), and ASPACE (f(n)) are defined similarly. We

write DTIME (nO(1)) for
⋃
k≥0 DTIME (nk), etc. A few common complexity classes

have special notation:

LOGSPACE
def
= DSPACE (logn)

NLOGSPACE
def
= NSPACE (logn)

ALOGSPACE
def
= ASPACE (logn)

PTIME
def
= DTIME (nO(1))

NPTIME
def
= NTIME (nO(1))

APTIME
def
= ATIME (nO(1))

PSPACE
def
= DSPACE(nO(1))

NPSPACE
def
= NSPACE (nO(1))
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APSPACE
def
= ASPACE (nO(1))

EXPTIME
def
= DTIME (2n

O(1)

)

NEXPTIME
def
= NTIME (2n

O(1)

)

AEXPTIME
def
= ATIME (2n

O(1)

)

EXPSPACE
def
= DSPACE (2n

O(1)

)

NEXPSPACE
def
= NSPACE (2n

O(1)

)

AEXPSPACE
def
= ASPACE (2n

O(1)

).

These are the classes of all sets computable in, respectively: deterministic, nonde-

terministic, and alternating logarithmic space; deterministic, nondeterministic, and

alternating polynomial time; deterministic, nondeterministic, and alternating poly-

nomial space; deterministic, nondeterministic, and alternating exponential time;

and deterministic, nondeterministic, and alternating exponential space.

The classes PTIME and NPTIME are more commonly known as P and NP ,

respectively.

A remarkable fact is that the following relationships hold among the determin-

istic and alternating complexity classes:

PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE ⊆ · · ·

= = = =

ALOGSPACE ⊆ APTIME ⊆ APSPACE ⊆ AEXPTIME ⊆ · · ·
That is, the hierarchy of logarithmic space, polynomial time, polynomial space,

exponential time, exponential space, double-exponential time, double-exponential

space, etc. shifts by exactly one level when going from determinism to alternation.

One of the most important open problems in computational complexity is

whether P = NP . Many important combinatorial optimization problems can

be solved in nondeterministic polynomial time by a “guess and verify” method.

Figuring out how to solve these problems efficiently without the guessing would

have significant impact in real-world applications.

Oracle Machines and Relative Computability

It is sometimes useful to talk about computability relative to a given set B. The

set B itself may not be computable, but we may be interested in what we could

compute if we were given the power to test membership in B for free. One way

to capture this idea formally is by oracle Turing machines. Another way will be

discussed in Section 2.3.
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An oracle Turing machineM [·] is like an ordinary deterministic Turing machine,

except that it has three distinguished states, the query state, the yes state, and the

no state, a finite oracle alphabet Δ, and a write-only tape called the oracle query

tape on which the machine can write a string in Δ∗.
The machine can be equipped with an oracle B ⊆ Δ∗, in which case we denote

it byM [B]. This machine operates as follows. On input x ∈ Σ∗,M [B] computes like

an ordinary deterministic Turing machine, except that periodically it may decide to

write a symbol on its oracle query tape. When it does so, the tape head is advanced

one cell to the right. At some point, perhaps after writing several symbols on the

oracle query tape, the machine may decide to enter its query state. When that

happens, it automatically and immediately enters the yes state if y ∈ B and the

no state if y 
∈ B, where y is the string currently written on the oracle query

tape. The oracle query tape is then automatically erased and the oracle query

tape head returned to the left end of the tape. The contents of the worktape and

the positions of the input and worktape heads are not altered. The machine then

continues processing from that point. If the machine ever halts and accepts, then

x ∈ L(M [B]). Note that the behavior of M [B] may depend heavily on the oracle

B.

An alternative formalism for oracle machines givesM [B] an extra semi-infinite,

two-way, read-only tape on which is written the characteristic function of B, where

the elements of B are ordered in some reasonable way, perhaps lexicographically.

If the machine wishes to know whether y ∈ B, it can scan out to the appropriate

position on the tape containing the bit corresponding to y. The ordering on Δ∗
should be sufficiently nice that this position is easily computable from y.

A set A is said to be r.e. in B if there is an oracle Turing machine M [·] such
that A = L(M [B]); co-r.e. in B if ∼A is r.e. in B; and recursive in B if there is an

oracle Turing machine M [·] such that A = L(M [B]) and M [B] is total (halts on all

inputs). Again, whether or not M [B] is total may depend heavily on the oracle B.

Lemma 2.3: If A is r.e. in B, then so are the sets

{z1#z2# · · ·#zn |
n∧
i=1

zi ∈ A}

{z1#z2# · · ·#zn |
n∨
i=1

zi ∈ A}.

Proof Exercise 2.1.
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Recursive and R.E. Sets

In this section we state some basic facts about recursive and recursively enumerable

(r.e.) sets that we will need in subsequent chapters. Recall that a set is r.e. if it is

L(M) for some Turing machineM and recursive if it is L(M) for some total Turing

machine M (one that halts on all inputs, i.e., either accepts or rejects). Define a

set to be co-r.e. if its complement is r.e. A property ϕ is decidable (or recursive) if

the set {x | ϕ(x)} is recursive, undecidable if not.

Proposition 2.4: A set is recursive iff it is both r.e. and co-r.e.

Proof If A is recursive, then a Turing machine accepting its complement ∼A can

be obtained by reversing the accept and reject states of a total Turing machine for

A. Conversely, if both A and ∼A are r.e., then a total Turing machine for A can

be obtained by simulating a machine for A and a machine for ∼A in parallel in a

time-sharing fashion, accepting the input if the machine for A accepts and rejecting

if the machine for ∼A accepts; exactly one of those two events must occur.

Here is another useful characterization of the r.e. sets:

Proposition 2.5: A set A is r.e. if and only if there exists a decidable dyadic

predicate ϕ such that

A = {x | ∃y ϕ(x, y)}.

Proof If A has such a representation, then we can construct a Turing machine M

for A that enumerates all y in some order, and for each one tests whether ϕ(x, y),

accepting if such a witness y is ever found. Conversely, if A is r.e., say A = L(M),

then we can take the recursive predicate ϕ(x, y) to be “M accepts x in y steps.”

This predicate is decidable, since its truth can be determined by running M on x

for y steps.

The Arithmetic Hierarchy

Propositions 2.4 and 2.5 are special cases of a more general relationship. Consider

the following hierarchy of classes of sets, defined inductively as follows.

Recall from Section 2.2 that a set A is r.e. in B if there is an oracle Turing

machine M [·] such that A = L(M [B]), co-r.e. in B if there is an oracle Turing

machine M [·] such that A =∼L(M [B]), and recursive in B if there is an oracle
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Turing machineM [·] such that A = L(M [B]) andM [B] halts on all inputs. Consider

the following inductively defined hierarchy:

Σ0
1

def
= {A | A is r.e.}

Π0
1

def
= {A | A is co-r.e.}

Δ0
1

def
= {A | A is recursive}

Σ0
n+1

def
= {A | A is r.e. in B for some B ∈ Σ0

n}
= {A | A is r.e. in B for some B ∈ Π0

n}
Π0
n+1

def
= {A | A is co-r.e. in B for some B ∈ Σ0

n}
= {A | A is co-r.e. in B for some B ∈ Π0

n}
Δ0
n+1

def
= {A | A is recursive in B for some B ∈ Σ0

n}
= {A | A is recursive in B for some B ∈ Π0

n}.
The following two theorems generalize Propositions 2.4 and 2.5, respectively.

Theorem 2.6: For all n ≥ 0, Δ0
n = Σ0

n ∩ Π0
n.

Proof The proof is exactly like the proof of Proposition 2.4, except that all

computations are done in the presence of an oracle.

Theorem 2.7:

(i) A ∈ Σ0
n iff there exists a decidable (n + 1)-ary predicate ϕ(x, y1, . . . , yn) such

that

A = {x | ∃y1 ∀y2 ∃y3 . . . Qnyn ϕ(x, y1, . . . , yn)},
where Qi = ∃ if i is odd, ∀ if i is even.

(ii) A ∈ Π0
n iff there exists a decidable (n + 1)-ary predicate ϕ(x, y1, . . . , yn) such

that

A = {x | ∀y1 ∃y2 ∀y3 . . . Qnyn ϕ(x, y1, . . . , yn)},
where Qi = ∀ if i is odd, ∃ if i is even.

Proof We prove (i); statement (ii) follows from the fact that Π0
n is the class of all

complements of sets in Σ0
n.

We proceed by induction on n. The case n = 1 is given by Proposition 2.5. For
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n > 1, assume first that

A = {x | ∃y1 ∀y2 ∃y3 . . . Qnyn ϕ(x, y1, . . . , yn)}.
Let

B = {(x, y1) | ∀y2 ∃y3 . . . Qnyn ϕ(x, y1, . . . , yn)}.
By the induction hypothesis, B ∈ Π0

n−1, and

A = {x | ∃y1 (x, y1) ∈ B},
thus A is r.e. in B by an argument similar to that of Proposition 2.5.

Conversely, suppose A = L(M [B]) and B ∈ Π0
n−1. Then x ∈ A iff there exists

a valid computation history y describing the computation of M [B] on input x,

including oracle queries and their responses, and all the responses to the oracle

queries described in y are correct. Such a valid computation history might consist of

a sequence of consecutive descriptions of configurations of the machine, each such

configuration including a current state, tape contents, and tape head positions.

Under a reasonable encoding of all this information, it is easy to check whether

such a string obeys the rules of M [·]; the only thing that is not checked easily is

whether the results of the oracle queries (whether the machine enters the yes or the

no state) are correct.

By Lemma 2.3, for any fixed k, the sets

U = {z1#z2# · · ·#zk |
k∧
i=1

zi ∈ B}

V = {w1#w2# · · ·#wk |
k∧
i=1

wi 
∈ B}

are in Π0
n−1 and Σ0

n−1, respectively. By the induction hypothesis, membership in
U and V can be represented by predicates with n − 1 alternations of quantifiers
beginning with ∀ (respectively, ∃) over a recursive predicate. Then the condition
x ∈ A is equivalent to the statement:

There exists a valid computation history y ofM [B] on input x such that if z1, . . . , zn are the
strings that are queried of the oracle B in the computation of M [B] on input x for which
the response (as represented in the string y) is positive, and if w1, . . . , wm are the queries
for which the response is negative, then z1#z2# · · ·#zn ∈ U and w1#w2# · · ·#wm ∈ V .

By combining the representations of U and V and the recursive predicate “y is a

valid computation history of M [B] on input x,” we can obtain a representation
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of the predicate x ∈ A with n alternations of quantifiers beginning with ∃ over a

recursive predicate.

Kleene showed that the arithmetic hierarchy is strict: for all n ≥ 0,

Σ0
n ∪ Π0

n ⊂ Δ0
n+1,

and Σ0
n and Π0

n are incomparable with respect to set inclusion.

The Analytic Hierarchy

The arithmetic hierarchy relates to first-order number theory as the analytic

hierarchy relates to second-order number theory, in which quantification over sets

and functions is allowed. We will be primarily interested in the first level of this

hierarchy, in particular the class Π1
1 of relations over N definable with one universal

second-order quantifier. A remarkable theorem due to Kleene states that this is

exactly the class of relations over N definable by first-order induction. In this section

we will provide a computational characterization of the classes Π1
1 and Δ1

1 and

sketch a proof of Kleene’s theorem.

Definitions of Π1
1 and Δ1

1

The class Π1
1 is the class of all relations on N that can be defined by a prenex

universal second-order number-theoretic formula. Here prenex means all quantifiers

appear at the front of the formula and universal means only universal quantification

over functions is allowed. Using various transformation rules to be discussed later

in Section 3.4, we can assume every such formula is of the form

∀f ∃y ϕ(x, y, f),
where ϕ is quantifier free (Exercise 3.33). This formula defines the n-ary relation

{a ∈ Nn | ∀f ∃y ϕ(a, y, f)}.
The class Δ1

1 is the class of all relations on N that are Π1
1 and whose complements

are Π1
1.

The Programming Language IND

We take a rather unusual approach to the subject of first-order inductive definabil-

ity: we introduce a programming language IND and use it to define the inductive

and hyperarithmetic sets and the recursive ordinals. This turns out to be equivalent

to more conventional approaches (see for example Moschovakis (1974)), but has a
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decidedly more computational flavor. Keep in mind that the relations “computed”

by IND programs can be highly noncomputable.

An IND program consists of a finite sequence of labeled statements. Each

statement is of one of three forms:

• assignment: � : x := ∃ � : y := ∀
• conditional jump: � : if R(t) then go to �′

• halt statement: � : accept � : reject.

The semantics of programs is very much like alternating Turing machines, except

that the branching is infinite. The execution of an assignment statement causes

countably many subprocesses to be spawned, each assigning a different element of

N to the variable. If the statement is x := ∃, the branching is existential; if it is

y := ∀, the branching is universal. The conditional jump tests the atomic formula

R(t), and if true, jumps to the indicated label. The accept and reject commands

halt and pass a Boolean value back up to the parent. Computation proceeds as

in alternating Turing machines: the input is an initial assignment to the program

variables; execution of statements causes a countably branching computation tree to

be generated downward, and Boolean accept (1) or reject (0) values are passed back

up the tree, a Boolean ∨ being computed at each existential node and a Boolean ∧
being computed at each universal node. The program is said to accept the input if

the root of the computation tree ever becomes labeled with the Boolean value 1 on

that input; it is said to reject the input if the root ever becomes labeled with the

Boolean value 0 on that input; and it is said to halt on an input if it either accepts

or rejects that input. An IND program that halts on all inputs is said to be total.

These notions are completely analogous to alternating Turing machines, so we

forego the formalities in favor of some revealing examples.

First, we show how to simulate a few other useful programming constructs with

those listed above. An unconditional jump

goto �

is simulated by the statement

if x = x then go to �

More complicated forms of conditional branching can be effected by manipula-

tion of control flow. For example, the statement

if R(t) then reject else �
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is simulated by the program segment

if R(t) then go to �′

goto �

�′: reject

A simple assignment is effected by guessing and verifying:

x := y + 1

is simulated by

x := ∃
if x 
= y + 1 then reject

The process spawns infinitely many subprocesses, all but one of which immediately

reject!

Example 2.8: Any first-order relation is definable by a loop-free program. For

example, the set of natural numbers x such that

∃y ∀z ∃w x ≤ y ∧ x+ z ≤ w

is defined by the program

y := ∃
z := ∀
w := ∃
if x > y then reject

if x+ z ≤ w then accept

reject

The converse is true too: any loop-free program defines a first-order relation.

However, IND can also define inductively definable relations that are not first-

order.

Example 2.9: The reflexive transitive closure of a relation R is definable by

the following program, which takes its input in the variables x, z and accepts if

(x, z) ∈ R∗:
�: if x = z then accept

y := ∃
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if ¬R(x, y) then reject

x := y

go to �

Example 2.10: A two-person perfect information game consists of a binary

relation move on a set of boards. The two players alternate. If the current board

is x and it is player I’s turn, player I chooses y such that move(x, y); then player

II chooses z such that move(y, z); and so on. A player wins by checkmate, i.e., by

forcing the opponent into a position from which there is no legal next move. Thus

a checkmate position is a board y such that ∀z ¬move(y, z).

We would like to know for a given board x whether the player whose turn it is

has a forced win from x. Ordinarily this might be defined as the least solution win

of the recursive equation

win(x) ⇐⇒ ∃y (move(x, y) ∧ ∀z move(y, z)→ win(z)).

The base case involving an immediate win by checkmate is included: if y is a

checkmate position, then the subformula ∀zmove(y, z)→ win(z) is vacuously true.

The least solution to this recursive equation is the least fixpoint of the monotone

map τ defined by

τ(R)
def⇐⇒ {x | ∃y move(x, y) ∧ ∀z move(y, z)→ R(z)}

(see Section 1.7). We can express win(x) with an IND program as follows:

�: y := ∃
if ¬move(x, y) then reject

x := ∀
if ¬move(y, x) then accept

go to �

Example 2.11: Our last example involves well-founded relations. As observed

in Section 1.3, induction and well-foundedness go hand in hand. Here is an IND

program that tests whether a strict partial order < is well-founded:

x := ∀
�: y := ∀

if ¬y < x then accept

x := y

go to �
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This program halts and accepts if all descending chains are finite (see Exercise

1.15).

Any property that is expressed as a least fixpoint of a monotone map defined

by a positive first-order formula can be computed by an IND program. Here is what

we mean by this. Let R be an n-ary relation symbol, and let ϕ(x,R) be a first-order

formula with free individual variables x = x1, . . . , xn and free relation variable R.

Assume further that all free occurrences of R in ϕ are positive; that is, they occur

in the scope of an even number of negation symbols ¬. For any n-ary relation B,

define

τ(B) = {a | ϕ(a,B)}.
That is, we think of ϕ as representing a set operator τ mapping a set of n-tuples B to

another set of n-tuples {a | ϕ(a,B)}. One can show that the positivity assumption

implies that the set operator τ is monotone, therefore it has a least fixpoint Fϕ,

which is an n-ary relation (see Section 1.7). The traditional treatment of inductive

definability defines a first-order inductive relation as a projection of such a fixpoint;

that is, a relation of the form

{a1, . . . , am | Fϕ(a1, . . . , am, bm+1, . . . , bn)},
where bm+1, . . . , bn are fixed elements of the structure. Given the formula ϕ and the

elements bm+1, . . . , bn, one can construct an IND program that assigns bm+1, . . . , bn
to the variables xm+1, . . . , xn, then checks whether the values of x1, . . . , xn satisfy

Fϕ by decomposing the formula top-down, executing existential assignments at

existential quantifiers, executing universal assignments at universal quantifiers,

using control flow for the propositional connectives, using conditional tests for the

atomic formulas, and looping back to the top of the program at occurrences of

the inductive variable R. The examples above involving reflexive transitive closure,

games, and well-foundedness illustrate this process.

Conversely, any relation computed by an IND program is inductive in the tra-

ditional sense, essentially because the definition of acceptance for IND programs

involves the least fixpoint of an inductively defined set of labelings of the compu-

tation tree.

Inductive and Hyperelementary Relations

Many of the sample IND programs of the previous section make sense when

interpreted over any structure, not just N. We define the inductive relations of any
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structure A to be those relations computable by IND programs over A. We define

the hyperelementary relations of A to be those relations computable by total IND

programs over A, i.e., programs that halt on all inputs. Note that every first-order

relation is hyperelementary, since it is computed by a loop-free program.

One can show that a relation over A is hyperelementary iff it is both inductive

and coinductive. If there is an IND program that accepts R and another IND

program that accepts ∼R, then one can construct a total IND program that runs

the two other programs in parallel, much as in the proof of Proposition 2.4.

Now we restrict our attention to the structure of arithmetic N. Over this

structure, the hyperelementary relations are sometimes called the hyperarithmetic

relations .

Recursive Trees, Recursive Ordinals, and ωck
1

An ordinal α is countable if there exists a one-to-one function f : α → ω. The

ordinals ω · 2 and ω2, although greater than ω, are still countable. The smallest

uncountable ordinal is called ω1.

Traditionally, a recursive ordinal is defined as one for which there exists a

computable one-to-one function from it to ω under some suitable encoding of

ordinals and notion of computability (see Rogers (1967)). The smallest nonrecursive

ordinal is called ωck
1 . It is a countable ordinal, but it looks uncountable to any

computable function.

We will define recursive ordinals in terms of inductive labelings of recursive

trees. For the purposes of this chapter, a tree is a nonempty prefix-closed subset of

ω∗. In other words, it is a set T of finite-length strings of natural numbers such

that

• ε ∈ T ;
• if xy ∈ T then x ∈ T .

A path in T is a maximal subset of T linearly ordered by the prefix relation. The

tree T is well-founded if it has no infinite paths; equivalently, if the converse of the

prefix relation is a well-founded relation on T . A leaf is an element of T that is not

a prefix of any other element of T .

Given a well-founded tree T , we define a labeling ord : T → Ord inductively as

follows:

ord(x)
def
= ( sup

n∈ω
xn∈T

ord(xn)) + 1.
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Thus ord(x) = 1 if x is a leaf; otherwise, ord(x) is determined by first determining

ord(xn) for all xn ∈ T , then taking the supremum and adding 1.

For example, consider the tree consisting of ε and all sequences of the form

(n, 0, 0, . . . , 0︸ ︷︷ ︸
m

) for n ≥ 0 and m ≤ n. The leaves are labeled 1 by ord, the next

elements above the leaves are labeled 2, and so on. The root ε is labeled ω + 1.
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For a well-founded tree T , let ord(T ) be the ordinal assigned to the root of T . Every

ord(T ) is a countable ordinal, and supT ord(T ) = ω1.

Now define an ordinal to be recursive if it is ord(T ) for some recursive tree

T ; that is, a tree such that the set T , suitably encoded, is a recursive set. The

supremum of the recursive ordinals is ωck
1 .

An alternative definition of recursive ordinals is the set of all running times of

IND programs. The running time of an IND program on some input is the time

it takes to label the root of the computation tree with 1 or 0. This is the closure

ordinal of the inductive definition of labelings of the computation tree in the formal

definition of acceptance. It is very similar to the definition of the labelings ord

of recursive trees. The ordinal ωck
1 is the supremum of all running times of IND

programs.

Kleene’s Theorem

Theorem 2.12 (Kleene): Over N, the inductive relations and the Π1
1 relations

coincide, and the hyperelementary and Δ1
1 relations coincide.

Proof sketch. First we show that every inductive relation is Π1
1. This direction

holds in any structure A, not just N. Let ϕ(x,R) be a positive first-order formula

with fixpoint Fϕ ⊆ An, where A is the carrier of A. We can describe Fϕ as the
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intersection of all relations closed under ϕ:

Fϕ(x) ⇐⇒ ∀R (∀y ϕ(y,R)→ R(y))→ R(x).

This is a Π1
1 formula.

Conversely, consider any Π1
1 formula over N. As mentioned earlier, we can

assume without loss of generality that the formula is of the form

∀f ∃y ϕ(x, y, f), (2.2.1)

where f ranges over functions ω → ω, y ranges over ω, and ϕ is quantifier free

(Exercise 3.33).

Regarding a function f : ω → ω as the infinite string of its values f(0),

f(1), f(2), . . ., the functions f are in one-to-one correspondence with paths in the

complete tree ω∗. Moreover, for any x and y, the truth of ϕ(x, y, f) is determined

by any finite prefix of this path that includes all arguments to f corresponding to

terms appearing in ϕ(x, y, f). Let f � n denote the finite prefix of f of length n. We

can think of f � n either as a string of natural numbers of length n or as a partial

function that agrees with f on domain {0, 1, . . . , n − 1}. Instead of (2.2.1) we can

write

∀f ∃y ∃n ϕ′(x, y, f � n), (2.2.2)

where ϕ′ is just ϕ modified slightly to evaluate to 0 (false) in case n is too small to

give enough information to determine whether ϕ(x, y, f). Note that if ϕ′(x, y, f � n),
then ϕ′(x, y, f � m) for all m ≥ n. This says that (2.2.2) is essentially a well-

foundedness condition: if we label the vertices f � n of the infinite tree with the

truth value of ∃y ϕ′(x, y, f � n), (2.2.2) says that along every path in the tree we

eventually encounter the value 1 (true). And as observed in Example 2.11, well-

foundedness is inductive.

We have shown that the inductive and Π1
1 relations over N coincide. Since the

hyperarithmetic relations are those that are both inductive and coinductive and

the Δ1
1 relations are those that are both Π1

1 and Σ1
1, the hyperarithmetic and Δ1

1

relations coincide as well.

Inductive is Existential over Hyperelementary

We have shown that over N, Π1
1 is exactly the family of sets accepted by IND

programs and Δ1
1 is the family of sets accepted by total IND programs. It is apparent

from this characterization that there is a strong analogy between the inductive and

the r.e. sets and between the hyperelementary and the recursive sets.
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It may seem odd that that the class analogous to Σ0
1 at the analytic level should

be Π1
1 and not Σ1

1. This is explained by a result analogous to Proposition 2.5.

Proposition 2.13: A set A ⊆ N is inductive iff there is a hyperelementary

relation ϕ such that

A = {x | ∃α < ωck
1 ϕ(x, α)}

= {x | ∃y y encodes a recursive ordinal and ϕ(x, y)}. (2.2.3)

Proof sketch. If ϕ is hyperelementary, then we can build an IND program for

(2.2.3) consisting of the statement y := ∃ followed by a program that in parallel

checks that the Turing machine with index y accepts a well-founded recursive tree

and that ϕ(x, y).

Conversely, if A is inductive, say accepted by an IND program p, then we can

describe A by an existential formula that says, “There exists a recursive ordinal α

such that p halts and accepts x in α steps.” More concretely, one would say, “There

exists a recursive well-founded tree T such that on input x, p halts and accepts

in ord(T ) steps.” The quantification is then over indices of Turing machines. The

predicate “p halts and accepts x in ord(T ) steps” is hyperelementary, since one

can construct an IND program that runs p together with a program q that simply

enumerates the tree T using existential branching, rejecting at the leaves. The

program q rejects all inputs, but takes ord(T ) steps to do it. If the simulations of

p and q are performed in parallel in a time-sharing fashion as in Theorem 2.4, one

step at a time in each turn, then it can be shown by induction on the computation

tree that the simulating machine will accept or reject depending on which of p or q

takes less (ordinal) time.

2.3 Reducibility and Completeness

Reducibility Relations

Reducibility is a common technique for comparing the complexity of different

problems. Given decision problems A ⊆ Σ∗ and B ⊆ Δ∗, a (many-one) reduction

of A to B is a total computable function

σ : Σ∗ → Δ∗
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such that for all x ∈ Σ∗,

x ∈ A ⇐⇒ σ(x) ∈ B. (2.3.1)

In other words, strings in A must go to strings in B under σ, and strings not in

A must go to strings not in B under σ. Intuitively, instances of the problem A

are coded by σ as instances of the problem B. We may not know how to decide

whether a given string x is in A or not, but we can apply σ to x to transform it

into an instance σ(x) of the problem B. Then a decision procedure for B would

immediately give a decision procedure for A by composing it with σ.�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
� ��
x σ(x)

� ��
y σ(y)

σ

σ

A B

Σ∗ Δ∗

The function σ need not be one-to-one or onto. It must, however, be total and

effectively computable; that is, computable by a total Turing machine that on any

input x halts with σ(x) written on its tape. When such a reduction exists, we say

that A is reducible to B via the map σ, and we write A ≤m B. The subscript m,

which stands for “many-one,” is used to distinguish this relation from other types

of reducibility relations.

In order to obtain an efficient decision procedure for A from an efficient decision

procedure for B, the reduction map σ must also be efficient. Many known reductions

in the literature turn out to be very efficient, usually linear time or logspace. We

write A ≤log
m B if the reduction map σ is computable in logspace and A ≤p

m B if

the reduction map σ is computable in polynomial time.

The reducibility relations ≤m, ≤log
m , and ≤p

m are transitive: if A ≤m B and

B ≤m C, then A ≤m C, and similarly for ≤log
m and ≤p

m. This is because if σ reduces

A to B and τ reduces B to C, then their composition σ ◦ τ reduces A to C. For

the relations ≤log
m and ≤p

m, we must show that the composition of polynomial-time
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computable functions is computable in polynomial time and the composition of

logspace computable functions is computable in logpspace. For logspace, this is not

immediate, since there is not enough space to write down an intermediate result;

but with a little cleverness it can be done (Exercise 2.7).

Example 2.14: One can reduce HP, the halting problem for Turing machines, to

the membership problem MP, the problem of determining whether a given Turing

machine accepts a given string (see Section 2.1). This is done by constructing from

a given description xM of a Turing machine M and string y a description xN of a

Turing machine N that accepts ε iff M halts on y. In this example,

A = HP
def
= {(xM , y) |M halts on input y},

B = MP
def
= {(xM , y) |M accepts input y}.

Given xM and y, let N be a Turing machine that on input z does the following:

(i) erases its input z;

(ii) writes y on its tape (y is hard-coded in the finite control of N);

(iii) runs M on y (the description xM of M is hard-coded in the finite control of

N);

(iv) accepts if the computation of M on y halts.

The machine N we have constructed accepts its input z iffM halts on y. Moreover,

its actions are independent of z, since it just ignores its input. Thus

L(N) =

{
Σ∗, if M halts on y,

∅, if M does not halt on y.

In particular,

N accepts ε ⇐⇒ M halts on y. (2.3.2)

We can take our reduction σ to be the computable map (xM , y) �→ (xN , ε). In this

example, σ is computable in polynomial time and even in logspace. The equation

(2.3.2) is just (2.3.1) in this particular case.

Here are some general results about reducibility relations that point out their

usefulness in comparing the computability and complexity of decision problems.
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Theorem 2.15:

(i) If A ≤m B and B is r.e., then so is A. Equivalently, if A ≤m B and A is not

r.e., then neither is B.

(ii) If A ≤m B and B is recursive, then so is A. Equivalently, if A ≤m B and A is

not recursive, then neither is B.

Proof (i) Suppose A ≤m B via the map σ and B is r.e. LetM be a Turing machine

such that B = L(M). Build a machine N for A as follows: on input x, first compute

σ(x), then run M on input σ(x), accepting if M accepts. Then

N accepts x ⇐⇒ M accepts σ(x) definition of N

⇐⇒ σ(x) ∈ B definition of M

⇐⇒ x ∈ A by (2.3.1).

(ii) Recall from Proposition 2.4 that a set is recursive iff both it and its

complement are r.e. Suppose A ≤m B via the map σ and B is recursive. Note

that ∼A ≤m∼B via the same σ. If B is recursive, then both B and ∼B are r.e. By

(i), both A and ∼A are r.e., thus A is recursive.

We can use Theorem 2.15(i) to show that certain sets are not r.e. and Theorem

2.15(ii) to show that certain sets are not recursive. To show that a set B is not r.e.,

we need only give a reduction from a set A we already know is not r.e., such as the

complement of the halting problem, to B. By Theorem 2.15(i), B cannot be r.e.

For example, the reduction of Example 2.14, in conjunction with Proposition 2.2,

shows that the membership problem MP is not decidable and that ∼MP is not r.e.

A similar theorem holds in the presence of complexity bounds.

Theorem 2.16:

(i) If A ≤p
m B and B is computable in polynomial time, then so is A. In other

words, the complexity class P is closed downward under ≤p
m.

(ii) If A ≤log
m B and B is computable in logspace, then so is A. In other words, the

complexity class LOGSPACE is closed downward under ≤log
m .

Proof Exercise 2.8.
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Completeness

A set B is said to be hard for a complexity class C with respect to a reducibility

relation ≤ (or just C-hard, if ≤ is understood) if A ≤ B for all A ∈ C. The set B is

said to be complete for C with respect to ≤ (or just C-complete) if it is hard for C

with respect to ≤ and if in addition B ∈ C.

Intuitively, if B is complete for C, then B is a “hardest” problem for the class

C in the sense that it is in C and encodes every other problem in C.

For example, the Boolean satisfiability problem—to determine, given a proposi-

tional formula, whether it is satisfiable—is NP-complete with respect to ≤log
m . This

is known as Cook’s theorem (see Hopcroft and Ullman (1979); Kozen (1991b)).

The following proposition points out the significance of these concepts.

Proposition 2.17: Let B and C be complexity classes, B ⊆ C. Suppose also

that B is closed downward under the reducibility relation ≤; that is, if A ≤ B and

B ∈ B, then A ∈ B. If a set B is C-complete with respect to ≤, then B ∈ B if and

only if B = C.

In other words, the question of whether the two complexity classes are equal

reduces to the question of whether the single problem B is in B. For example,

P = NP if and only if the Boolean satisfiability problem is in P .

Proof If B = C, then B ∈ B, since B ∈ C. Conversely, suppose B ∈ B. Since B is

C-hard, every element of C reduces to B; and since B is closed downward under ≤,
all those elements are in B. Thus C ⊆ B.

The complexity class coNP is the class of sets A ⊆ Σ∗ whose complements

∼A = Σ∗ −A are in NP . Usually NP -hardness and coNP -hardness are taken with

respect to the reducibility relation ≤p
m.

Proposition 2.18:

(i) A ≤p
m B iff ∼A ≤p

m∼B.

(ii) A is NP -hard iff ∼A is coNP -hard.

(iii) A is NP -complete iff ∼A is coNP -complete.

(iv) If A is NP -complete then A ∈ coNP iff NP = coNP .

It is unknown whether NP = coNP .
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Tiling Problems

In this section we describe a family of tiling problems that are complete for various

complexity classes. These problems will serve as generic problems that we can use

in establishing other completeness results by reduction.

Let C be a finite set of colors. A tile is a square with colored sides. The type of

a tile is a mapping {north, south, east,west} → C that gives the color of each side.

Say we are given a set of tile types and a square n×n grid consisting of n2 cells,

each of which can hold one tile. The boundary of the grid is colored with colors

from C. We would like to know whether it is possible to place tiles in the cells, one

tile to each cell, such that the colors on all adjacent edges match. We can use as

many tiles of each of the given types as we like, but we are not allowed to rotate

the tiles.

For example, the tiling problem with 2× 2 grid

and tile types

has exactly one solution, namely
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We call this problem the first tiling problem.

Proposition 2.19: The first tiling problem is NP -complete.

Proof The problem is in NP , since we can guess a tiling and verify quickly that

the color constraints are satisfied.

To show that the problem is NP -hard, we show how to encode the compu-

tation of an arbitrary one-tape nondeterministic polynomial-time-bounded Turing

machine on some input as an instance of a tiling problem. LetM be such a machine

and let x be an input to M , n = |x|. Without loss of generality, the single tape

is read/write and serves as both input and worktape. Say the machine M runs in

time nk for some fixed k ≥ 1 independent of n, and let N = nk. The grid will be

N × N . The sequence of colors along the south edges of the tiles in the jth row

will represent a possible configuration of M at time j. The color of the south edge

of the tile at position i, j will give the symbol occupying the ith tape cell and will

indicate whether that cell is being scanned at time j, and if so, will give the current

state. For example, this color might say, “M is currently in state q scanning this

tape cell, and the symbol currently occupying this cell is a.” The color of the north

edge will represent similar information at time j + 1. The types of the tiles will

be chosen so that only legal moves of the machine are represented. Because the

tape head can move left and right, information must also move sideways, and the

east/west colors are used for that. The east/west colors will say whether the head

is crossing the line between this cell and an adjacent one. The possible colors on

the north edge of a tile will be determined by the colors of the other three edges

and the transition rules of M . The colors along the south boundary of the grid will

describe the start configuration, and those along the north boundary will describe

the accept configuration. The resulting tiling problem will have a solution iffM has

an accepting computation on input x.
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Formally, let Q be the set of states, Σ the input alphabet, Γ the work alphabet,

�� the blank symbol, � the left endmarker, s the start state, t the accept state, and

δ the transition relation. We assume that Σ ⊆ Γ, �, �� ∈ Γ− Σ, and

δ ⊆ (Q× Γ)× (Q× Γ× {left,right}).

If ((p, a), (q, b, d)) ∈ δ, this says that when the machine is in state p scanning symbol

a, it can write b on the current tape cell, move in direction d, and enter state q.

The north/south colors are

(Q ∪ {−})× Γ

and the east/west colors are

(Q × {left,right}) ∪ {−}.

The north/south color (q, a) for q ∈ Q indicates that the tape head is currently

scanning this tape cell, the machine is in state q, and the symbol currently written

on this tape cell is a. The north/south color (−, a) indicates that the tape head

is not currently scanning this tape cell, and the symbol currently written on this

tape cell is a. The east/west color (q, d) indicates that the head is crossing the

line between these two tape cells in direction d and is about to enter state q. The

east/west color − indicates that the head is not currently crossing the line between

these two tape cells.

The types of the tiles will be all types of the form

(p, a)

(q, left) −

(−, b)

whenever ((p, a), (q, b, left)) ∈ δ and

(p, a)

− (q, right)

(−, b)

whenever ((p, a), (q, b, right)) ∈ δ, as well as all types of the form

MIT Press Math7X9/2010/08/25:15:15 Page 60



Computability and Complexity 61

(−, a)

(q, right) −

(q, a)

(−, a)

− −

(−, a)

(−, a)

− (q, left)

(q, a)

The colors along the south boundary of the grid will represent the start configura-

tion of M on input x = a1a2 · · · an:
(s,�) (−, a1) (−, a2) · · · (−, an) (−, ��) · · · (−, ��).
The colors along the north boundary of the grid will represent the accept configu-

ration of M :

(t,�) (−, ��) (−, ��) · · · (−, ��)
(we can assume without loss of generality that M erases its tape and moves its

head all the way to the left before accepting). The colors along the east and west

boundaries of the grid are all −.
Now any accepting computation history ofM on input x yields a tiling, and any

tiling represents an accepting computation history, because the local consistency

conditions of the tiling say that M starts in its start configuration on input x,

runs according to the transition rules δ, and ends up in an accept configuration.

Therefore this instance of the tiling problem has a solution iff M accepts x.

Now consider a variant of the tiling problem in which we use an infinite ω × ω
grid. The south boundary is colored with a pattern consisting of a finite string of

colors followed by an infinite string of a single color, say blue. The west boundary

is colored only blue. The coloring of the south and west boundaries is part of the

problem specification. There is no north or east boundary. Everything else is the

same as above. We call this problem the second tiling problem.

Proposition 2.20: The second tiling problem is Π0
1-complete (that is, co-r.e.-

complete). The problem is still Π0
1-hard even if we restrict the south boundary to

be colored with a single color.

Proof sketch. The problem is in Π0
1, since the whole grid can be tiled if and only

if all southwest n× n subgrids can be tiled.1 This is a Π0
1 statement.

To show that the problem is Π0
1-hard, we construct an instance of the tiling

1 This is not obvious! The proof uses König’s lemma. See Exercise 2.6.
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problem that simulates a given deterministic Turing machine on a given input as in

the proof of Proposition 2.19, except that there is no bound on the size or number of

configurations. All tile types with the color of the accept state on the south edge are

omitted; thus the tiling can be extended indefinitely if and only if the machine does

not accept the input. For any fixed Turing machineM , this construction constitutes

a many-one reduction from ∼L(M) to solvable instances of the tiling problem.

To show that a single color for the south boundary suffices, we could instead

encode the set

{xM |M does not accept the empty string ε}
by constructing for a given xM an instance of the tiling problem that simulates M

on the empty input. This is a well-known Π0
1-complete problem (Exercise 2.3).

We next consider a slightly different version of the problem. In this version, we

still restrict colorings of the south boundary to consist of a finite string of colors

followed by an infinite string of blue, but the coloring of the south boundary is not

specified. The problem is to decide whether there exists such a coloring of the south

boundary under which the tiling can be extended indefinitely. This variant is called

the third tiling problem.

Proposition 2.21: The third tiling problem is Σ0
2-complete.

Proof sketch. The problem is in Σ0
2, since the selection of the boundary coloring

requires a single existential quantifier; then the statement that the grid can be tiled

under that boundary coloring is Π0
1, as in Proposition 2.20.

To show that the problem is Σ0
2-hard, we can encode the complement of the

universality problem for Turing machines. The universality problem is: given a

Turing machine, does it accept all strings? In other words, is it the case that for

all input strings, there exists a halting computation on that input string? This is a

well-known Π0
2-complete problem.

As in the proof of Proposition 2.20, we can construct from a given Turing

machine an instance of the tiling problem that simulates the Turing machine. Here,

however, the various colorings of the south boundary will represent the possible

input strings. The finite multicolored part of the boundary coloring will represent

the input string, and the infinite blue string to its right will represent infinitely many

blank symbols on the Turing machine’s tape to the right of the input. For a given

boundary coloring, the tiling can be extended indefinitely iff the Turing machine

on the input string corresponding to that boundary coloring does not halt.
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As a final variant, consider the question of whether an ω×ω tiling problem has

a solution in which a particular color, say red, is used infinitely often. We call this

version the fourth tiling problem.

Proposition 2.22: The fourth tiling problem is Σ1
1-complete.

Proof sketch. The problem is in Σ1
1 because it can be expressed with a second-

order existential formula: a second-order existential quantifier can be used to select

a tiling; and for a given tiling, being a solution and using red infinitely often are

first-order properties.

To show that the problem is Σ1
1-hard, we reduce to it the non-well-foundedness

of recursive trees T ⊆ ω∗. The construction given in the proof of Kleene’s theorem

(Theorem 2.12) shows that this problem is Σ1
1-hard. Build a Turing machine that,

given a recursive tree T , guesses a sequence n0, n1, n2, . . . nondeterministically. After

the kth guess, it checks whether the sequence n0, n1, n2, . . . , nk−1 guessed so far is

in T . If so, it enters a special red state. The tree is non-well-founded iff it has an

infinite path, which happens iff there is a computation of the machine that enters

the red state infinitely often. This can be coded as an instance of the fourth tiling

problem as above.

2.4 Bibliographical Notes

Turing machines were introduced by Turing (1936). Originally they were presented

in the form of enumeration machines , since Turing was interested in enumerating

the decimal expansions of computable real numbers and values of real-valued

functions. Turing also introduced the concept of nondeterminism in his original

paper, although he did not develop the idea. Alternating Turing machines were

introduced in Chandra et al. (1981).

The basic properties of the r.e. sets were developed by Kleene (1943) and Post

(1943, 1944). Universal Turing machines and the application of Cantor’s diagonal-

ization technique to prove the undecidability of the halting problem appeared in

the original paper of Turing (1936). Reducibility relations were discussed by Post

(1944). These fundamental ideas led to the development of recursive function the-

ory; see Rogers, Jr. (1967); Soare (1987); Kleene (1952) for an introduction to this

field.

Counter automata were studied by Fischer (1966), Fischer et al. (1968), and

Minsky (1961).
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Recursive function theory has been extended upward and downward. The

upward extension deals with the arithmetic and analytic hierarchies, so-called

generalized or α-recursion theory, descriptive set theory, and inductive definability.

See Rogers, Jr. (1967); Soare (1987); Barwise (1975); Moschovakis (1974, 1980)

for an introduction to these subjects. Kleene’s theorem on the relation between

inductive definability and Π1
1 was proved in Kleene (1955). The programming

language IND was introduced in Harel and Kozen (1984).

The downward extension is computational complexity theory. This subject got

its start in the late 1960s and early 1970s; some seminal papers are Hartmanis and

Stearns (1965); Karp (1972); Cook (1971). A good source on the theory of NP -

completeness and completeness for other complexity classes is Garey and Johnson

(1979). The tiling problems of Section 2.3 are from Harel (1985).

Exercises

2.1. Prove Lemma 2.3.

2.2. Prove that ω1 is the smallest set of ordinals containing 0 and closed under

successor and suprema of countable sets.

2.3. Show that the set

{xM |M accepts the empty string ε}

is Σ0
1-complete. (Hint. Use a reduction similar to the one of Example 2.14.) Use

this to argue that the tiling problem of Proposition 2.20 remains Π0
1-hard even if

the south boundary is restricted to be colored with a single color.

2.4. (Rice (1953, 1956)) A property ϕ(x) of strings is called a property of the r.e. sets

if for all Turing machines M and N , if L(M) = L(N) then ϕ(xM ) = ϕ(xN ), where

xM is the code ofM as described in Section 2.1. It is nontrivial if there existM and

N such that ϕ(xM ) is true and ϕ(xN ) is false. Examples of nontrivial properties

of r.e. sets are: “M accepts a finite set,” “L(M) is recursive,” and “M accepts the

empty string.” Examples of properties that are not nontrivial properties of the r.e.

sets are: “M has more than 21 states” (not a property of r.e. sets) and “there exists

a Turing machine accepting twice as many strings as M” (not nontrivial). Prove

that every nontrivial property of the r.e. sets is undecidable. (Hint. Encode the

halting problem HP. Let Z and N be Turing machines such that L(Z) = ∅ and
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ϕ(xN ) 
= ϕ(xZ ). Build a Turing machine that accepts L(N) if a given M halts on

xM and ∅ otherwise.)

2.5. (a) A tree T ⊆ ω∗ is finitely branching if for every x ∈ T there are only finitely

many n ∈ ω such that xn ∈ T . Prove König’s lemma: every finitely branching tree

with infinitely many vertices has an infinite path.

(b) Give a counterexample showing that (a) is false without the finite-branching

assumption.

2.6. In the second tiling problem (Proposition 2.20), we needed to know that the

whole ω × ω grid can be tiled if and only if all southwest n × n subgrids can be

tiled. Show that this is so. (Hint. Use either Exercise 2.5 or the compactness of

propositional logic.)

2.7. Prove that the reducibility relation ≤log
m defined in 2.3 is transitive.

2.8. Prove Theorem 2.16.

2.9. Show that Proposition 2.22 holds even if the problem requires infinitely many

occurrences of red on the westernmost column of tiles.

2.10. (a) Prove that the halting problem for one-counter Turing machines is decid-

able.

(b) Using (a), show that there exists an r.e. set that is accepted by no one-

counter machine. Conclude that one-counter machines are strictly less powerful

than arbitrary Turing machines.

2.11. Prove that the halting problem for IND programs is Π1
1-complete.
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3 Logic

3.1 What is Logic?

Logic typically consists of three ingredients:

• A language is a collection of well-formed expressions to which meaning can

be assigned. The symbols of the language, together with the formal rules for

distinguishing well-formed expressions from arbitrary aggregates of symbols, are

called the syntax of the language.

• A semantics tells how to interpret well-formed expressions as statements about

something. The “something” can be mathematical objects such as groups or graphs

or the natural numbers or everyday things such as cars, employees, or the weather.

The statements of the language talk about the properties of and relationships among

these objects.

• A deductive system consists of a collection of rules that can be applied to derive,

in a purely mechanical way, interesting facts about and relationships among the

semantic objects. The facts and relationships are those expressible in the language.

All three of these aspects—language, semantics, and deductive system—can be

adapted to particular applications and to particular levels of expressibility as

desired.

In this chapter we will introduce several classical logical systems:

• propositional logic, the logic of uninterpreted assertions and the basic proposi-

tional connectives: and, or, not, if. . . then. . . , and if and only if (Section 3.2);

• equational logic, the logic of equality (Section 3.3);

• first-order predicate logic, the logic of individual elements and their properties,

especially those properties expressible using universal and existential quantification

(Section 3.4);

• infinitary logic, a variant of predicate logic allowing certain infinite expressions

(Section 3.6);

• modal logic, the logic of possibility and necessity (Section 3.7).

For each system, we will discuss its syntax, semantics, and deductive apparatus and

derive some elementary results.
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Languages

The language of a given logic typically consists of an application-specific part and

an application-independent part. The application-specific part consists of those

constructs that are tailored to the application at hand and may not make sense

in other contexts. For example, when talking about properties of the natural

numbers N = {0, 1, 2, . . .}, a symbol + denoting addition and a symbol · denoting
multiplication are quite relevant, but less so if we are discussing properties of graphs.

For this reason, the language of number theory and the language of graph theory

look very different. In a medical expert system, the objects under discussion may be

diseases, treatments, symptoms, and medications, and their relationships with one

another. These differences might be called “horizontal differences” among logical

systems.

There are also “vertical differences.” Even within a specific application domain,

there may be several possible levels of expressiveness, depending on the complexity

of the properties that need to be expressed and reasoned about. A good rule of

thumb when designing a logic is to make it no more detailed than necessary to

handle the task at hand. This allows irrelevant information to be suppressed, so that

it cannot clutter or confuse the process of deduction. If propositional letters and

propositional connectives suffice to express an assertion, it is pointless to include,

say, variables, constants and functions; if we are trying to establish the equality of

two terms, we might as well ignore quantifiers. Classical mathematical logic—the

logic of mathematical objects such as groups, graphs, or topological spaces—divides

neatly into various levels of expressiveness, reflecting these differences. The same

will hold true for Dynamic Logic.

Models, Satisfaction, and Validity

Nowadays, logicians generally take pains to develop formal semantics for new logics

they invent. This was not always so. Up until about the 1940s, logic existed in

purely syntactic form—the “sacred” form, as it is called by van Dalen (1994).

Logicians did not think much about formal semantics or interpretation, but just

worked mechanically with the syntax and proof apparatus, guided by intuition. But

it was always clear that expressions had meaning, at least on some level. Number

theory was always about the natural numbers and set theory about sets, even

though we might not have been completely sure what these objects were.

A more recent approach, the model theoretic approach, attempts to define

the meaning of expressions rigorously as true/false statements about formally

defined mathematical objects. These objects are usually called structures ormodels .
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Included in the specification of the structure is a mapping that tells how to interpret

the basic symbols of the language in that structure. Certain syntactic expressions

are designated as sentences , which are formulas that take on well-defined truth

values under a given interpretation mapping. This “profane” view of logic is one of

the great contributions of Alfred Tarski.

If a sentence ϕ is true in a structure A, then we say that ϕ is satisfied in the

structure A or that A is a model of ϕ, and write A � ϕ. If ϕ is satisfied in every

possible structure, we say that ϕ is valid and write � ϕ.
In some instances we wish to limit the class of structures under consideration.

Often the class of structures of interest is itself specified by a set of sentences.

For example, in group theory, we are interested in groups, which are mathematical

objects satisfying certain properties that can be expressed in the language of groups.

If Φ is a set of sentences (finite or infinite), we say that A is a model of Φ and write

A � Φ if A is a model of every element of Φ. For example, Φ might be the set of

sentences defining groups; by definition, a structure is a group iff it is a model of

this set. We write Φ � ϕ if ϕ is satisfied in every model of Φ, and say that ϕ is a

logical consequence of Φ. The set of logical consequences of Φ is called the theory of

Φ and is denoted ThΦ. For example, group theory is the set of logical consequences

of the set of sentences defining groups; that is, the set of all sentences that are true

in all groups.

There are modern logical systems for which the semantics is not fully defined,

either because set theory does not provide adequate support or there is not complete

agreement on how expressions should be interpreted. Indeed, there exist systems

for which it is still not understood how to give any complete and rigorous formal

interpretation at all.

Deduction

Many different types of deductive systems have been proposed for the various

logics we will consider in this book: sequent systems, natural deduction, tableau

systems, and resolution, to name a few. Each of these systems has its advantages

and disadvantages.

For uniformity and consistency, we will concentrate on one style of deductive

system called a Hilbert system after the mathematician David Hilbert, who advo-

cated its use in mechanizing mathematics. A Hilbert system consists of a set of

axioms , or sentences in the language that are postulated to be true, and rules of

inference of the form

ϕ1, ϕ2, . . . , ϕn
ψ
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from which new theorems can be derived. The statements ϕ1, . . . , ϕn above the line

are called the premises of the rule and the statement ψ below the line is called the

conclusion. In Hilbert systems, usually the axioms are emphasized and the rules of

inference are few and very basic.

A proof in a Hilbert system is a sequence ϕ1, . . . , ϕm of statements such that

each ϕi is either an axiom or the conclusion of a rule all of whose premises occur

earlier in the sequence. The sequence ϕ1, . . . , ϕm is said to be a proof of ϕm, and

ϕm is called a theorem of the system. We write � ϕ if ϕ is a theorem.

More generally, we may wish to reason in the presence of extra assumptions.

If Φ is a set of sentences (finite or infinite), we write Φ � ϕ if there is a proof of

ϕ using the elements of Φ as if they were extra axioms. In other words, Φ � ϕ if

there is a sequence ϕ1, . . . , ϕm of statements such that each ϕi is either an axiom,

an element of Φ, or the conclusion of a rule all of whose premises occur earlier in

the sequence, and ϕ = ϕm. If Φ � ϕ, we say that ϕ is a deductive consequence of

Φ. A theorem is just a deductive consequence of the empty set of assumptions.

Soundness and Completeness

A deductive system � is said to be sound with respect to a semantics � if for all

sentences ϕ,

� ϕ =⇒ � ϕ;

that is, every theorem is valid. A deductive system � is said to be complete with

respect to � if for all ϕ,

� ϕ =⇒ � ϕ;

that is, every valid sentence is a theorem.

Consistency and Refutability

Many logics have a negation operator ¬. For such logics, we say that a formula ϕ

is refutable if ¬ϕ is a theorem; that is, if � ¬ϕ. If the logic contains a conjunction

operator ∧ as well, then we say that a set Φ of sentences is refutable if some finite

conjunction of elements of Φ is refutable. We say that ϕ or Φ is consistent if it is

not refutable.
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Axiom Schemes

In many cases, axioms and rules are given as schemes , which are rules standing for

infinitely many instances. For example, the rule

ϕ, ψ

ϕ ∧ ψ
says that from the truth of ϕ and ψ we can infer that the single statement ϕ ∧ ψ
is true. This really stands for infinitely many rules, one for each possible choice

of ϕ and ψ. The rules themselves are the instances of this scheme obtained by

substituting a particular ϕ and ψ. For example,

p→ q, q → p

(p→ q) ∧ (q → p)

might be one such instance.

3.2 Propositional Logic

We often need to make basic deductions such as:

If p implies q, and if q is false, then p must also be false.

This deduction is valid independent of the truth or falsity of p and q. Propositional

logic formalizes this type of reasoning.

Syntax

The basic symbols of propositional logic are the propositional letters p, q, r, . . .

representing atomic assertions, which can be either true or false. We assume that

there are countably many such symbols available.

In addition to these symbols, there are propositional operators or connectives

• ∧ conjunction, “and”;

• ∨ disjunction, “or”;

• ¬ negation, “not”;

• 1 truth;

• 0 falsity;

• → implication, “if. . . then. . . ”;

• ↔ equivalence, “if and only if”, “iff”;
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and parentheses. We will actually take only → and 0 as primitive symbols and

define all the others in terms of them.

Propositions or propositional formulas , denoted ϕ, ψ, ρ, . . ., are built up induc-

tively according to the following rules:

• all atomic propositions p, q, r, . . . and 0 are propositions;

• if ϕ and ψ are propositions, then so is ϕ→ ψ.

We define the other propositional operators as follows:

¬ϕ def
= ϕ→ 0

1
def
= ¬0

ϕ ∨ ψ def
= (¬ϕ)→ ψ

ϕ ∧ ψ def
= ¬((¬ϕ) ∨ (¬ψ))

ϕ↔ ψ
def
= (ϕ→ ψ) ∧ (ψ → ϕ).

Note that by replacing left-hand sides with right-hand sides, we can systematically

remove the operators↔, ∧, ∨, 1, and ¬ and reduce every formula to a formula over

→ and 0 only.

Parentheses and Precedence

We parenthesize using the symbols ( ) where necessary to ensure unique readability.

For example, if we just write

p ∨ q ∧ r (3.2.1)

it is not clear whether we intend

(p ∨ q) ∧ r or p ∨ (q ∧ r); (3.2.2)

and these two expressions have very different meaning.

However, if we used parentheses everywhere, they would quickly get out of

hand. We can avoid the proliferation of parentheses by assigning a precedence to the

connectives, which tells which ones bind more tightly than others. The precedence

is:

• the negation symbol ¬ has highest precedence (binds most tightly);

• the conjunction and disjunction symbols ∧ and ∨ have next highest and equal

precedence;
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• the implication symbol → has next highest precedence; and

• the equivalence symbol ↔ has lowest precedence.

For example, the expression

¬ϕ→ ψ ↔ ¬ψ → ϕ (3.2.3)

should be read

((¬ϕ)→ ψ) ↔ ((¬ψ)→ ϕ).

If we want (3.2.3) to be read another way, say

(¬((ϕ→ ψ)↔ ¬ψ)) → ϕ,

then we have to use parentheses.

We associate symbols of equal precedence from left to right. Thus the expression

(3.2.1) should be read as the left-hand expression in (3.2.2).

In the text, we often also use spacing to help with readability, as we have done

in (3.2.3); but formally, spacing has no significance.

Metasymbols, or symbols that we use as abbreviations for English phrases in

our discourse, always have lower precedence than symbols in the language under

study. For example, the meta-expression

� ψ =⇒ � ϕ→ ψ

says, “if ψ is valid, then so is ϕ→ ψ,” as if written

(� ψ) =⇒ (� (ϕ→ ψ))

with parentheses. The symbol →, which is a propositional connective, has higher

precedence than the metasymbols � and =⇒. It is important to distinguished the

propositional implication symbol → from the meta-implication symbol =⇒. The

distinction is necessary because we are using propositional logic even as we define

it.

Semantics

The truth or falsity of a proposition depends on the truth or falsity of the atomic

propositions appearing in it. For example, the proposition p ∧ q (read: “p and q”)

is true iff both of the propositions p and q are true; and the proposition ¬p (read:

“not p”) is true iff p is false.

There are two possible truth values , which we denote by 0 (false) and 1 (true).

MIT Press Math7X9/2010/08/25:15:15 Page 73



74 Chapter 3

We can think of the atomic propositions p, q, r, . . . as variables ranging over the set

{0,1}. Any assignment of truth values to the atomic propositions appearing in a

proposition ϕ automatically determines a truth value for ϕ inductively, as described

formally below.

We define a truth assignment to be a map

u : {p, q, r, . . .} → {0,1}.
The value u(p) is the truth value of the atomic proposition p under the truth

assignment u. Any such map extends inductively to all propositions as follows:

u(0)
def
= 0

u(ϕ→ ψ)
def
=

{
1, if u(ϕ) = 0 or u(ψ) = 1

0, otherwise.

It follows that

u(ϕ ∧ ψ) =

{
1, if u(ϕ) = u(ψ) = 1

0, otherwise

u(ϕ ∨ ψ) =

{
1, if u(ϕ) = 1 or u(ψ) = 1

0, otherwise

u(¬ϕ) =

{
0, if u(ϕ) = 1

1, otherwise

u(1) = 1

u(ϕ↔ ψ) =

{
1, if u(ϕ) = u(ψ)

0, otherwise.

We say that the truth assignment u satisfies ϕ if u(ϕ) = 1, and write u � ϕ

and u(ϕ) = 1 interchangeably. If Φ is any set of propositions, finite or infinite, we

say that u satisfies Φ and write u � Φ if u satisfies all the propositions in Φ. A

proposition or set of propositions is satisfiable if there is a truth assignment that

satisfies it.

The formula ϕ is said to be valid if u � ϕ for all u. A valid formula is also

called a (propositional) tautology. We write � ϕ to indicate that ϕ is a tautology.

A tautology is a formula that is always true, no matter what the truth values of its

atomic propositions are.

Observe that � ϕ iff ¬ϕ is not satisfiable.
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Example 3.1: The following are some examples of basic tautologies:

(i) ϕ ∨ ¬ϕ
(ii) ¬¬ϕ ↔ ϕ

(iii) ψ → (ϕ→ ψ)

(iv) ϕ→ ψ ↔ ¬ϕ ∨ ψ
(v) ϕ↔ ψ ↔ (ϕ→ ψ) ∧ (ψ → ϕ)

(vi) ¬ϕ ∧ ¬ψ ↔ ¬(ϕ ∨ ψ)
(vii) ϕ ∧ (ψ ∨ ρ) ↔ (ϕ ∧ ψ) ∨ (ϕ ∧ ρ)
(viii) ϕ ∨ (ψ ∧ ρ) ↔ (ϕ ∨ ψ) ∧ (ϕ ∨ ρ)
(ix) ϕ ∧ ϕ ↔ ϕ

(x) ϕ ∨ ϕ ↔ ϕ

(xi) ϕ→ ψ ↔ ¬ψ → ¬ϕ
(xii) ¬ϕ ↔ ϕ→ 0

(xiii) ϕ ∨ ψ ↔ ¬(¬ϕ ∧ ¬ψ)
(xiv) ϕ ∧ ψ ↔ ¬(¬ϕ ∨ ¬ψ)
(xv) (ϕ ∧ ψ) ∨ (¬ϕ ∧ ρ) ↔ (ϕ→ ψ) ∧ (¬ϕ→ ρ).

If ϕ and ψ take the same truth values on all truth assignments, we say that ϕ

and ψ are equivalent and write ϕ ≡ ψ. Note that ϕ and ψ are equivalent iff ϕ↔ ψ

is a tautology.

We have defined all the propositional connectives in terms of→ and 0. This was

by no means the only possible choice of a primitive set of connectives. For example,

because of (iv), we could have defined → in terms of ¬ and ∨. A set of connectives

is called complete if every formula is equivalent to a formula containing only those

connectives. For example, the sets {→,0}, {∨,¬}, and {∧,¬} are all complete. We

study some of these properties in the exercises (Exercises 3.2 and 3.3).

Although there are infinitely many propositional letters, it follows from the

definition that u(ϕ) depends only on u(p) for p appearing in ϕ. This observation

gives a decision procedure for satisfiability and validity:

Theorem 3.2: Given any ϕ, it is decidable whether ϕ is satisfiable.

Proof Suppose ϕ contains propositional letters p1, . . . , pn. For each possible truth

assignment u : {p1, . . . , pn} → {0,1}, compute u(ϕ) inductively according to the

rules given above. Then ϕ is satisfiable iff u(ϕ) = 1 for at least one such u.
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Corollary 3.3: It is decidable whether ϕ is valid.

Proof Check whether ¬ϕ is satisfiable.

The decision problem of Theorem 3.2 is the Boolean satisfiability problem

discussed in Section 2.3. The decision procedure given in the proof of that theorem,

naively implemented, takes exponential time in the size of ϕ, since there are 2n

possible truth assignments u : {p1, . . . , pn} → {0,1}. The question of whether

there exists a polynomial-time algorithm is equivalent to the P = NP problem (see

Section 2.3).

Set-Theoretic Representation

Let S be a set. The propositional operators ∨, ∧, ¬, 0, and 1 behave very

much like certain set-theoretic operators on subsets of S, namely ∪ (union), ∩
(intersection), ∼ (complementation in S), ∅ (emptyset), and S, respectively. This

correspondence is more than just coincidental. If we take S to be set of truth

assignments u : {p, q, r, . . .} → {0,1} and define

ϕ′ = {u ∈ S | u � ϕ}
then the map ′, which takes propositions to subsets of S, is a homomorphism with

respect to these operators:

Theorem 3.4:

(ϕ ∧ ψ)′ = ϕ′ ∩ ψ′

(ϕ ∨ ψ)′ = ϕ′ ∪ ψ′

(¬ϕ)′ = S − ϕ′

1′ = S

0′ = ∅.

Moreover,

� ϕ ⇐⇒ ϕ′ = S

ϕ is satisfiable ⇐⇒ ϕ′ 
= ∅

� ϕ→ ψ ⇐⇒ ϕ′ ⊆ ψ′

� ϕ↔ ψ ⇐⇒ ϕ ≡ ψ ⇐⇒ ϕ′ = ψ′.

Proof Exercise 3.1.
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A Deductive System

We will discuss two Hilbert-style deductive systems for propositional logic and

prove their soundness and completeness. For the sake of simplicity, our first system

will be rather meager. Later we will consider a richer system that includes all the

propositional operators and that is much easier to work with in practice; but for

the sake of proving completeness, we restrict our attention to formulas over→ and

0 only. This assumption is without loss of generality, since the other operators are

defined from these.

Our system consists of three axioms and a rule of inference.

Axiom System 3.5:

(S) (ϕ→ (ψ → σ)) → ((ϕ→ ψ)→ (ϕ→ σ))

(K) ϕ → (ψ → ϕ)

(DN) ((ϕ→ 0)→ 0)→ ϕ

(MP)
ϕ, ϕ→ ψ

ψ
.

The axiom (DN) is called the law of double negation. Considering ¬ϕ as an

abbreviation for ϕ → 0, this law takes the form ¬¬ϕ → ϕ. The rule of inference

(MP) is called modus ponens .

The following are some sample derivations in this system.

Example 3.6: Let us start off with something very simple: ϕ → ϕ. Here is a

proof. Let Q
def
= ϕ→ ϕ.

(i) ϕ→ (Q→ ϕ)

(ii) ϕ→ Q

(iii) (ϕ→ (Q→ ϕ)) → ((ϕ→ Q)→ (ϕ→ ϕ))

(iv) (ϕ→ Q)→ (ϕ→ ϕ)

(v) ϕ→ ϕ.

Statements (i) and (ii) are both instances of (K); (iii) is an instance of (S); (iv)

follows from (i) and (iii) by modus ponens; and (v) follows from (ii) and (iv) by

modus ponens.
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Example 3.7: We prove the transitivity of implication:

(ψ → σ) → ((ϕ→ ψ)→ (ϕ→ σ)). (3.2.4)

Let

P
def
= ψ → σ

Q
def
= ϕ→ (ψ → σ)

R
def
= (ϕ→ ψ)→ (ϕ→ σ).

The theorem (3.2.4) we would like to prove is P → R. Here is a proof.

(i) P → Q

(ii) Q→ R

(iii) (Q→ R) → (P → (Q→ R))

(iv) P → (Q→ R)

(v) (P → (Q→ R)) → ((P → Q)→ (P → R))

(vi) (P → Q)→ (P → R)

(vii) P → R.

Statement (i) is an instance of (K); (ii) is an instance of (S); (iii) is an instance of

(K); (iv) follows from (ii) and (iii) by modus ponens; (v) is an instance of (S); (vi)

follows from (iv) and (v) by modus ponens; and (vii) follows from (i) and (vi) by

modus ponens.

Example 3.8: We show that the statement

(EFQ) 0→ ϕ

is a theorem. The name EFQ stands for e falso quodlibet (“from falsity, anything

you like”). Let us abbreviate ϕ→ 0 by ¬ϕ. Here is a proof of (EFQ):

(i) 0→ ¬¬ϕ
(ii) ¬¬ϕ→ ϕ

(iii) (¬¬ϕ→ ϕ)→ ((0→ ¬¬ϕ)→ (0→ ϕ))

(iv) (0→ ¬¬ϕ)→ (0→ ϕ)

(v) 0→ ϕ.

Statement (i) is an instance of (K), since it is really 0 → (¬ϕ → 0); (ii) is just

(DN); (iii) is an instance of the theorem proved in Example 3.7; (iv) follows from
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(ii) and (iii) by modus ponens; and (v) follows from (i) and (iv) by modus ponens.

If we omit the axiom (DN) and take (K), (S), and (EFQ) as axioms along with

the rule (MP), we get a weaker system called intuitionistic propositional logic. The

propositional tautology (DN) is not provable in this system; see Exercise 3.5.

The Deduction Theorem

Here is a useful theorem about this system that has to do with reasoning in the

presence of assumptions. It says that if the proposition ψ can be derived in the

presence of an extra assumption ϕ, then the proposition ϕ → ψ can be derived

without any assumptions; that is, the assumption ϕ can be coded into the theorem

itself.

Theorem 3.9 (Deduction Theorem): Let Φ be a finite or infinite set of

propositions. Then

Φ ∪ {ϕ} � ψ ⇐⇒ Φ � ϕ→ ψ.

Proof First suppose Φ � ϕ → ψ. Certainly Φ ∪ {ϕ} � ϕ → ψ. Also Φ ∪ {ϕ} � ϕ
by a one-line proof. Therefore Φ ∪ {ϕ} � ψ by modus ponens. This was the easy

direction.

Conversely, suppose Φ ∪ {ϕ} � ψ. We proceed by induction on the length of

proofs to show that Φ � ϕ → ψ. Consider the last step in a proof of ψ under the

assumptions Φ∪{ϕ}. If ψ ∈ Φ, then Φ � ψ, and Φ � ψ → (ϕ→ ψ) by (K), therefore

Φ � ϕ → ψ by modus ponens. If ψ = ϕ, then Φ � ϕ → ϕ by the theorem proved

in Example 3.6. Finally, if ψ is the conclusion of an application of modus ponens,

then there is a σ such that Φ ∪ {ϕ} � σ → ψ and Φ ∪ {ϕ} � σ by shorter proofs.

By the induction hypothesis, Φ � ϕ→ (σ → ψ) and Φ � ϕ→ σ. By (S),

Φ � (ϕ→ (σ → ψ)) → ((ϕ→ σ)→ (ϕ→ ψ));

then by two applications of modus ponens, Φ � ϕ→ ψ.

Completeness

In this section we prove the completeness of Axiom System 3.5. First, we observe

that the system is sound, since the axioms (K), (S), and (DN) are tautologies and

the rule (MP) preserves validity; therefore by induction, every formula ϕ such that

� ϕ is a tautology. The more interesting part is the converse: every tautology has

a proof in this system.
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First we prove a preliminary lemma whose proof contains most of the work. We

will also find this lemma useful later on when we study compactness. Recall from

Section 3.1 that a finite or infinite set Φ of formulas is refutable if ¬ϕ is a theorem,

where ϕ is some finite conjunction of elements of Φ. In light of Theorem 3.9, this

is equivalent to saying that Φ � 0. The set Φ is consistent if it is not refutable.

Lemma 3.10: If Φ is consistent, then it is satisfiable.

Proof Suppose Φ is consistent. Then Φ is contained in a setwise maximal consistent

set Φ̂; that is, a consistent set such that Φ ⊆ Φ̂ and any proper superset of Φ̂ is

refutable. Such a set Φ̂ can be obtained as follows. Line up all the propositions

ϕ0, ϕ1, ϕ2, . . . in some order. Set Φ0
def
= Φ. For each ϕi, set

Φi+1
def
=

{
Φi ∪ {ϕi}, if Φi ∪ {ϕi} is consistent,

Φi, otherwise.

Let Φ̂
def
=

⋃
iΦi. The set Φ̂ is consistent, since each Φi is consistent and only finitely

many formulas can be used in a refutation; and it is maximal, since each ϕi was

included unless it was inconsistent with formulas already taken.

We now claim that for each ϕ, exactly one of the following holds: ϕ ∈ Φ̂ or

ϕ → 0 ∈ Φ̂. Certainly not both are true, because then we would have Φ̂ � 0 by

(MP), contradicting the fact that Φ̂ is consistent. But if neither is true, then Φ̂∪{ϕ}
and Φ̂∪{ϕ→ 0} must both be inconsistent; thus Φ̂∪{ϕ} � 0 and Φ̂∪{ϕ→ 0} � 0.

By the deduction theorem (Theorem 3.9), Φ̂ � ϕ → 0 and Φ̂ � (ϕ → 0) → 0;

therefore by (MP), Φ̂ � 0, a contradiction. It follows that Φ̂ is deductively closed in

the sense that if Φ̂ � ϕ, then ϕ ∈ Φ̂.

Now we construct a truth assignment satisfying Φ̂. Set

u(ϕ)
def
=

{
1, if ϕ ∈ Φ̂,

0, if ϕ 
∈ Φ̂.

This certainly satisfies Φ̂; we only have to show that it is a legal truth assignment.

According to the definition, we need to show

u(ϕ→ ψ) = 1 ⇐⇒ u(ϕ) = 0 or u(ψ) = 1,

or in other words,

ϕ→ ψ ∈ Φ̂ ⇐⇒ ϕ 
∈ Φ̂ or ψ ∈ Φ̂.
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Suppose first that ϕ → ψ ∈ Φ̂. If ϕ 
∈ Φ̂, we are done. Otherwise ϕ ∈ Φ̂, in which

case ψ ∈ Φ̂ by modus ponens.

Conversely, if ψ ∈ Φ̂, then ϕ → ψ ∈ Φ̂ by (K) and modus ponens. If ϕ 
∈ Φ̂,

then ϕ→ 0 ∈ Φ̂. Then by (EFQ) and transitivity of implication (Examples 3.8 and

3.7 respectively), ϕ→ ψ ∈ Φ̂.

Also, u(0) = 0 because 0 
∈ Φ̂; otherwise Φ̂ would be trivially inconsistent.

Theorem 3.11 (Completeness): If Φ � ϕ then Φ � ϕ.

Proof

Φ � ϕ =⇒ Φ ∪ {ϕ→ 0} is unsatisfiable

=⇒ Φ ∪ {ϕ→ 0} is refutable by Lemma 3.10

=⇒ Φ � (ϕ→ 0)→ 0 by the Deduction Theorem

=⇒ Φ � ϕ by (DN).

Compactness

Let Φ be a set of propositions, finite or infinite. Recall that a set Φ is satisfiable if

there is a truth assignment u such that u � ϕ for every ϕ ∈ Φ. Let us say that Φ is

finitely satisfiable if every finite subset of Φ is satisfiable.

Theorem 3.12 (Compactness of Propositional Logic): Let Φ be any set

of propositions. Then Φ is finitely satisfiable iff it is satisfiable.

Proof Trivially, any satisfiable set is finitely satisfiable. The interesting direction

is that finite satisfiability implies satisfiability.

Suppose Φ is finitely satisfiable. By the soundness of the system 3.5, every finite

subset of Φ is consistent. Since refutations can only use finitely many formulas, the

set Φ itself is consistent. By Lemma 3.10, Φ is satisfiable.

Compactness has many applications. For example, one can show using compact-

ness that an infinite graph is k-colorable iff every finite subgraph is k-colorable.

The term compactness is from topology. Let S be the topological space whose

points are the truth assignments u : {p, q, r, . . .} → {1,0} and whose basic open

sets are the sets {ϕ′ | ϕ is a proposition}. A family of sets has the finite intersection

property if every finite subfamily has a nonempty intersection. A topological space
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is compact if every family Δ of closed sets with the finite intersection property has

a nonempty intersection
⋂
Δ. Theorem 3.12 asserts exactly that the topological

space S is compact.

An Equational System

Here is another complete deductive system for propositional logic. Whereas Axiom

System 3.5 is as austere as possible, this system errs in the opposite direction. No

attempt has been made to reduce it to the minimum possible number of costructs.

It is thus much richer and more suitable for reasoning.

The system is an equational-style system for deriving theorems of the form

ϕ↔ ψ. Recall that ϕ ≡ ψ iff � ϕ↔ ψ. The relation ≡ is an equivalence relation on

formulas. Later on in Section 3.3 we will give a general introduction to equational

logic. In that section, the system we are about to present would be called Boolean

algebra (see Exercise 3.8).

Let ϕ be a proposition containing only the propositional letters p1, . . . , pn. Let

S be the set of all 2n truth assignments to p1, . . . , pn. As observed in Section 3.2,

� ϕ iff ϕ′ = S, where

ϕ′ = {u ∈ S | u � ϕ}.
Define a literal of {p1, . . . , pn} to be a propositional letter pi or its negation ¬pi.
There is a one-to-one correspondence between truth assignments u and conjunctions

of literals

q1 ∧ q2 ∧ · · · ∧ qn,

where each qi is either pi or ¬pi. Such a formula is called an atom of {p1, . . . , pn}.
For each truth assignment u there is exactly one atom satisfied by u, and each atom

is satisfied by exactly one truth assignment. For example, the atom

p1 ∧ p2 ∧ ¬p3
of {p1, p2, p3} corresponds to the truth assignment u(p1) = u(p2) = 1, u(p3) = 0.

If α1, . . . , αk are atoms, then the disjunction

α1 ∨ α2 ∨ · · · ∨ αk

is satisfied by exactly those truth assignments corresponding to the atoms

α1, . . . , αk. It follows that every subset of S is ϕ′ for some ϕ. If � ϕ, then ϕ′ = S,

in which case ϕ is equivalent to the disjunction of all 2n possible atoms.

Our deductive system is a Hilbert-style system of equational axioms and rules.
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It can be used to show that any formula ϕ is equivalent to another formula of a

special form, called complete disjunctive normal form. A formula is in complete

disjunctive normal form if it is a disjunction of atoms of {p1, . . . , pn} in which each

atom occurs at most once. The complete disjunctive normal form consisting of no

atoms is 0.

Axiom System 3.13:

(i) 1

(ii) De Morgan laws:

¬(ϕ ∧ ψ) ↔ ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ) ↔ ¬ϕ ∧ ¬ψ

(iii) Law of double negation:

¬¬ϕ ↔ ϕ

(iv) Associative laws:

(ϕ ∧ ψ) ∧ ρ ↔ ϕ ∧ (ψ ∧ ρ)
(ϕ ∨ ψ) ∨ ρ ↔ ϕ ∨ (ψ ∨ ρ)

(v) Commutative laws:

ϕ ∨ ψ ↔ ψ ∨ ϕ
ϕ ∧ ψ ↔ ψ ∧ ϕ

(vi) Distributive laws:

ϕ ∨ (ψ ∧ ρ) ↔ (ϕ ∨ ψ) ∧ (ϕ ∨ ρ)
ϕ ∧ (ψ ∨ ρ) ↔ (ϕ ∧ ψ) ∨ (ϕ ∧ ρ)

(vii) Idempotency laws:

ϕ ∨ ϕ ↔ ϕ

ϕ ∧ ϕ ↔ ϕ
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(viii) Zero-one laws:

ϕ ∧ 0 ↔ 0

ϕ ∨ 0 ↔ ϕ

ϕ ∨ ¬ϕ ↔ 1

ϕ ∧ 1 ↔ ϕ

ϕ ∨ 1 ↔ 1

ϕ ∧ ¬ϕ ↔ 0

(ix) Elimination of implications:

(ϕ→ ψ) ↔ ¬ϕ ∨ ψ
(ϕ↔ ψ) ↔ (ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ)
(x) Substitution of equals for equals:

ϕ↔ ψ, σ[p/ϕ]

σ[p/ψ]

where σ[p/ϕ] denotes a formula σ with the proposition ϕ substituted for all

occurrences of the atomic proposition p.

The substitution rule (x) says that if we have established the equivalence of two

expressions ϕ and ψ, and we have proved a theorem containing ϕ as a subexpression,

then we may substitute ψ for ϕ in that theorem and the resulting formula will be

a theorem.

Theorem 3.14: Axiom System 3.13 is sound.

Proof We need to show that every theorem derivable in the system is valid. Using

induction on the lengths of proofs, it suffices to show that all the axioms are valid

and the rule of inference preserves validity.

The validity of the axioms can be established by reasoning set theoretically with

ϕ′. For example, for (v), we need to show

� ϕ ∨ ψ ↔ ψ ∨ ϕ.
But this is true since

(ϕ ∨ ψ)′ = (ψ ∨ ϕ)′ = ϕ′ ∪ ψ′
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and ∪ is commutative. Axiom (i) is valid since 1′ = S. We leave the verification of

the remaining axioms as exercises (Exercise 3.6).

In order to establish the soundness of the substitution rule (x), we observe first

that if ϕ↔ ψ is a tautology then so is σ[p/ϕ]↔ σ[p/ψ]. In other words, if ϕ ≡ ψ,

then σ[p/ϕ] ≡ σ[p/ψ]. This can be proved by induction on the depth of σ. If σ = p,

then the substitution gives ϕ ≡ ψ, which is true by assumption. If σ = q 
= p, then

the substitution gives q ≡ q.

For the induction step, we need only observe that if σ1 ≡ σ2 and τ1 ≡ τ2, then

σ1 → τ1 ≡ σ2 → τ2, and similarly for the other operators.

Now if � ϕ↔ ψ, then � σ[p/ϕ]↔ σ[p/ψ], as we have just shown. If in addition

� σ[p/ϕ], then � σ[p/ψ]. Thus if both premises of the inference rule (x) are valid,

then so is the conclusion. Since every axiom is valid and the rule of inference

preserves validity, any theorem derivable in this system is valid.

Theorem 3.15: Axiom System 3.13 is complete.

Proof sketch. Intuitively, our axioms and inference rule allow us to transform any

proposition ϕ into an equivalent join of atoms of p1, . . . , pn, the propositional letters

occurring in ϕ. If ϕ is valid, then this join of atoms must contain all 2n possible

atoms, in which case the formula can be further transformed to 1.

In the following, we use axioms (iv) and (v) implicitly to rearrange parentheses

and formulas in conjunctions and disjunctions. Thus we may write ϕ1∨ϕ2∨· · ·∨ϕk
without parentheses and without regard to the order of the ϕi.

Starting with ϕ, first apply the axioms (ix) in the left-to-right direction to

replace any subexpression of the form ϕ→ ψ with ¬ϕ∨ψ and any subexpression of

the form ϕ↔ ψ with (ϕ∧ψ)∨(¬ϕ∧¬ψ) until the resulting term has no occurrence of

→ or ↔. Now apply the De Morgan laws (ii) in the left-to-right direction to move

all occurrences of ¬ inward. Whenever a subexpression of the form ¬¬ϕ occurs,

replace it by ϕ using (iii). Keep doing this until all occurrences of ¬ are applied

only to atomic p. Use the second distributive law (vi) in the left-to-right direction

to move occurrences of ∨ outward and occurrences of ∧ inward until obtaining

disjunctive normal form: a disjunction of conjunctions of literals p or ¬p.
If some p occurs twice in one of the conjunctions, use (vii) to get rid of the

double occurrence. If p and ¬p both occur, use (viii) in the left-to-right direction.

If neither p nor ¬p occurs in a conjunction ψ, use (viii) and then (vi) to replace ψ

with (ψ ∧ p) ∨ (ψ ∧ ¬p). The result is a disjunction of atoms of p1, . . . , pn. Since ϕ

was valid and the transformations preserve validity (Theorem 3.14), the resulting

formula is valid; thus all 2n atoms must appear in the disjunction, since otherwise
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the truth assignment corresponding to an omitted atom would falsify the formula.

Now we use the rules in the opposite direction to reduce the formula to 1. Note

that each atom of p1, . . . , pn is of the form ψ ∧ pn or ψ ∧ ¬pn, where ψ is an atom

of p1, . . . , pn−1. Moreover, since all 2n atoms of p1, . . . , pn occur in the disjunction,

both ψ ∧ pn and ψ ∧ ¬pn occur for each of the 2n−1 atoms ψ of p1, . . . , pn−1. For

each such ψ, apply the second distributive law (vi) in the right-to-left direction to

(ψ ∧ pn) ∨ (ψ ∧ ¬pn) to obtain ψ ∧ (p ∨ ¬p), then (viii) to obtain ψ ∧ 1, then (viii)

again to obtain ψ. We are left with the disjunction of all 2n−1 atoms of p1, . . . , pn−1.

Continue in this fashion until we are left with 1.

3.3 Equational Logic

Equational logic is a formalization of equational reasoning. The properties of pure

equality are captured in the axioms for equivalence relations: reflexivity, symmetry,

and transitivity (see Section 1.3). In the presence of function symbols, a fourth rule

of congruence is added.

The language of equational logic is a sublanguage of first order logic, so it makes

sense to treat this special case before moving on to full first-order logic in Section

3.4.

Syntax

A signature or vocabulary consists of a set Σ of function symbols, each with an

associated arity (number of input places). There is only one relation symbol, the

equality symbol =, and it is of arity 2.1 Function symbols of arity 0, 1, 2, 3, and n

are called nullary, unary, binary, ternary , and n-ary, respectively. Nullary symbols

are often called constants .

Example 3.16: The signature for groups consists of function symbols ·, −1, and 1,

where · is a binary symbol for multiplication, −1 is a unary symbol for multiplicative

inverse, and 1 is a nullary (constant) symbol for the multiplicative identity.

Example 3.17: The signature of Boolean algebra consists of the function sym-

bols ∧,∨,¬,0,1 with arities 2, 2, 1, 0, 0 respectively.

1 When we discuss first-order logic in Section 3.4, the signature may also include other relation
symbols of various arities.
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We will work with an arbitrary but fixed signature Σ of function symbols. We

use the symbols f, g, h, . . . to denote typical elements of Σ and a, b, c, . . . to denote

typical constants in Σ. So that we do not have to keep writing “. . . where f is

n-ary,” we will adopt the convention that any use of the expression f(t1, . . . , tn)

carries with it the implicit proviso that the symbol f is of arity n.

The language of equational logic is built from the symbols of Σ, the binary

equality symbol =, a countable set X of individual variables x, y, . . ., and paren-

theses.

A term is a well formed expression built from the function symbols and variables.

By “well formed,” we mean that it respects the arities of all the symbols, where

variables are considered to have arity 0. Terms are denoted s, t, . . . . Formally, terms

are defined inductively:

• any variable x is a term;

• if t1, . . . , tn are terms and f is n-ary, then f(t1, . . . , tn) is a term.

Note that every constant symbol c is a term: this is the case n = 0 in the second

clause above. The following is a typical term, where f is binary, g is unary, c is a

constant, and x, y are variables:

f(f(x, g(c)), g(f(y, c))).

The set of all terms over Σ and X is denoted TΣ(X). A term is called a ground

term if it contains no variables. The set of ground terms over Σ is denoted TΣ. We

sometimes write t(x1, . . . , xn) to indicate that all variables occurring in t are among

x1, . . . , xn. (It is not necessary that all of x1, . . . , xn appear in t.)

Example 3.18: Terms over the signature of Boolean algebra described in Exam-

ple 3.17 are exactly the propositional formulas over ∧, ∨, ¬, 0, and 1 as described

in Section 3.2. The propositional letters are the variables.

Over an abstract signature Σ, we always write terms in prefix notation, which

means function symbol first: f(t1, . . . , tn). In various applications, however, we

often use infix or postfix notation for certain operators as dictated by custom.

For example, the binary Boolean operators ∨ and ∧ are written in infix: s∨ t, s∧ t.
The unary Boolean operator ¬ is customarily written in prefix as ¬t, whereas the
unary group inverse operator −1 is customarily written in postfix as t−1.
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An equation is a formal expression s = t consisting of two terms separated by

the equality symbol =. A Horn formula is a formal expression of the form

s1 = t1 ∧ · · · ∧ sk = tk → s = t, (3.3.1)

where the si = ti and s = t are equations. When k = 0, the Horn formula (3.3.1) is

equivalent to the equation s = t.

Semantics

Σ-algebras

Terms and equations over an alphabet Σ take on meaning when interpreted over an

algebraic structure called a Σ-algebra (or just an algebra when Σ is understood).

This is a structure

A = (A, mA)

consisting of

• a nonempty set A called the carrier or domain of A, the elements of which are

called individuals ;

• a meaning function mA that assigns an n-ary function mA(f) : A
n → A to each

n-ary function symbol f ∈ Σ. We abbreviate mA(f) by f
A.

We regard 0-ary functions A0 → A as just elements of A. Thus the constant symbol

c ∈ Σ is interpreted as an element cA ∈ A. The carrier of A is sometimes denoted

|A|.
When we discuss the syntax of first-order logic in Section 3.4, the signature

will include relation symbols p of various arities, and the meaning function mA will

assign relations mA(p) = pA on A to those symbols as well. In equational logic,

however, there is only one (binary) relation symbol =, and unless we say otherwise,

its interpretation =A in A is always assumed to be the binary identity relation

{(a, a) | a ∈ A}.
As is customary, we omit the superscript A from =A and denote by = both

the equality symbol itself and its meaning as the identity relation on A. To

complicate matters further, we also use = as our metasymbol for equality. The

proper interpretation should be clear from context.

Example 3.19: The signature of Boolean algebra was described in Example 3.17.

LetK be a set, and let 2K denote the powerset ofK. We define an algebraB for this
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signature consisting of carrier 2K , ∨B the operation of set union, ∧B the operation

of set intersection, ¬B the operation of set complementation in K, 0B the empty

set, and 1B the set K. The algebra of sets of truth assignments described in Section

3.2 is an example of such a Boolean algebra.

Example 3.20: For any signature Σ, the set of terms TΣ(X) forms a Σ-algebra,

where each f ∈ Σ is given the syntactic interpretation

fTΣ(X)(t1, . . . , tn) = f(t1, . . . , tn).

There is no meaning associated with the f appearing on the right-hand side; it

is merely a symbol, and the expression f(t1, . . . , tn) is merely a term—a syntactic

object. The fTΣ(X) on the left-hand side, however, is a semantic object; it is the

function fTΣ(X) : TΣ(X)
n → TΣ(X) which on input t1, . . . , tn gives the term

f(t1, . . . , tn) as result.

The algebra TΣ(X) is called a term algebra.

Subalgebras and Generating Sets

Let A and B be two Σ-algebras with carriers A and B, respectively. The algebra A

is a subalgebra of B if A ⊆ B and fA = fB � An for all n-ary f ∈ Σ.

If C ⊆ B, the subalgebra of B generated by C is the smallest subalgebra of B

containing C. Its domain is the smallest subset of B containing C and the constants

cB and closed under the action of the functions fB, as described in Section 1.7.

The set C is called a generating set of B, and is said to generate B, if the

subalgebra of B generated by C is B itself. For example, X generates the term

algebra TΣ(X).

Homomorphisms

Homomorphisms are structure-preserving functions between Σ-algebras. Formally,

if A = (A, mA) and B = (B, mB) are Σ-algebras, a homomorphism h : A → B is

a function h : A→ B that commutes with the distinguished functions in the sense

that for any a1, . . . , an ∈ A and f ∈ Σ,

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)). (3.3.2)

This includes the case n = 0 (constants), for which (3.3.2) reduces to

h(cA) = cB.
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A homomorphism is called a monomorphism if it is one-to-one, an epimorphism if

it is onto, and an isomorphism if it is both. An algebra B is a homomorphic image

of A if there is an epimorphism h : A→ B.

The identity map A → A is an isomorphism, and if g : A → B and h : B→ C

are homomorphisms, then so is g◦h : A→ C. Because of (3.3.2), any homomorphism

is uniquely determined by its action on a generating set.

The kernel of a homomorphism h : A→ B is the relation

ker h
def
= {(a, b) | h(a) = h(b)} (3.3.3)

on A.

Valuations and Substitutions

A homomorphism u : TΣ(X) → A defined on a term algebra over variables X is

called a valuation. A valuation is uniquely determined by its values on X , since X

generates TΣ(X). Moreover, any map u : X → A extends uniquely to a valuation

u : TΣ(X)→ A by induction using (3.3.2).

Note that in the case n = 0, we have u(c) = cA. Note also that the value of u(t)

depends only on the values u(x) for those x appearing in t. In particular, a ground

term t always has a fixed value in A, independent of the valuation u. Thus in the

case of ground terms t, we can write tA for u(t).

A homomorphism u : TΣ(X) → TΣ(Y ) from one term algebra to another is

called a substitution. We can think of these maps as substitutions in the usual sense:

the value of the substitution u applied to a term t ∈ TΣ(X) is the term in TΣ(Y )

obtained by substituting the term u(x) for all occurrences of x in t simultaneously

for all x ∈ X :

u(t) = t[x/u(x) | x ∈ X ].

If u : TΣ(X) → TΣ(Y ) is a substitution and s, t ∈ TΣ(X), then the term u(s) and

the equation u(s) = u(t) are called substitution instances over TΣ(Y ) of s and s = t,

respectively.

Satisfaction

We say that the Σ-algebra A satisfies the equation s = t under valuation u :

TΣ(X)→ A, and write A, u � s = t, if u(s) = u(t); that is, if u(s) and u(t) are the

same element of A. More generally, we say that the Σ-algebra A satisfies the Horn
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formula

s1 = t1 ∧ · · · ∧ sk = tk → s = t

under valuation u : TΣ(X)→ A, and write

A, u � s1 = t1 ∧ · · · ∧ sk = tk → s = t,

if either

• u(si) 
= u(ti) for some i, 1 ≤ i ≤ k; or

• u(s) = u(t).

If ϕ is an equation or a Horn formula, we write A � ϕ if A, u � ϕ for all

valuations u and say that ϕ is valid in A, or that A satisfies ϕ, or that A is a model

of ϕ.2 If Φ is a set of equations or Horn formulas, we write A � Φ if A satisfies all

elements of Φ and say that A satisfies Φ, or that A is a model of Φ. We denote by

ModΦ the class of all models of Φ.

Let ThA denote the set of equations over X that are valid in A:

ThA
def
= {s = t | A � s = t}.

If D is a class of Σ-algebras, let ThD denote the set of equations valid in all

elements of D:

ThD
def
=

⋂
A∈D

ThA.

The set ThD is called the equational theory of D. An equation s = t is called

a logical consequence of Φ if s = t is satisfied by all models of Φ; that is, if

s = t ∈ ThModΦ.

Example 3.21: Any group satisfies the following equations:

x · (y · z) = (x · y) · z
x−1 · x = 1

x · x−1 = 1 (3.3.4)

x · 1 = x

1 · x = x.

2 Thus we think of the variables in ϕ as universally quantified. This terminology will make sense
after we have introduced the universal quantifier ∀ in Section 3.4.
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In fact, a group is defined to be any algebra over the signature of groups that

satisfies these five equations. A group is Abelian or commutative if it satisfies the

extra equation x · y = y · x.
The equational theory of groups is the set of equations that are true in all

groups. This is the set of logical consequences of the axioms (3.3.4).

Varieties

As noted in Example 3.21, the class of groups and the class of Abelian groups are

defined by sets of equations. Such classes are called equationally defined classes or

varieties .

Formally, a class C of Σ-algebras is an equationally defined class or variety if

there is a set of equations Φ over TΣ(X) such that C = ModΦ.

The following are examples of varieties:

Example 3.22: A semigroup is any structure with an associative binary opera-

tion · ; i.e., it is an algebraic structure over an alphabet consisting of a single binary

operator · and satisfying the equation x · (y · z) = (x · y) · z.

Example 3.23: Monoids are semigroups with a left and right identity element 1.

In other words, the nullary symbol 1 is added to the signature along with equations

1 · x = x and x · 1 = x.

Example 3.24: Rings are algebraic structures over the alphabet +, ·,−, 0, 1 of

arity 2, 2, 1, 0, 0, respectively, defined by equations that say that the structure

under the operations +,−, 0 forms an Abelian group, that the structure under the

operations ·, 1 forms a monoid, and that the following distributive laws describing

the interaction of the additive and multiplicative structure hold:

x · (y + z) = (x · y) + (x · z)
(x + y) · z = (x · z) + (y · z).
A ring is commutative if it satisfies the extra equation x · y = y · x.

Example 3.25: Semilattices and lattices as described in Section 1.5 are varieties.

Complete lattices are not (Exercise 3.34). The signature for lattices is ∨,∧,⊥,�
(join, meet, bottom, top) of arity 2, 2, 0, 0, respectively. The signature for semi-

lattices is ∨,⊥ only. No special symbol for ≤ is necessary, because x ≤ y can be

considered an abbreviation for x ∨ y = y. This is true for semilattices, but not for
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partial orders in general (Exercise 3.24).

Example 3.26: A Boolean algebra is an algebra over the signature described in

Example 3.17 satisfying (ii)–(viii) of Axiom System 3.13, regarding ↔ as equality

(see Exercise 3.8). Boolean algebra is the algebraic analog of propositional logic.

Example 3.27: A vector space over the real numbers R is an Abelian group

with a unary operator for each real number a denoting the operation of scalar

multiplication by a, and satisfying the following infinite set of equations:

a(x+ y) = ax+ ay

(a+ b)x = ax+ bx

(ab)x = a(bx)

for all a, b ∈ R. We can regard this as a Σ-algebra over an infinite Σ containing the

signature +,−, 0 of Abelian groups as well as infinitely many unary symbols, one

for each a ∈ R.

Theorem 3.28: Any variety C is closed under homomorphic images. In other

words, if h : A→ B is an epimorphism and A ∈ C, then B ∈ C.

Proof It suffices to show that if h : A→ B is an epimorphism and A � s = t, then

B � s = t.

Let X be a set of variables containing all the variables occurring in s and t.

Let v : TΣ(X) → B be an arbitrary valuation. Define the function u : X → A

such that h(u(x)) = v(x). This is always possible, since h is onto. The function u

extends uniquely to a homomorphism u : TΣ(X) → A. Since homomorphisms are

determined by their values on a generating set, and since the valuations u ◦ h and

v agree on the generating set X , they are equal.

Now since A � s = t, we have that u(s) = u(t). Then

v(s) = h(u(s)) = h(u(t)) = v(t).

Since v was arbitrary, B � s = t.

Lemma 3.29: Let h1 : A→ B1 and h2 : A→ B2 be homomorphisms defined on

A such that h1 is an epimorphism and ker h1 refines ker h2; that is, ker h1 ⊆ ker h2.

Then there exists a unique homomorphism g : B1 → B2 such that h2 = h1 ◦ g.
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A B1

B2
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h1

h2
g

h1 an epimorphism

ker h1 ⊆ ker h2

Proof Since h1 is an epimorphism, any element of B1 is of the form h1(a) for

some a ∈ A. To satisfy the lemma, we had better define g(h1(a)) = h2(a). This

determines the function g uniquely, provided it is well defined. But it is well defined,

for if a′ is any other element of A such that h1(a
′) = h1(a), then h2(a

′) = h2(a).

Moreover, g is a homomorphism: if bi = h1(ai), 1 ≤ i ≤ n, then

g(fB1(b1, . . . , bn)) = g(fB1(h1(a1), . . . , h1(an)))

= g(h1(f
A(a1, . . . , an)))

= h2(f
A(a1, . . . , an))

= fB2(h2(a1), . . . , h2(an))

= fB2(g(h1(a1)), . . . , g(h1(an)))

= fB2(g(b1), . . . , g(bn)).

Congruences

A congruence ≡ on a Σ-algebra A with carrier A is an equivalence relation on A

that respects the functions fA, f ∈ Σ, in the sense that

ai ≡ bi, 1 ≤ i ≤ n =⇒ fA(a1, . . . , an) ≡ fA(b1, . . . , bn). (3.3.5)

The ≡-congruence class of an element a is the set

[a]
def
= {b | b ≡ a}.

Since any congruence is an equivalence relation, the congruences classes partition

A in the sense that they are pairwise disjoint and their union is A (Section 1.3).

Example 3.30: The identity relation and the universal relation are always

congruences. They are the finest and coarsest congruences, respectively, on any

algebra. The congruence classes of the identity relation are all singleton sets, and

the universal relation has one congruence class consisting of all elements.
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Example 3.31: On the ring of integers Z, any positive integer n defines a

congruence

a ≡n b ⇐⇒ b− a is divisible by n.

In the number theory literature, this relation is commonly written a ≡ b (n) or

a ≡ b (mod n). There are n congruence classes, namely [0], [1], . . . , [n − 1]. The

congruence class [0] is the set of all multiples of n.

Example 3.32: An ideal of a commutative ring R is a nonempty subset I such

that if a, b ∈ I then a + b ∈ I, and if a ∈ I and b ∈ R, then ab ∈ I. If R is any

commutative ring and I is an ideal in R, then the relation

a ≡I b ⇐⇒ b− a ∈ I
is a congruence. This relation is often written a ≡ b (I). Conversely, given any

congruence ≡, the congruence class [0] is an ideal. Example 3.31 is a special case.

Example 3.33: A subgroup H of a group G is a normal (or self-conjugate)

subgroup of G, in symbols H �G, if for all x ∈ H and a ∈ G, a−1xa ∈ H. If G is any

group and H �G, then the relation

a ≡H b ⇐⇒ b−1a ∈ H

is a congruence. Conversely, given any congruence on G, the congruence class of

the identity element is a normal subgroup.

Let A be a Σ-algebra with carrier A and let S be any binary relation on A. By

considerations of Section 1.7, there is a unique minimal congruence on A containing

S, called the congruence closure of S. It is the least relation that contains S and is

closed under the monotone set operators

R �→ ι (3.3.6)

R �→ R− (3.3.7)

R �→ R ◦R (3.3.8)

R �→ {(fA(a1, . . . , an), f
A(b1, . . . , bn)) | f ∈ Σ and (ai, bi) ∈ R, 1 ≤ i ≤ n},(3.3.9)

corresponding to reflexivity, symmetry, transitivity, and congruence, respectively.

It follows from the results of Section 1.7 that the set of congruences on A

under the partial order of refinement forms a complete lattice. The meet of a set of

congruences ≡i is their intersection
⋂
i ≡i, and the join of the ≡i is the congruence
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generated by
⋃
i ≡i; that is, the smallest congruence containing all the ≡i.

The Quotient Construction

The following theorem shows that there is a strong relationship between homomor-

phisms and congruences. Its proof illustrates an important construction called the

quotient construction.

Theorem 3.34:

(i) The kernel of any homomorphism is a congruence.

(ii) Any congruence is the kernel of a homomorphism.

Proof Statement (i) follows in a straightforward way from the definition of homo-

morphism and congruence and is left as an exercise (Exercise 3.17).

To show (ii), we need to construct, given a congruence ≡ on A, a Σ-algebra

B and a homomorphism h : A → B with kernel ≡. It will turn out that the

homomorphism h we construct is an epimorphism; thus B is a homomorphic image

of A. Moreover, up to isomorphism, B is the unique homomorphic image of A

under a homomorphism with kernel ≡. This construction is known as the quotient

construction.

Let A be the carrier of A. For a ∈ A, let [a] denote the ≡-congruence class of

a, and define

A/≡ def
= {[a] | a ∈ A}.

Define the Σ-algebra

A/≡ def
= (A/≡, mA/≡)

where

fA/≡([a1], . . . , [an])
def
= [fA(a1, . . . , an)]. (3.3.10)

We must argue that the function fA/≡ is well defined; that is, if [ai] = [bi] for

1 ≤ i ≤ n, then [fA(a1, . . . , an)] = [fA(b1, . . . , bn)]. But this is precisely (3.3.5).

The Σ-algebra A/≡ is called the quotient of A by ≡ or A modulo ≡. Moreover,

by (3.3.10), the map a �→ [a] is a homomorphism A → A/ ≡, which we call the

canonical homomorphism. Since [a] = [b] iff a ≡ b, the kernel of the canonical

homomorphism is ≡.
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In Example 3.31, the quotient Z/ ≡n is the ring of integers modulo n. In

Example 3.32, we defined a congruence ≡I on a commutative ring in terms of

an ideal I. Similarly, in Example 3.33, we defined a congruence ≡H on a group

G in terms of a normal subgroup H. By Theorem 3.34, these congruences are

kernels of homomorphisms. In ring theory and group theory, the kernel is normally

defined to be the ideal or normal subgroup itself, not the congruence it generates.

However, there is a one-to-one correspondence between congruences and ideals of

a commutative ring and between congruences and normal subgroups of a group, so

the definition of kernel as given in (3.3.3) subsumes these as special cases.

The relationship between congruences and homomorphisms is even stronger

than Theorem 3.34 would suggest. As mentioned in Section 3.3, the set of congru-

ences on A under the partial order of refinement forms a complete lattice. Similarly,

consider the class of all epimorphisms with domain A. For two such epimorphisms

h1 : A→ B1 and h2 : A→ B2, let us write h1 ≤ h2 if there exists an epimorphism

g : B1 → B2 such that h2 = h1 ◦ g and h1 ≈ h2 if both h1 ≤ h2 and h2 ≤ h1. Using

Lemma 3.29, one can show that h1 ≈ h2 iff there is an isomorphism ι : B1 → B2

such that h2 = h1 ◦ ι (Exercise 3.19). The set of ≈-classes of epimorphisms on A

forms a complete lattice under the partial order ≤.

Theorem 3.35: Up to ≈, the congruences on A and the epimorphisms on A are

in one-to-one correspondence under the map that associates an epimorphism with

its kernel. This correspondence is an isomorphism of lattices.

Proof Exercise 3.20.

Free Algebras

One recurring phenomenon in algebra that turns out to be very useful is the notion

of a free algebra. The essential idea is that for any set Φ of equations and for any

set Y , there is an algebra generated by Y that satisfies Φ and all of its logical

consequences, but no more. Thus it is as “free” of extra equations as possible,

satisfying only those equations it is forced to satisfy by Φ. The free algebra is

unique up to isomorphism.

The free algebra on generators Y satisfying Φ can be constructed as the quotient

of TΣ(Y ) modulo the smallest congruence containing all substitution instances over

TΣ(Y ) of equations in Φ. We denote this quotient by TΣ(Y )/Φ.

In more detail, assume that Φ is a set of equations over TΣ(X). (No relationship

between X and Y is assumed.) Let ≡ be the smallest congruence on TΣ(Y )
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containing all pairs u(s) ≡ u(t) for any substitution u : TΣ(X) → TΣ(Y ) and

s = t ∈ Φ. For example, if f, g, a ∈ Σ are of arity 2, 1, 0 respectively, x, y ∈ X ,

z, w ∈ Y , and f(x, y) = f(y, x) is in Φ, then f(g(z), f(a, w)) ≡ f(f(a, w), g(z)).

The algebra TΣ(Y )/Φ is defined to be the quotient TΣ(Y )/≡.
The following theorem asserts formally the key property of “freeness” that we

described intuitively above.

Theorem 3.36:

(i) TΣ(Y )/Φ is a model of Φ;

(ii) for any model A of Φ and for any valuation u : TΣ(Y )→ A, there exists a unique

homomorphism v : TΣ(Y )/Φ→ A such that u = [ ]◦v, where [ ] : TΣ(Y )→ TΣ(Y )/Φ

is the canonical homomorphism.

TΣ(Y ) TΣ(Y )/Φ

A

�
�
�
�
��� �

[ ]

u v

Proof (i) Let u : TΣ(X) → TΣ(Y )/Φ be any valuation and let s = t be any

equation in Φ. We wish to show that TΣ(Y )/Φ, u � s = t; that is, u(s) = u(t). For

x ∈ X , let v(x) ∈ TΣ(Y ) be any element of the congruence class u(x). Then for

any x ∈ X , u(x) = [v(x)]. Extend v to a substitution v : TΣ(X) → TΣ(Y ). Since

the two valuations u and v ◦ [ ] agree on the generating set X , they are equal. But

v(s) ≡ v(t) by definition of ≡, therefore u(s) = u(t) and TΣ(Y )/Φ, u � s = t. Since

u was arbitrary, TΣ(Y )/Φ � s = t.

(ii) The kernel of u is a congruence, and since A � Φ, it contains all substitution

instances of equations in Φ. Since ≡, the kernel of the canonical homomorphism

[ ], is the minimal such congruence, ≡ refines ker u. The result then follows from

Lemma 3.29.

Example 3.37: The free monoid on generators A is the asterate A∗, the set of

finite length strings over A with the operation of concatenation and identity element

ε, the empty string.

Example 3.38: The free commutative ring on generators X is the ring of poly-

nomials Z[X ]. In particular, the free commutative ring on no generators is Z.
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Example 3.39: The free vector space over R on n generators is just the Euclidean

space Rn.

A Deductive System

A sound and complete deductive system for equational logic can be obtained from

the definition of congruence.

Axiom System 3.40:

(REF) s = s

(SYM)
s = t

t = s

(TRANS)
s = t, t = u

s = u

(CONG)
si = ti, 1 ≤ i ≤ n

f(s1, . . . , sn) = f(t1, . . . , tn)
.

These are the laws of reflexivity, symmetry, transitivity, and congruence, respec-

tively. Let X be a set of variables and let Φ be a set of equations over TΣ(X). A

proof of an equation s = t from assumptions Φ in this system consists of a sequence

of equations containing s = t in which each equation is either

• a substitution instance of an equation in Φ, or

• a consequence of an axiom or rule whose premises occur earlier in the sequence.

We write Φ � s = t if there is a proof of s = t from assumptions Φ.

Starting from a set of equations A on a term algebra, the four rules of Axiom

System 3.40 generate exactly the congruence closure of A. This is because the

rules implement exactly the monotone operators (3.3.6)–(3.3.9) defining congruence

closure. If A is the set of all substitution instances over TΣ(Y ) of equations in Φ, the

rules will therefore generate exactly those pairs s = t such that TΣ(Y )/Φ, [ ] � s = t.

Theorem 3.41 (Soundness and Completeness of Equational Logic):

Let Φ be a set of equations over TΣ(X) and let s = t be an equation over TΣ(Y ).

Let [ ] : TΣ(Y ) → TΣ(Y )/Φ be the canonical homomorphism. The following three

statements are equivalent:

(i) Φ � s = t;
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(ii) [s] = [t];

(iii) s = t ∈ ThModΦ.

Proof (i)⇐⇒ (ii) The four rules of Axiom System 3.40 implement exactly the four

monotone set operators (3.3.6)–(3.3.9) on TΣ(Y ) defining congruence closure. Let

T be this set of operators and let T † be the associated closure operator as described

in Section 1.7. Let R be the set of substitution instances over TΣ(Y ) of equations

in Φ. By Theorem 1.12, T †(R) is the congruence closure of R, and this is ker [ ] by

definition. But by the definition of proof,

{s = t | Φ � s = t} = Tω(R),

and Tω(R) = T †(R) since the operators T are finitary (Exercises 1.17 and 1.18).

(iii) =⇒ (ii) Since [s] = [t] iff TΣ(Y )/Φ, [ ] � s = t, this follows immediately

from Theorem 3.36(i).

(ii) =⇒ (iii) Let A be any model of Φ. By Theorem 3.36(ii), for any valuation

u : TΣ(Y ) → A there exists a valuation v : TΣ(Y )/Φ → A such that u = [ ] ◦ v.
Since [s] = [t] by assumption, we have u(s) = v([s]) = v([t]) = u(t). Since u was

arbitrary, A � s = t. Since A was arbitrary, s = t is a logical consequence of Φ.

The HSP Theorem

We conclude this section with a remarkable theorem of Birkhoff that characterizes

varieties in terms of closure properties. It states that a class of algebras is a variety—

that is, it is defined by equations—if and only if it is closed under the formation of

subalgebras, products, and homomorphic images.

Homomorphic images and subalgebras were defined in Section 3.3. Products

are defined as follows. Recall from Section 1.2 that if {Ai | i ∈ I} is an indexed

family of sets, the Cartesian product of the Ai is the set
∏
i∈I Ai of all functions

a : I → ⋃
i∈I Ai such that a(i) ∈ Ai. We write ai for a(i) and think of an

element a ∈ ∏
i∈I Ai as a tuple (ai | i ∈ I) whose components are indexed by

I. If {Ai | i ∈ I} is an indexed family of algebras, where the carrier of Ai is Ai,

the product A =
∏
i∈I Ai is the algebra whose carrier is A =

∏
i∈I Ai and whose

distinguished functions fA : An → A are defined componentwise: fA(a)i = fAi(ai).

Let Φ be a set of equations over variablesX . Recall from Section 3.3 thatModΦ

denotes the class of models of Φ, that is, ModΦ = {A | A � Φ}; if A is a Σ-algebra,

then ThA denotes the set of equations valid in A; and if D is a class of Σ-algebras,

then ThD denotes the set of equations valid in all elements of D. Recall that a

variety is a class of algebras of the form ModΦ for some set of equations Φ.
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We define the operators H, S, and P that when applied to a class D of algebras

give the class of (isomorphic copies of) homomorphic images, subalgebras, and

products of algebras in D, respectively. Thus we write HSPD for the class of

all homomorphic images of subalgebras of products of algebras in D. We write

{H,S,P}∗D for the smallest class of algebras containing D and closed under the

formation of homomorphic images, subalgebras, and products.

Theorem 3.42: Let D be a class of algebras. Then

ModThD = HSPD = {H,S,P}∗D.

Proof We show first that {H,S,P}∗D ⊆ ModThD. Surely D ⊆ ModThD.

Any product of algebras satisfying ThD also satisfies ThD, because an equation

holds in the product iff it holds in all the factor algebras. Any subalgebra of an

algebra A satisfying ThD also satisfies ThD, because any valuation over the

subalgebra is a valuation over A, therefore must verify any equation in ThD.

Finally, any homomorphic image of an algebra satisfying ThD also satisfies ThD

by Theorem 3.28.

The inclusion HSPD ⊆ {H,S,P}∗D is obvious.

Finally, we show that ModThD ⊆ HSPD. Suppose A ∈ ModThD. We

wish to show that A ∈ HSPD. Let B be any set of generators of A. Considering B

as just a set, form the free algebra TΣ(B)/ThD. By Theorem 3.36(ii), the valuation

ι : TΣ(B)→ A such that ι � B is the identity factors through TΣ(B)/ThD, giving

a homomorphism ι′ : TΣ(B)/ThD→ A.

TΣ(B) TΣ(B)/ThD

A

�
�
�
�
��� �

[ ]

ι ι′

Moreover, since B generates A, ι′ is an epimorphism, thus A is a homomorphic

image of TΣ(B)/ThD. It thus suffices to show that TΣ(B)/ThD ∈ SPD.

For each pair s, t in TΣ(B) such that [s] 
= [t], the equation s = t cannot be in

ThD. Thus there must exist an algebraBs,t ∈ D and valuation us,t : TΣ(B)→ Bs,t

such that us,t(s) 
= us,t(t). Set

B =
∏

[s] 
=[t]

Bs,t
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and let u : TΣ(B)→ B be the valuation

u(r) =
∏

[s] 
=[t]

us,t(r).

Since all components Bs,t are models of ThD, so is their product B. By Theorem

3.36(ii), u factors through TΣ(B)/ThD as [ ] ◦ v, where v : TΣ(B)/ThD → B.

Moreover, v is injective, since if [s] 
= [t], then v(s) 
= v(t) in at least one component,

namely Bs,t. Thus TΣ(B)/ThD is isomorphic under v to a subalgebra of the

product B.

Corollary 3.43 (Birkhoff): Let D be a class of Σ-algebras. The following

are equivalent:

(i) D is a variety;

(ii) D = HSPD;

(iii) D = {H,S,P}∗D.

Proof That (ii) and (iii) are equivalent and imply (i) are immediate from Theorem

3.42. That (i) implies (ii) follows from Theorem 3.42 and the fact that for any set

of formulas Φ, ModΦ = ModThModΦ (Exercise 3.21).

3.4 Predicate Logic

First-order predicate logic is the logic of predicates and quantification (∀, ∃) over

elements of a structure.

Syntax

Syntactically, we start with a countable signature as with equational logic, except

that we include some relation or predicate symbols p, q, r, . . . in addition to the func-

tion symbols f, g, . . . . A signature or vocabulary then consists of a set Σ of function

and relation symbols, each with an associated arity (number of inputs). Function

and relation symbols of arity 0, 1, 2, 3, and n are called nullary, unary, binary,

ternary, and n-ary, respectively. Nullary elements are often called constants. One

of the relation symbols may be the binary equality symbol =. In most applications,

Σ is finite.

The language consists of:
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• the function and relation symbols in Σ

• a countable set X of individual variables x, y, . . .

• the propositional connectives → and 0

• the universal quantifier symbol ∀ (“for all”)

• parentheses.

As in Section 3.2, the other propositional connectives ∨, ∧, 1, ¬, and ↔ can

all be defined in terms of → and 0. Similarly, we will define below the existential

quantifier ∃ (“there exists”) in terms of ∀.
Terms s, t, . . . are exactly as in equational logic (see Section 3.3). A term is a

ground term if it contains no variables.

Formulas ϕ, ψ, . . . are defined inductively. A formula is either

• an atomic formula p(t1, . . . , tn), where p is an n-ary relation symbol and t1, . . . , tn
are terms; or

• ϕ→ ψ, 0, or ∀x ϕ, where ϕ and ψ are formulas and x is a variable.

Intuitively, in the formula ∀x ϕ, we think of ϕ as a property of an object x; then

the formula ∀x ϕ says that that property ϕ holds for all objects x.

The other propositional operators are defined from → and 0 as described in

Section 3.2. The quantifier ∃ is defined as follows:

∃x ϕ def⇐⇒ ¬∀x ¬ϕ. (3.4.1)

Intuitively, in the formula ∃x ϕ, we again think of ϕ as a property of an object

x; then the formula ∃x ϕ says that that there exists an object x for which the

property ϕ holds. The formal definition (3.4.1) asserts the idea that there exists an

x for which ϕ is true if and only if it is not the case that for all x, ϕ is false.

As with propositional logic, we will assume a natural precedence of the operators

and use parentheses where necessary to ensure that a formula can be read in one

and only one way. The precedence of the propositional operators is the same as in

Section 3.2. The quantifier ∀ binds more tightly than the propositional operators;

thus ∀x ϕ→ ψ should be parsed as (∀x ϕ)→ ψ.

The family of languages we have just defined will be denoted collectively by

Lωω. The two subscripts ω refer to the fact that we allow only finite (that is, < ω)

conjunctions and disjunctions and finitely many variables.

Example 3.44: The first-order language of number theory is suitable for express-

ing properties of the natural numbers N. The signature consists of binary function
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symbols + and · (written in infix), constants 0 and 1, and binary relation symbol

= (also written in infix). A typical term is (x+ 1) · y and a typical atomic formula

is x+ y = z. The formula

∀x ∃y (x ≤ y ∧ ∀z (z | y → (z = 1 ∨ z = y)))

expresses the statement that there are infinitely many primes. Here s ≤ t is an

abbreviation for ∃w s + w = t and s | t (read “s divides t”) is an abbreviation for

∃w s · w = t.

Scope, Bound and Free Variables

Let Q be either ∀ or ∃. If Qx ϕ occurs as a subformula of some formula ψ, then

that occurrence of ϕ in ψ is called the scope of that occurrence of Qx in ψ. An

occurrence of a variable y in ψ that occurs in a term is a free occurrence of y in ψ if

it is not in the scope of any quantifier Qy with the same variable y. If Qy ϕ occurs

as a subformula of ψ and y occurs free in ϕ, then that occurrence of y is said to be

bound to that occurrence of Qy. Thus an occurrence of y in ψ is bound to the Qy

with smallest scope containing that occurrence of y, if such a Qy exists; otherwise

it is free.

We say that a term t is free for y in ϕ if no free occurrence of y in ϕ occurs in

the scope of a quantifier Qx, where x occurs in t. This condition says that it is safe

to substitute t for free occurrences of y in ϕ without fear of some variable x of t

being inadvertently captured by a quantifier.

Example 3.45: In the formula

∃x ((∀y ∃x q(x, y)) ∧ p(x, y, z)),
the scope of the first ∃x is (∀y ∃x q(x, y)) ∧ p(x, y, z), the scope of the ∀y is

∃x q(x, y), and the scope of the second ∃x is q(x, y). The occurrence of x in

q(x, y) is bound to the second ∃x. The x in p(x, y, z) occurs free in the subformula

(∀y ∃x q(x, y))∧p(x, y, z) but is bound to the first ∃x. The occurrence of y in q(x, y)

is bound to the ∀y, but the occurrence of y in p(x, y, z) is free. The only occurrence

of z in the formula is a free occurrence. The term f(x) is not free for either y or z

in the formula, because substitution of f(x) for y or z would result in the capture

of x by the first ∃x.

Note that the adjectives “free” and “bound” apply not to variables but to oc-

currences of variables in a formula. A formula may have free and bound occurrences
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of the same variable. For example, the variable y in the formula of Example 3.45

has one free and one bound occurrence. Note also that occurrences of variables in

quantifiers—occurrences of the form ∀y and ∃y—do not figure in the definition of

free and bound.

A variable is called a free variable of a formula ϕ if it has a free occurrence in

ϕ. The notation ϕ[x1/t1, . . . , xn/tn] or ϕ[xi/ti | 1 ≤ i ≤ n] denotes the formula ϕ

with all free occurrences of xi replaced with ti, 1 ≤ i ≤ n. The substitution is done

for all variables simultaneously. Note that ϕ[x/s, y/t] can differ from ϕ[x/s][y/t] if

s has an occurrence of y. Although notationally similar, the substitution operator

[x/t] should not be confused with the function-patching operator defined in Section

1.3.

We occasionally write ϕ(x1, . . . , xn) to indicate that all free variables of ϕ are

among x1, . . . , xn. The variables x1, . . . , xn need not all appear in ϕ(x1, . . . , xn),

however. When ϕ = ϕ(x1, . . . , xn), we sometimes write ϕ(t1, . . . , tn) instead of

ϕ[x1/t1, . . . , xn/tn].

A formula is a closed formula or sentence if it contains no free variables. The

universal closure of a formula ϕ is the sentence obtained by preceding ϕ with enough

universal quantifiers ∀x to bind all the free variables of ϕ.

Semantics

A relational structure over signature Σ is a structure A = (A, mA) where A is a

nonempty set, called the carrier or domain of A, and mA is a function assigning

an n-ary function fA : An → A to each n-ary function symbol f ∈ Σ and an n-ary

relation pA ⊆ An to each n-ary relation symbol p ∈ Σ. As with equational logic,

nullary functions are considered elements of A; thus constant symbols c ∈ Σ are

interpreted as elements cA ∈ A.
As in equational logic, we define a valuation to be a Σ-homomorphism u :

TΣ(X) → A. A valuation u is uniquely determined by its values on the variables

X .

Given a valuation u, we define u[x/a] to be the new valuation obtained from u

by changing the value of x to a and leaving the values of the other variables intact;

thus

u[x/a](y)
def
= u(y), y 
= x,

u[x/a](x)
def
= a.

This is the same as in equational logic.
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The satisfaction relation � is defined inductively as follows:

A, u � p(t1, . . . , tn) def⇐⇒ pA(u(t1), . . . , u(tn))

A, u � ϕ→ ψ
def⇐⇒ (A, u � ϕ =⇒ A, u � ψ)

A, u � ∀x ϕ def⇐⇒ for all a ∈ A, A, u[x/a] � ϕ.
It follows that

A, u � ϕ ∨ ψ ⇐⇒ A, u � ϕ or A, u � ψ
A, u � ϕ ∧ ψ ⇐⇒ A, u � ϕ and A, u � ψ

A, u � ¬ϕ ⇐⇒ A, u � ϕ; that is, if it is not the case that A, u � ϕ
A, u � ∃x ϕ ⇐⇒ there exists an a ∈ A such that A, u[x/a] � ϕ.

Also, A, u � 0 and A, u � 1.

If A, u � ϕ, we say that ϕ is true in A under valuation u, or that A, u is a model

of ϕ, or that A, u satisfies ϕ. If Φ is a set of formulas, we write A, u � Φ if A, u � ϕ
for all ϕ ∈ Φ and say that A, u satisfies Φ. If ϕ is true in all models of Φ, we write

Φ � ϕ and say that ϕ is a logical consequence3 of Φ. If ∅ � ϕ, we write � ϕ and say

that ϕ is valid .

It can be shown that if ϕ is a sentence, then � does not depend on the valuation

u; that is, if A, u � ϕ for some u, then A, u � ϕ for all u (Exercise 3.29). In this

case, we omit the u and just write A � ϕ. If Φ is a set of sentences, then A � Φ

means that A � ϕ for all ϕ ∈ Φ.

Two formulas ϕ, ψ are said to be logically equivalent if � ϕ↔ ψ.

The following lemma establishes a relationship between the function-patching

operator [x/a] on valuations and the substitution operator [x/t] on terms and

formulas.

Lemma 3.46:

(i) For any valuation u and terms s, t ∈ TΣ(X),

u[x/u(t)](s) = u(s[x/t]).

(ii) If t is free for x in ϕ, then

A, u[x/u(t)] � ϕ ⇐⇒ A, u � ϕ[x/t].

3 This notion of logical consequence is slightly different from the one used in equational logic
(Section 3.3). There, the free variables of formulas were assumed to be implicitly universally
quantified. We abandon that assumption here because we have explicit quantification.
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Proof (i) Proceeding by induction on the structure of s, if s is the variable x,

then

u[x/u(t)](x) = u(t) = u(x[x/t]).

If s is a variable y different from x, then

u[x/u(t)](y) = u(y) = u(y[x/t]).

Finally, if s = f(t1, . . . , tn), then

u[x/u(t)](f(t1, . . . , tn)) = fA(u[x/u(t)](t1), . . . , u[x/u(t)](tn))

= fA(u(t1[x/t]), . . . , u(tn[x/t]))

= u(f(t1[x/t], . . . , tn[x/t]))

= u(f(t1, . . . , tn)[x/t]).

(ii) We proceed by induction on the structure of ϕ. For atomic formulas, using (i)

we have that

A, u[x/u(t)] � p(t1, . . . , tn) ⇐⇒ pA(u[x/u(t)](t1), . . . , u[x/u(t)](tn))

⇐⇒ pA(u(t1[x/t]), . . . , u(tn[x/t]))

⇐⇒ A, u � p(t1[x/t], . . . , tn[x/t])
⇐⇒ A, u � p(t1, . . . , tn)[x/t].

For formulas of the form ϕ → ψ, if t is free for x in ϕ → ψ, then t is free for x in

both ϕ and ψ. Then

A, u[x/u(t)] � ϕ→ ψ ⇐⇒ (A, u[x/u(t)] � ϕ =⇒ A, u[x/u(t)] � ψ)
⇐⇒ (A, u � ϕ[x/t] =⇒ A, u � ψ[x/t])
⇐⇒ A, u � ϕ[x/t]→ ψ[x/t]

⇐⇒ A, u � (ϕ→ ψ)[x/t].

Finally, for formulas of the form ∀y ϕ, if x has no free occurrence in ∀y ϕ, then
the result is a straightforward consequence of Exercise 3.29. This includes the case

y = x. Otherwise, y is different from x and t is free for x in ϕ. Since ϕ contains a free

occurrence of x, t must not contain an occurrence of y, therefore u(t) = u[y/a](t).
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Then

A, u[x/u(t)] � ∀y ϕ ⇐⇒ for all a ∈ A, A, u[x/u(t)][y/a] � ϕ
⇐⇒ for all a ∈ A, A, u[y/a][x/u(t)] � ϕ
⇐⇒ for all a ∈ A, A, u[y/a][x/u[y/a](t)] � ϕ
⇐⇒ for all a ∈ A, A, u[y/a] � ϕ[x/t]
⇐⇒ A, u � ∀y (ϕ[x/t])

⇐⇒ A, u � (∀y ϕ)[x/t].

Lemma 3.47: The following formulas are valid under the provisos indicated:

(i) ∀x (ϕ→ ψ) → (∀x ϕ→ ∀x ψ);
(ii) ∀x ϕ → ϕ[x/t], provided t is free for x in ϕ;

(iii) ϕ→ ∀x ϕ, provided x does not occur free in ϕ.

Proof (i) Suppose that A, u � ∀x (ϕ→ ψ) and A, u � ∀x ϕ. Then for any a ∈ A,

A, u[x/a] � ϕ→ ψ and A, u[x/a] � ϕ. By the semantics of →,

A, u[x/a] � ϕ =⇒ A, u[x/a] � ψ,

therefore A, u[x/a] � ψ. Since a was arbitrary, A, u � ∀x ψ. We have shown that

A, u � ∀x (ϕ→ ψ) =⇒ (A, u � ∀x ϕ =⇒ A, u � ∀x ψ),

which by the semantics of → implies that

A, u � ∀x (ϕ→ ψ) → (∀x ϕ→ ∀x ψ).

Since A and u were arbitrary, (i) is valid.

(ii) If A, u � ∀x ϕ, then A, u[x/u(t)] � ϕ. Since t is free for x in ϕ, by Lemma

3.46(ii), A, u � ϕ[x/t]. Thus A, u � ∀x ϕ → ϕ[x/t]. Since A, u was arbitrary,

∀x ϕ→ ϕ[x/t] is valid.

(iii) Since the truth value of A, u � ϕ is independent of u(x) if x does not

occur free in ϕ (Exercise 3.29), we have

A, u � ϕ =⇒ for any a ∈ A, A, u[x/a] � ϕ
=⇒ A, u � ∀x ϕ.
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Combining these implications, we have

A, u � ϕ→ ∀x ϕ.

Prenex Form

A formula is in prenex form if it is of the form

Q1x1 Q2x2 . . . Qkxk ϕ,

where each Qi is either ∀ or ∃ and ϕ is quantifier-free. The following lemmas will

allow us to transform any formula to an equivalent formula in prenex form.

Lemma 3.48 (Change of bound variable): If y is free for x in ϕ and if y

does not occur free in ϕ, then the formula

∀x ϕ ↔ ∀y ϕ[x/y]
is valid.

Proof (→) By Lemma 3.47(ii), the formula

∀x ϕ → ϕ[x/y]

is valid, therefore so is

∀y (∀x ϕ → ϕ[x/y]).

But then

∀y ∀x ϕ → ∀y ϕ[x/y]
∀x ϕ → ∀y ∀x ϕ

are valid by Lemma 3.47(i) and (iii) respectively, therefore

∀x ϕ → ∀y ϕ[x/y]
is valid.

(←) Since y is free for x in ϕ, every free occurrence of x in ϕ turns into a free

occurrence of y in ϕ[x/y]. Since y does not occur free in ϕ, every free occurrence of

y in ϕ[x/y] must have come from a free occurrence of x in ϕ. Also, x does not occur

free in ϕ[x/y], since y was substituted for all free occurrences of x; and x is free
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for y in ϕ[x/y], since y could not have replaced a bound occurrence of x. It follows

that ϕ[x/y][y/x] = ϕ, thus the situation is completely symmetric to the previous

case, and the reverse implication follows from the argument above.

Neither of the two provisos in the statement of Lemma 3.48 can be omitted.

We must have y free for x in ϕ, as can be seen by taking ϕ to be the formula

∃y y = x + 1 interpreted over N; and we must not have y occurring free in ϕ, as

can be seen by taking ϕ to be the formula y 
= x+ 1 interpreted over N.
The practical significance of Lemma 3.48 is that it can be used to change bound

variable names to avoid capture during substitution. Say we wish to substitute into

a formula ϕ a term t with an occurrence of x that would be captured by a quantifier

∀x. We can avoid the capture by replacing the x in the quantifier ∀x and all free

occurrences of x in the scope of the ∀x with y, where y is a new variable (one with

no occurrences in ϕ). The lemma says that the resulting formula is equivalent.

Lemma 3.49: If x does not occur free in ψ, then the following formulas are valid:

(∀x ϕ)→ ψ ↔ ∃x (ϕ→ ψ)

(∃x ϕ)→ ψ ↔ ∀x (ϕ→ ψ)

ψ → (∀x ϕ) ↔ ∀x (ψ → ϕ)

ψ → (∃x ϕ) ↔ ∃x (ψ → ϕ).

Proof Exercise 3.31.

A special case of the first two formulas of Lemma 3.49 are the formulas

¬∀x ϕ ↔ ∃x ¬ϕ
¬∃x ϕ ↔ ∀x ¬ϕ,
which are essentially the definition of ∃.

Lemma 3.50 (Prenex Form): Every formula is equivalent to a formula in

prenex form.

Proof Quantifiers can be moved outward outside all occurrences of the proposi-

tional operator → by applying the rules of Lemma 3.49 from left to right. If we

wish to apply one of these rules at some point and cannot because of the proviso

regarding free variables, then Lemma 3.48 can be used to rename the bound vari-

ables.
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A Deductive System

In this section we give a complete Hilbert-style deductive system for first-order

logic.

Axiom System 3.51: The axioms of our deductive system consist of the laws of

propositional logic and the universal closures of the valid formulas of Lemma 3.47:

(i) ∀x (ϕ→ ψ) → (∀x ϕ→ ∀x ψ);
(ii) ∀x ϕ → ϕ[x/t], provided t is free for x in ϕ;

(iii) ϕ→ ∀x ϕ, provided x does not occur free in ϕ.

There are two rules of inference:

(MP)
ϕ, ϕ→ ψ

ψ

(GEN)
ϕ

∀x ϕ .

When reasoning in the presence of assumptions, the rule (GEN) may only be applied

with the proviso that x does not occur free in any assumption.

The rule (MP) is the rule modus ponens of propositional logic (Section 3.2). The

rule (GEN) is known as the generalization rule.

This system is easily shown to be sound (Exercise 3.32). Intuitively, the gen-

eralization rule is sound because if one could prove ϕ(x) without any assumptions

about x, then ϕ(x) is true for arbitrary x.

The Deduction Theorem

Theorem 3.52 (Deduction Theorem): For any set of formulas Φ and for-

mulas ϕ, ψ,

Φ ∪ {ϕ} � ψ ⇐⇒ Φ � ϕ→ ψ.

Proof The proof is identical to the corresponding proof for propositional logic

(Theorem 3.9), except that in the direction (=⇒) there is an extra case for the

rule (GEN). Suppose Φ ∪ {ϕ} � ∀x ψ by an application of the rule (GEN). Then

Φ ∪ {ϕ} � ψ by a shorter proof, and x is not free in ϕ or any formula of Φ. By the

induction hypothesis, Φ � ϕ → ψ. By (GEN), Φ � ∀x (ϕ → ψ). By Axiom 3.51(i)
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and an application of modus ponens,

Φ � ∀x ϕ→ ∀x ψ.
But since x does not occur free in ϕ, by Axiom 3.51(iii) and the transitivity of

implication we have

Φ � ϕ→ ∀x ψ.

Completeness

As with propositional logic, we will prove completeness of the system 3.51 by proving

that every consistent set of formulas Φ, finite or infinite, has a model. However, the

situation is complicated somewhat by the presence of quantifiers. We must ensure

that the model we construct contains a witness a for every existential formula ∃xψ
in Φ. We use a technique of Henkin (1949) in which we include extra variables to

provide these witnesses.

We augment the language with the new variables as follows. Let X0 be the

original set of variables, and let L0 be the original set of formulas over these

variables. Now supposeXn and Ln have been constructed. For each formula ϕ ∈ Ln,
let xϕ be a new variable. Let

Xn+1
def
= Xn ∪ {xϕ | ϕ ∈ Ln},

and let Ln+1 be the language augmented with these new variables. Let

Xω
def
=

⋃
n

Xn

Lω
def
=

⋃
n

Ln.

The sets Xω and Lω are still countable, because they are countable unions of

countable sets (Exercise 1.21).

Now let Ψ ⊆ Lω be the set of all formulas of the form

∃x ψ → ψ[x/x∃xψ]. (3.4.2)

Intuitively, this formula says that if there exists an element x satisfying ψ at all,

then the value of x∃xψ gives such an element.
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Lemma 3.53: Let Φ ⊆ L0. If Φ is consistent, then so is Φ ∪Ψ.

Proof Suppose Φ ∪ Ψ is refutable. Then there is a minimal finite subset Ψ′ of Ψ
such that Φ ∪Ψ′ is refutable. Also, there must be an existential formula ϕ = ∃x ψ
and ϕ→ ψ[x/xϕ] ∈ Ψ′ such that xϕ does not appear in any other formula in Φ∪Ψ′:
surely xϕ does not occur in any formula of Φ, since Φ ⊆ L0; and if xϕ occurs in

∃yρ→ ρ[y/x∃yρ] ∈ Ψ′, then xϕ occurs in ∃yρ, therefore x∃yρ was introduced strictly

later in the inductive definition of Xω. This can be avoided by choosing xϕ to be

the latest such variable introduced among those appearing in Ψ′.
Let Ψ′′ def

= Ψ′ − {ϕ→ ψ[x/xϕ]}. Then
Φ ∪Ψ′′ ∪ {ϕ→ ψ[x/xϕ]} � 0,

therefore by the deduction theorem (Theorem 3.52),

Φ ∪Ψ′′ � ¬(ϕ→ ψ[x/xϕ]).

By propositional logic, we have

Φ ∪Ψ′′ � ϕ

Φ ∪Ψ′′ � ¬ψ[x/xϕ].
By (GEN),

Φ ∪Ψ′′ � ∀xϕ ¬ψ[x/xϕ];
changing the bound variable (Exercise 3.30) then gives

Φ ∪Ψ′′ � ∀x ¬ψ.
Since ϕ = ∃x ψ, this leads immediately to a refutation of Φ∪Ψ′′, contradicting the

minimality of Ψ′.

Theorem 3.54 (Completeness): The deductive system (3.51) is complete;

that is, any consistent set of formulas has a model.

Proof Suppose Φ is consistent. By Lemma 3.53, so is Φ ∪ Ψ. Extend Φ ∪ Ψ to a

maximal consistent set Φ̂ as in the proof of Lemma 3.10. As argued there, for all

ϕ ∈ Lω, either ϕ ∈ Φ̂ or ¬ϕ ∈ Φ̂, and Φ̂ is deductively closed in the sense that if

Φ̂ � ψ then ψ ∈ Φ̂.

Now we construct a model A from Φ̂. The domain of A will be the set of terms
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TΣ(Xω). The function symbols f are interpreted in A syntactically:

fA(t1, . . . , tn)
def
= f(t1, . . . , tn).

The truth value of atomic formulas is defined as follows:

pA(t1, . . . , tn) = 1
def⇐⇒ p(t1, . . . , tn) ∈ Φ̂.

Let u : Xω → TΣ(Xω) be the valuation x �→ x. The unique homomorphic

extension u : TΣ(Xω) → TΣ(Xω) is the identity map. (Here all terms, including

variables x, are both syntactic and semantic objects.) We prove by induction on

the structure of formulas that for all ϕ ∈ Lω,

A, u � ϕ ⇐⇒ ϕ ∈ Φ̂.

The basis of the induction,

A, u � p(t1, . . . , tn) ⇐⇒ p(t1, . . . , tn) ∈ Φ̂,

is by the definition of pA. The inductive argument for → is the same as in the

propositional case (Lemma 3.10). Finally, for the case of the existential quantifier,

we show that

A, u � ∃y ϕ ⇐⇒ ∃y ϕ ∈ Φ̂.

By the definition of the meaning of ∃,

A, u � ∃y ϕ ⇐⇒ ∃t ∈ TΣ(Xω) A, u[y/t] � ϕ.

Assume without loss of generality that all quantified variables in ϕ have been

renamed so as to be different from variables appearing in t; thus t is free for y

in ϕ. Then

∃t ∈ TΣ(Xω) A, u[y/t] � ϕ
⇐⇒ ∃t ∈ TΣ(Xω) A, u � ϕ[y/t] by Lemma 3.46(ii)

⇐⇒ ∃t ∈ TΣ(Xω) ϕ[y/t] ∈ Φ̂ by the induction hypothesis

⇐⇒ ∃y ϕ ∈ Φ̂.

In the last step, the direction (=⇒) is from Axiom 3.51(ii) and the direction (⇐)

is from the fact that the formulas (3.4.2) are included in Φ̂.

MIT Press Math7X9/2010/08/25:15:15 Page 114



Logic 115

Completeness with Equality

First-order logic with equality typically means that the binary equality symbol =

is included in the signature Σ and that we restrict the semantics to include only

models in which = is interpreted as the identity relation. As it turns out, this is

actually not much of a restriction: a structure A for which =A is not equality but

obeys all the laws of equality (Axioms 3.55(ii) and (iii) below) can be collapsed by

a quotient construction to give an equivalent model in which = is interpreted as

the identity relation.

Axiom System 3.55: The axioms and rules of inference for first order logic with

equality are:

(i) Axiom System 3.51 for first-order logic;

(ii) Axiom System 3.40 for equational logic;

(iii) the rule

si = ti, 1 ≤ i ≤ n

p(s1, . . . , sn)↔ p(t1, . . . , tn)
.

We regard (iii) as part of the rule (CONG) of Axiom System 3.40.

Theorem 3.56 (Completeness with Equality): Axiom System 3.55 is

complete for first order logic with equality; that is, any consistent set of formulas

has a model.

Proof sketch. The proof is the same as without equality (Theorem 3.54), except

that instead of the term model TΣ(Xω), we take its quotient by the congruence

s ≡ t
def⇐⇒ s = t ∈ Φ̂.

The new rule (iii) ensures that pA is well-defined on ≡-congruence classes.

Compactness

We proved in Section 3.4 that any consistent set of first-order formulas has a model.

The compactness theorem is an immediate consequence of this. Recall that a set of

formulas Φ is finitely satisfiable if all finite subsets of Φ have a model.

Theorem 3.57 (Compactness): A set Φ of first-order formulas is satisfiable if

and only if it is finitely satisfiable.
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Proof The proof is the same as for propositional logic (Theorem 3.12), using

Theorem 3.54.

The Löwenheim–Skolem Theorem

Our proof of the completeness theorem constructed models from terms, or in the

presence of equality, from congruence classes of terms. Since the language has only

countably many terms, the models constructed were countable (either finite or

countably infinite). We thus have

Corollary 3.58: Let Φ be a countable set of formulas. If Φ has a model, then

it has a countable model.

The first part of Theorem 3.59 below is a slight strengthening of this.

Theorem 3.59 (Löwenheim–Skolem): Let Φ be a countable set of formulas.

(i) If Φ has an infinite model, then it has a countably infinite model.

(ii) If Φ has a countably infinite model, then it has a model of every infinite

cardinality.

Parts (i) and (ii) of Theorem 3.59 are known as the downward and upward

Löwenheim–Skolem theorem, respectively.

Proof sketch. (i) Suppose A, u � Φ, A infinite. Let

Φ+ def
= Φ ∪ {θn | n ≥ 0},

where

θn
def
= ∃x1 ∃x2 . . . ∃xn

∧
1≤i<j≤n

xi 
= xj .

The sentence θn says, “There are at least n elements.” Then Φ+ is consistent, since

it has a model A. By Corollary 3.58, Φ+ has a countable model, say B. But B

cannot be finite, since B � θn for all n.

(ii) Let κ be any infinite cardinality, and let

X
def
= {xα | α < κ}
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be a set of new variables. Then #X = κ. Suppose Φ has an infinite model A. Let

Φ+ def
= Φ ∪ {xα 
= xβ | α < β < κ}.

Note that #Φ+ = κ, so we are no longer necessarily working in a countable

language. Nevertheless, the technique of the completeness theorem (Theorem 3.54)

still applies. The set Φ+ is consistent, because any refutation would involve only a

finite subset of Φ+, and every such subset has a model, namely A. We then construct

a maximal consistent extension of Φ+ as in the proof of Theorem 3.54, the only

difference here being that we need transfinite induction. We form a term algebra A

and valuation u such that A, u � Φ+. Now #A ≤ κ, since the number of terms is

at most κ; and #A ≥ κ, since A, u � xα 
= xβ for all α < β < κ.

Undecidability

It is undecidable for given a sentence ϕ of first-order logic whether � ϕ. In fact, the

problem is Σ0
1-complete.

Theorem 3.60: The validity problem for first-order logic is Σ0
1-complete.

Proof That the problem is in Σ0
1 follows from the completeness theorem. Since

a formula is valid iff it has a proof, the set of valid formulas can be recursively

enumerated in a uniform way simply by enumerating all proofs and checking their

validity.

For Σ0
1-hardness, we work with the complement of the validity problem, namely

the satisfiability problem: given a first-order formula ϕ, is it satisfied in some model?

We show that this problem is Π0
1-hard by a reduction from the Π0

1-complete tiling

problem of Proposition 2.20: given a finite set of tile types, is there a tiling of the

infinite ω × ω grid in which the south and west boundaries are colored blue?

We will work in a fixed first-order language consisting of one constant symbol

a, one unary function symbol f , and four ternary relation symbols North(x, y, z),

South(x, y, z), East(x, y, z), and West(x, y, z). Intuitively, the arguments x, y

will denote a grid position and z a color. The grid position (i, j) ∈ ω2 will be

encoded by the pair (f i(a), f j(a)), where f0(a)
def
= a and fn+1(a)

def
= f(fn(a)).

A color c ∈ N will be encoded by the term f c(a). Intuitively, the predicate

East(f i(a), f j(a), f c(a)) says, “The east edge of the tile at position i, j is colored

c.” Although we are thinking intuitively of an ω×ω grid, keep in mind that we are

interpreting formulas over arbitrary structures, not just ω.

Let T be a given finite set of tile types. Each tile type is determined by the
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colors of the four edges. Let C be the finite set of colors appearing in T . For each

tile type A ∈ T , we can define a predicate that says that the tile at position x, y is

of type A. For instance, if A is the type

blue

green red

black

we can define

TileA(x, y)
def⇐⇒ North(x, y, fblue(a)) ∧

∧
c∈C
c 
=blue

¬North(x, y, f c(a))

∧ South(x, y, fblack(a)) ∧
∧
c∈C

c 
=black

¬South(x, y, f c(a))

∧ East(x, y, f red(a)) ∧
∧
c∈C
c 
=red

¬East(x, y, f c(a))

∧ West(x, y, fgreen(a)) ∧
∧
c∈C

c 
=green

¬West(x, y, f c(a))

This says that each of the four edges of the tile at position x, y is colored with

exactly one color, and the colors correspond to the tile type A.

Let ϕT be the conjunction of the following five sentences:

∀x ∀y ∨
A∈T TileA(x, y) (3.4.3)

∀x South(x, a, fblue(a)) (3.4.4)

∀y West(a, y, fblue(a)) (3.4.5)

∀x ∀y ∧
c∈C(East(x, y, f

c(a))→West(f(x), y, f c(a))) (3.4.6)

∀x ∀y ∧
c∈C(North(x, y, f c(a))→ South(x, f(y), f c(a))) (3.4.7)

The predicate (3.4.3) says that every grid position is tiled with exactly one tile. The

predicates (3.4.4) and (3.4.5) say that the south and west boundaries of the grid

are colored blue. The predicates (3.4.6) and (3.4.7) say that the edges of adjacent

tiles match.

We now argue that ϕT is satisfiable iff there exists a tiling of the grid with the

given set of tile types.
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First assume that A � ϕT . Tile the grid as follows. Place a tile of type A at

position (i, j), where A is the unique tile type such that A � TileA(f
i(a), f j(a)).

At least one such tile type must exist, because A satisfies (3.4.3); and no more than

one such tile type can exist, because the definition of TileA(f
i(a), f j(a)) rules out

all other colorings. The remaining four clauses of ϕT assert that the local coloring

conditions are satisfied by this tiling.

Conversely, suppose that the grid can be tiled with tile types from T . We can

satisfy ϕT in a structure A with carrier ω in which a is interpreted as 0 and f is

interpreted as the successor function x �→ x+ 1. The interpretation of the ternary

relation symbols depends on the tiling. For example, we take East(i, j, k) to be

true if the east edge of the tile at position (i, j) has color k, and similarly for the

other relation symbols. It is easy to see that ϕT holds in A.

3.5 Ehrenfeucht–Fräıssé Games

Ehrenfeucht–Fräıssé games are a technique for proving results about the expres-

siveness of logical languages involving quantification. There are different variations,

depending on the application. Here is one:

Consider the following game between two players called the duplicator and the

spoiler . The game board consists of two first-order structures A and B. Each player

is given n pebbles, one of each of n different colors.

The play alternates between the players with the spoiler going first. In each

round, the spoiler places one of his pebbles on an element of either structure. The

duplicator then places her pebble of the same color on an element of the other

structure. The play alternates until all the pebbles have been played. If the final

configuration of pebbles is a local isomorphism, then the duplicator wins; otherwise

the spoiler wins. A configuration is a local isomorphism if for any atomic formula

ϕ(x1, . . . , xn),

A, u � ϕ(x1, . . . , xn) ⇐⇒ B, v � ϕ(x1, . . . , xn),

where u, v are valuations assigning to each variable xi, 1 ≤ i ≤ n, the element

occupied by the pebble of color i in A and B, respectively.

The interesting fact about this game is that the duplicator has a forced win—

that is, can always assure a win for herself by playing optimally—if and only if

A and B are indistinguishable by any first-order sentence of quantifier depth n or

less. (The quantifier depth of a sentence is the maximum number of quantifiers in

whose scope any symbol occurs.)
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For example, consider the two-pebble game played on the total orders (Z,≤) and
(Q,≤) (we ignore the algebraic structure of Z and Q and only consider their order

structure). Think of the elements of these structures laid out on a line in increasing

order from left to right. The duplicator can always achieve a win by the following

strategy. In the first round, the spoiler plays his red pebble somewhere, then the

duplicator plays her red pebble on an arbitrary element of the other structure. In

the second round, if the spoiler plays his blue pebble to the left, on top, or to

the right of the red pebble on either structure, then the duplicator plays her blue

pebble to the left, on top, or to the right of the red pebble on the other structure,

respectively. This always gives a local isomorphism, so the duplicator wins. This

says that these two structures agree on any first-order sentence of quantifier depth

two or less.

On the other hand, the spoiler can always win the three-pebble game on these

structures by the following strategy. In the first round, he plays his red pebble on

0 ∈ Z. The duplicator must respond by playing her red pebble on some element

x ∈ Q. In the second round, the spoiler plays his blue pebble on 1 ∈ Z. The

duplicator must respond by playing her blue pebble on some element y ∈ Q,

and she had better play it on some y > x, otherwise she loses immediately. In

the third round, the spoiler plays his green pebble on some element of Q strictly

between x and y, and the duplicator has nowhere to play on Z to maintain the local

isomorphism. The spoiler wins.

These arguments reflect the fact that the ordered structure (Q,≤) is dense,

whereas (Z,≤) is not. The two structures are distinguished by the sentence

∀x ∀z (x < z → ∃y (x < y ∧ y < z))

of quantifier depth three, and this is the minimum quantifier depth needed to

express density.

3.6 Infinitary Logic

In some cases, we will find it convenient to allow infinite conjunctions and dis-

junctions of formulas; that is, formulas of form
∧
α∈A ϕα and

∨
α∈A ϕα, where

{ϕα | α ∈ A} is an indexed family of formulas, possibly infinite. The meaning

of these formulas is just what one would expect: A, u �
∧
α∈A ϕα iff for all α ∈ A,

A, u � ϕα, and A, u �
∨
α∈A ϕα iff for at least one α ∈ A, A, u � ϕα.

Two particular infinitary systems that will arise in Chapter 12 and thereafter

are Lω1ω and Lωck
1 ω

. The language Lω1ω is obtained by extending first-order logic
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to allow formulas with countable conjunctions and disjunctions but only finitely

many variables.

Unlike first-order logic, formulas are now possibly infinite objects. However,

each formula may contain only finitely many variables. The ω1 in Lω1ω signifies

that countable conjunctions and disjunctions are allowed, and the ω signifies the

restriction to finitely many variables.

Syntax

Formally, we amend the inductive definition of formulas as follows. Let C be a fixed

finite set of variables. The set LC of formulas over C is the smallest set of formulas

containing all atomic formulas all of whose variables are in C and closed under the

usual closure rules for first-order logic as given Section 3.4, allowing quantification

only over elements of C. In addition, we include in the inductive definition the extra

clause

If {ϕα | α ∈ A} is an indexed family of formulas of LC and A is countable, then∧
α∈A ϕα and

∨
α∈A ϕα are formulas of LC .

The set Lω1ω is the union of all LC for all finite subsets C of some fixed countable

set of variables.

The language Lωck
1 ω

is the sublanguage of Lω1ω in which the countable con-

junctions and disjunctions are further restricted to be over recursively enumerable

sets of formulas. Thus we can form a countable conjunction
∧
ϕ∈A ϕ or disjunction∨

ϕ∈A ϕ provided the set A is r.e.

It is convenient to think of a formula of Lω1ω as a well-founded infinitary labeled

tree. Each vertex of the tree is labeled with ∀x, ∃x, ¬, ∨,
∧
, or an atomic formula.

Vertices labeled ∀x, ∃x, or ¬ have one child; vertices labeled
∨

or
∧

have countably

many children; and atomic formulas label the leaves. The tree is well-founded (no

infinite paths) because the definition of formulas is inductive.

Under a suitable encoding, the tree corresponding to a formula of Lωck
1 ω

is

recursively enumerable. Such trees were encountered in Section 2.2. This gives us

a computational handle on infinitary formulas. For example, our encoding might

represent the formula
∧
ϕ∈A ϕ as the pair of numbers (5, i), where 5 indicates

that the formula is a conjunction and the i is a description of a Turing machine

enumerating the codes of the formulas in the r.e. set A. A universal Turing machine

can then be used to enumerate the entire tree.

Another advantage of Lωck
1 ω

over Lω1ω is that over a countable signature, there

are only countably many formulas of Lωck
1 ω

. This is not true for Lω1ω.
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The language Lωck
1 ω

is not compact, nor does it satisfy the upward Löwenheim–

Skolem theorem: the countable set

{
∨
n<ω

p(fn(a))} ∪ {¬p(fn(a)) | n < ω}

is finitely satisfiable but not satisfiable (Exercise 3.35), and the sentence

∀x
∨
n<ω

x = fn(a) (3.6.1)

has a countable model but no model of higher cardinality (Exercise 3.36). The same

holds a fortiori for the language Lω1ω. However, the downward Löwenheim–Skolem

holds, and one can give a complete infinitary deductive system for both Lω1ω and

Lωck
1 ω

. These are the topics of the next section.

An Infinitary Deductive System

To obtain a deductive system for Lω1ω and Lωck
1 ω

, we augment the deductive system

for first-order predicate logic given in Section 3.4 with the axioms

ϕβ →
∨
α∈A

ϕα, β ∈ A, (3.6.2)

∧
α∈A

ϕα → ϕβ , β ∈ A, (3.6.3)

as well as the infinitary rules of inference

ϕα → ψ, α ∈ A
(
∨
α∈A

ϕα)→ ψ
(3.6.4)

ϕ→ ψα, α ∈ A
ϕ→

∧
α∈A

ψα
. (3.6.5)

The new rules of inference may have infinitely many premises. Thus proofs, like

formulas, are no longer finite objects. However, like formulas, proofs can be repre-

sented as well-founded infinitary labeled trees, with the axioms labeling the leaves

and the theorem labeling the root. Moreover, in Lωck
1 ω

, because infinite conjunctions

and disjunctions must be r.e., proof trees are r.e. as well.

Like formulas, we artificially restrict proofs to contain only finitely many

variables. By definition, a proof is not a proof unless there is a finite set of variables

C such that all formulas labeling the vertices of the proof tree are in LC .

MIT Press Math7X9/2010/08/25:15:15 Page 122



Logic 123

Example 3.61: The deductive system can be used to prove infinitary versions of

the basic propositional tautologies. For example, consider the infinitary De Morgan

law

¬
∨
α

ϕα ↔
∧
α

¬ϕα. (3.6.6)

We prove the implication in both directions using the deductive system.

(→) By (3.6.5), it suffices to show

¬
∨
α

ϕα → ¬ϕβ

for each β. By (finitary) propositional logic, this is equivalent to

ϕβ →
∨
α

ϕα.

But this is just (3.6.2).

(←) By propositional logic, the implication is equivalent to∨
α

ϕα → ¬
∧
α

¬ϕα.

By (3.6.4), it suffices to show

ϕβ → ¬
∧
α

¬ϕα

for each β, which by propositional logic is equivalent to∧
α

¬ϕα → ¬ϕβ .

But this is just an instance of (3.6.3).

Example 3.62: For another example, consider the infinitary distributive law

ϕ ∨
∧
α

ψα ↔
∧
α

(ϕ ∨ ψα). (3.6.7)

We prove the implication in both directions.

(→) By (3.6.5), it suffices to show

ϕ ∨
∧
α

ψα → ϕ ∨ ψβ

for each β. This follows immediately from (3.6.3) and propositional logic.
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(←) By propositional logic, the implication is equivalent to

¬ϕ ∧
∧
α

(ϕ ∨ ψα) →
∧
α

ψα. (3.6.8)

For all β, we have

¬ϕ ∧
∧
α

(ϕ ∨ ψα) → ¬ϕ ∧ (ϕ ∨ ψβ) by (3.6.3)

→ ψβ ;

then (3.6.8) follows from (3.6.5).

Infinitary versions of other basic properties are given in Exercise 3.37.

Theorem 3.63 (Infinitary Deduction Theorem): For any set of formulas

Φ and formulas ϕ, ψ of Lω1ω,

Φ ∪ {ϕ} � ψ ⇐⇒ Φ � ϕ→ ψ.

Proof The proof is the same as for first-order logic (Theorem 3.52), except that in

the direction (=⇒) there are extra cases for the rules (3.6.4) and (3.6.5). We argue

the case (3.6.5) explicitly and leave the case (3.6.4) as an exercise (Exercise 3.38).

Suppose Φ ∪ {ϕ} � ψ → ∧
α ψα by an application of the rule (3.6.5). Then for

each β, Φ∪{ϕ} � ψ → ψβ by a shorter proof; here “shorter” means the well-founded

proof tree is shallower.4 By the induction hypothesis, Φ � ϕ → (ψ → ψβ), and by

propositional logic, Φ � (ϕ∧ψ)→ ψβ . By (3.6.5), Φ � (ϕ∧ψ)→ ∧
α ψα, and again

by propositional logic, Φ � ϕ→ (ψ → ∧
α ψα).

Now we show that the deductive system is complete. The proof mirrors closely

that for first-order logic given in Theorem 3.52 with appropriate modifications to

handle infinitary conjunctions and disjunctions.

First we note that for any formula ϕ of Lω1ω, the number of subformulas of ϕ is

countable. This can be proved by induction using the fact that a countable union

of countable sets is countable (Exercise 1.21). It follows that if Φ is a countable set

of formulas, then the set of all subformulas of formulas in Φ and their negations is

countable.

We form the sets Xn, Ln, Xω, and Lω as in the proof of Theorem 3.52, except

that we must amend the definition slightly to ensure that the resulting set of

4 Formally, the ordinal ord(T ) labeling the root of the proof tree T under the labeling scheme
described in Section 2.2 is smaller.

MIT Press Math7X9/2010/08/25:15:15 Page 124



Logic 125

formulas is countable whenever Φ is. Starting with a set of formulas L0 over a

set of variables X0, we form Ln and Xn inductively as follows. For each ϕ in Ln,

create a new variable xϕ ∈ Xn+1 and let

Xn+1
def
= Xn ∪ {xϕ | ϕ ∈ Ln}.

Now let Ln+1 be the set of formulas obtained from Ln by changing any bound

variable to one of the new variables in Xn+1 (Lemma 3.48) and by substituting any

term over Xn+1 for any free variable. Thus in this construction we do not consider

the set of all Lω1ω formulas, which is uncountable, but only those that are similar

to a formula of L0 except for change of bound variable or substitution of a term for

a free variable. By Exercise 1.21, if the original sets L0 and X0 are countable, then

the resulting sets Lω and Xω will be countable as well. In our application, we will

take L0 to be the set of subformulas of formulas in Φ and their negations.

As in the proof of Theorem 3.52, we take Ψ to be the set of all formulas of Lω
of the form

∃x ψ → ψ[x/x∃xψ]. (3.6.9)

Lemma 3.64: Let Φ ⊆ L0. If Φ is consistent, then so is Φ ∪Ψ.

Proof In the proof of the corresponding theorem for first-order logic (Theorem

3.52), the first step was to observe that if Φ∪Ψ is refutable, then there exists a finite

subset Ψ′ ⊆ Ψ such that Φ ∪Ψ′ is refutable. This was obvious there, since proofs

were finite objects, therefore could refer to at most finitely many members of Ψ.

Here formulas and proofs are no longer finite objects; nevertheless, the observation

still holds, since proofs may contain only finitely many variables, and each formula

(3.6.9) contains a distinct variable x∃xψ, therefore at most finitely many of them

can appear in the refutation. The remainder of the proof is the same as the proof

for first-order logic (Theorem 3.52).

Theorem 3.65 (Completeness): The infinitary deductive system is complete;

that is, any consistent set of formulas has a model.

Proof Everything is the same as in the first-order case (Theorem 3.54), except

that in the inductive argument that

A, u � ϕ ⇐⇒ ϕ ∈ Φ̂,

MIT Press Math7X9/2010/08/25:15:15 Page 125



126 Chapter 3

we have two extra cases for infinitary join and meet. For infinitary meet, we have

A, u �
∧
α

ϕα ⇐⇒ for all β, A, u � ϕβ definition of �

⇐⇒ for all β, ϕβ ∈ Φ̂ induction hypothesis

⇐⇒ ∧
α ϕα ∈ Φ̂ consistency and maximality of Φ̂.

The case of infinitary join is similar.

The Downward Löwenheim–Skolem Theorem

Theorem 3.66 (Downward Löwenheim–Skolem): Let Φ be a countable set

of formulas of Lω1ω. If Φ has a model, then it has a countable model.

Proof If Φ has a model, then it is consistent, since the deductive system is sound.

In the construction of the term model of the completeness theorem, if we restrict

our attention to subformulas of formulas in Φ and their negations, the resulting

model is countable.

Complexity

Theorem 3.67: Deciding the validity of Lωck
1 ω

formulas is Π1
1-complete.

Proof The problem is in Π1
1, because by the completeness theorem (Theorem 3.65),

a formula is valid iff it has a recursively enumerable well-founded proof tree, and

this is a statement of the form (2.2.3). Alternatively, one can give an explicit IND

program (see Section 2.2) accepting the code of a formula of Lωck
1 ω

iff it is provable

(Exercise 3.39).

To show that the problem is Π1
1-hard, we encode (the complement of) the tiling

problem of Proposition 2.22. The construction is very similar to that of Theorem

3.60, except that we include the formula (3.6.1) to restrict to models consisting

essentially of the natural numbers, as well as a formula ψred that says that red

occurs only finitely often in the tiling:

red(x, y)
def⇐⇒ North(x, y, f red(a)) ∨ South(x, y, f red(a))

∨ East(x, y, f red(a)) ∨West(x, y, f red(a))

ψred
def⇐⇒ ∃x ∀y ∀z z ≥ x→ (¬red(y, z) ∧ ¬red(z, y)).

If ϕ is the formula constructed in the proof of Theorem 3.60, which says that we
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have a valid tiling, and if ψ is the sentence (3.6.1), then the desired formula is

ϕ ∧ ψ → ψred,

which says that if the model represents a valid tiling of the ω × ω grid, then red is

used only finitely often. Unlike the case of Theorem 3.60, we must include ψ here

to ensure that the existential quantifiers in ψred refer to grid elements.

3.7 Modal Logic

Modal logic is the logic of possibility and necessity. There is not a single system of

modal logic, but many different systems depending on the application. Modal logic

is good for reasoning in situations involving incomplete information or dependence

on time. It is also useful in applications involving knowledge, belief, and provability.

Propositional Modal Logic

Propositional logic (Section 3.2) can be extended to propositional modal logic by

adding a new unary operator �, the necessity operator. Thus if ϕ is a formula, then

so is �ϕ. This clause is added as part of the inductive definition of the language.

There is a dual operator �ϕ, the possibility operator, defined by

�ϕ
def⇐⇒ ¬�¬ϕ. (3.7.1)

The formula �ϕ is read, “it is necessary that ϕ,” or “ϕ holds in all possible worlds,”

or just “box ϕ.” The formula �ϕ is read, “it is possible that ϕ,” or “there is a

possible world that realizes ϕ,” or just “diamond ϕ.” The property (3.7.1) expresses

a duality between � and �; intuitively, ϕ is necessarily true iff it is impossible that

ϕ is false.

Semantically, we interpret modal formulas in structures called Kripke frames. A

Kripke frame is a structure K = (K, RK, mK), where K is a nonempty set, RK is a

binary relation on K called the accessibility relation, and mK is a function assigning

a subset of K to each atomic proposition. The class K is called the universe of K

and the elements of K are called states or worlds . Intuitively, RK specifies which

worlds are accessible (or possible) from the point of view of a given world; that is,

(u, v) ∈ RK says that v is a possible world from the point of view of u.

The function mK determines a truth assignment to the primitive propositions

in each state; we write u � p if u ∈ mK(p). We extend mK inductively to all modal
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formulas according to the following rules:

mK(ϕ→ ψ)
def
= (K −mK(ϕ)) ∪mK(ψ), (3.7.2)

mK(0)
def
= ∅, (3.7.3)

mK(�ϕ)
def
= K − (RK ◦ (K −mK(ϕ))), (3.7.4)

where ◦ denotes relational composition (see Section 1.3). It follows that

mK(�ϕ) = RK ◦mK(ϕ). (3.7.5)

Writing s � ϕ for s ∈ mK(ϕ), we see that (3.7.2)–(3.7.5) are equivalent to

u � ϕ→ ψ ⇐⇒ (u � ϕ =⇒ u � ψ),
u � 0,

u � �ϕ ⇐⇒ for all v, if (u, v) ∈ RK then v � ϕ,
u � �ϕ ⇐⇒ there exists v such that (u, v) ∈ RK and v � ϕ,

respectively. The rules (3.7.2) and (3.7.3) are the same as in propositional logic,

and (3.7.4) and (3.7.5) interpret the modalities.

We write K, u � ϕ if u � ϕ in the Kripke frame K, or just u � ϕ if K is

understood. We write K � ϕ iff K, u � ϕ for all states u of K. We write � ϕ if K � ϕ
for all frames K and say that ϕ is valid .

If Φ is a set of modal formulas, we write K, u � Φ if K, u � ϕ for all ϕ ∈ Φ, and

we write K � Φ if K, u � Φ for all u ∈ K. If there exists a Kripke frame K and state

u of K such that K, u � Φ, then we say that Φ is satisfiable. As in propositional and

predicate logic, a formula ϕ is valid iff its negation is not satisfiable.

If ϕ1, . . . , ϕn and ϕ are modal formulas, the rule of inference

ϕ1, . . . , ϕn
ϕ

is sound if K � ϕ whenever K � ϕi, 1 ≤ i ≤ n. Note that this is not the same as

saying that K, u � ϕ whenever K, u � ϕi, 1 ≤ i ≤ n.

The modalities � and � capture various properties of our metalogic that we

have been using in previous sections. The following are some examples.

Example 3.68: Let P be a set of atomic propositions, and let K = (K, RK, mK)
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be the Kripke frame with

K = {truth assignments to P},
RK = K ×K,

mK(p) = {u | u(p) = 1}.

Then a propositional formula ϕ is a tautology iff K � �ϕ, and ϕ is satisfiable iff

K � �ϕ.

Example 3.69: Let (P,<) be a strict partial order with bottom element 0. In a

Kripke frame K with states P and accessibility relation <,

• K, a � �0 if a is a maximal element of P ;

• K, 0 � ��0 iff P contains a maximal element;

• K, 0 � ���0 iff every element is below a maximal element.

Theorem 3.70: The following are valid formulas of propositional modal logic:

(i) �(ϕ ∨ ψ) ↔ �ϕ ∨�ψ

(ii) �(ϕ ∧ ψ) ↔ �ϕ ∧ �ψ

(iii) �ϕ ∧�ψ → �(ϕ ∧ ψ)
(iv) �(ϕ→ ψ) → (�ϕ→ �ψ)

(v) �(ϕ ∧ ψ) → �ϕ ∧�ψ

(vi) �ϕ ∨�ψ → �(ϕ ∨ ψ)
(vii) �0 ↔ 0

(viii) �ϕ ↔ ¬�¬ϕ.

Proof These results are straightforward exercises in relational algebra. We prove

(i) explicitly and leave the rest as exercises (Exercise 3.40).

To prove (i), we must show that for any Kripke frame K = (K, RK, mK),

mK(�(ϕ ∨ ψ)) = mK(�ϕ ∨�ψ).
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But

mK(�(ϕ ∨ ψ))
= R ◦mK(ϕ ∨ ψ) semantics of �

= R ◦ (mK(ϕ) ∪mK(ψ)) semantics of proposition logic

= (R ◦mK(ϕ)) ∪ (R ◦mK(ψ)) Lemma 1.1

= mK(�ϕ) ∪mK(�ψ) semantics of �

= mK(�ϕ ∨�ψ) semantics of proposition logic.

Theorem 3.71: The following rules are sound:

(i) Modal generalization (GEN):

ϕ

�ϕ

(ii) Monotonicity of �:

ϕ→ ψ

�ϕ→ �ψ

(iii) Monotonicity of �:

ϕ→ ψ

�ϕ→ �ψ
.

Proof Let K = (K, RK, mK) be a Kripke frame.

(i) If mK(ϕ) = K, then RK ◦ (K − mK(ϕ)) = ∅, therefore K − (RK ◦ (K −
mK(ϕ))) = K.

(ii) By monotonicity of ◦ (Exercise 1.3), if mK(ϕ) ⊆ mK(ψ), then RK ◦
mK(ϕ) ⊆ RK ◦mK(ψ).

(iii) If mK(ϕ) ⊆ mK(ψ), then (K −mK(ψ)) ⊆ (K −mK(ϕ)). By (ii), we have

RK ◦ (K − mK(ψ)) ⊆ RK ◦ (K − mK(ϕ)), therefore K − (RK ◦ (K − mK(ϕ))) ⊆
K − (RK ◦ (K −mK(ψ))).

Multimodal Logic

More generally, let A = {a, . . .} be a set of modalities . Instead of augmenting

propositional logic with one modality as in Section 3.7, we can augment it with a

separate modality for each a ∈ A. We add to the inductive definition of formulas
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the clause:

• If ϕ is a formula and a ∈ A, then [a]ϕ is a formula.

We also define

<a>ϕ
def
= ¬[a]¬ϕ.

A Kripke frame is now a structure K = (K, mK), where the map mK, in addition to

interpreting the atomic propositions as described in Section 3.7, associates a binary

relation mK(a) ⊆ K ×K to each modality a ∈ A. The semantics of [a]ϕ and <a>ϕ

is defined as for �ϕ and �ϕ, respectively, with mK(a) taking the place of RK.

Example 3.72: Consider a propositional logic whose atomic propositions are the

atomic formulas p(t1, . . . , tn) of predicate logic over a signature Σ and a countable

set X of first-order variables. Let A be a first-order structure of signature Σ. The

structure A gives rise to a multimodal Kripke frame (K, mA) with modalities X

defined as follows:

K
def
= {valuations u : TΣ(X)→ |A|},

mA(p(t1, . . . , tn))
def
= {u | A, u � p(t1, . . . , tn)},

mA(x)
def
= {(u, v) | u(y) = v(y), y 
= x}.

That is, mA(x) is a symmetric relation connecting any pair of valuations over A

that agree on all variables except possibly x. For any quantifier-free formula ϕ and

u ∈ K, A, u � [x]ϕ iff A, u � ∀x ϕ in the usual sense of predicate logic as defined

in Section 3.4, and A, u � <x>ϕ iff A, u � ∃x ϕ in the usual sense of predicate logic.

More generally, if ϕ is a first-order formula and ϕ′ is obtained from ϕ by changing

all ∀x to [x] and all ∃x to <x>, then A, u � ϕ′ in the modal sense iff A, u � ϕ in

the usual sense of predicate logic.

Example 3.73: Consider a finite-state automaton with states Q, start state

s ∈ Q, accept states F ⊆ Q, and input alphabet Σ. Let the set of modalities

be Σ∗. Let there be a single atomic formula f satisfied by all and only the states

in F . Let M = (Q, mM), where

mM(w)
def
= {(p, q) | p, q ∈ Q, q is reachable from p under input string w}.

Then M accepts w iff M, s � <w>f .
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Unwinding

For a multimodal logic with modalities A, one can without loss of generality restrict

attention to models that resemble trees. Any Kripke frame can be “unwound” into

an equivalent treelike structure. By equivalent we mean that the two structures

cannot be distinguished by any modal formula.

Given a Kripke frame K = (K, mK) and s ∈ K, we construct an equivalent

treelike model K′ whose states are the paths in K out of s. Formally, a path

in K is a finite sequence σ = s0a0s1a1s2a2 · · ·an−1sn of alternating states of K

and modalities, beginning and ending with a state, such that (si, si+1) ∈ mK(ai),

0 ≤ i < n. For a path σ, let first(σ) and last(σ) denote the first and last states of

σ, respectively. We take the states K ′ of K′ to be the set of all paths σ in K with

first(σ) = s. The modalities are interpreted in K′ as

mK′(a)
def
= {(σ, σat) | (last(σ), t) ∈ mK(a)}.

For the atomic propositions, we define

mK′(p)
def
= {σ | last(σ) ∈ mK(p)}.

Then K′ is a tree with root s. Moreover, the states s in the two models are

indistinguishable by any modal formula:

Theorem 3.74: For any propositional modal formula ϕ and any path σ in K,

K′, σ � ϕ ⇐⇒ K, last(σ) � ϕ.

In particular,

K′, s � ϕ ⇐⇒ K, s � ϕ.

Proof The second statement is the special case of the first with σ = s. The first

statement is proved by induction on the structure of ϕ and is left as an exercise

(Exercise 3.41).

A useful corollary of this result is that every satisfiable formula is satisfied in

a countable frame; that is, one with only countably many states. In fact, one can

show that every satisfiable formula is satisfied in a tree model in which each state

has only finitely many successors (Exercise 3.42). For propositional modal logic, one

can show an even stronger result: every satisfiable formula is satisfied in a finite

frame. We will prove a generalization of this result in Chapter 6 in the context of

Propositional Dynamic Logic.
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Modal Logic and Programs

Modal logic is particularly well suited for reasoning in dynamic situations—

situations in which the truth values of statements are not fixed, but may vary

over time. Classical first-order logic is static, in the sense that the truth values of

its statements are immutable.

Sentences of classical first-order logic are interpreted over a single structure, or

world. In modal logic, an interpretation consists of a collection K of many possible

worlds or states. If states can change somehow, then so can truth values.

One successful dynamic interpretation of modal logic is temporal logic. In this

approach, a state t is accessible from s if t lies in the future of s. The accessibility

relation is sometimes taken to be a linear ordering of K (linear-time temporal logic)

or a tree (branching-time temporal logic). We will have more to say about temporal

logic in Section 17.2.

These ideas also fit nicely into the framework of program execution. We can take

the set of states K to be the universe of all possible execution states of a program.

With any program α, one can associate a binary accessibility relation over K such

that (s, t) is in this relation iff t is a possible final state of the program α with initial

state s; that is, iff there is a computation of α starting in s and terminating in t.

We say “possible” here since we might wish to consider nondeterministic programs ,

which can have more than a single final state associated with a given initial one.

Syntactically, each program gives rise to a modality of a multimodal logic. We

place the program α inside the modality symbol: [α], <α>. Thus programs become

an explicit part of the language. The expression <α>ϕ says that it is possible to

execute α and halt in a state satisfying ϕ; the expression [α]ϕ says that whenever α

halts, it does so in a state satisfying ϕ. The resulting system is called Dynamic Logic

(DL). Since the inductive definition of formulas allows arbitrary prefixes of modal

operators, the syntax is more flexible and expressive than the partial correctness

assertions of Hoare Logic. For example, if <α>ϕ and <β>ϕ are logically equivalent,

then for every initial state s the program α can terminate in a state satisfying ϕ iff

β can.

Dynamic Logic is not limited merely to augmenting classical logic with a

fixed modality for each program; this would be little more than multimodal logic.

Rather, it uses various calculi of programs, which in conjunction with the rules of

classical propositional and predicate logic give a rich family of systems for analyzing

the interaction of programs and formulas. By analogy with the construction of

composite formulas from atomic ones, the calculi of programs allow the construction

of complex programs from atomic ones. Typical atomic programs are assignment
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statements and basic tests; the operators used to construct composite programs

may be familiar programming constructs such as if-then-else andwhile-do. There

are rules for analyzing the behavior of programs in terms of the behavior of their

subprograms, as well as for analyzing the interaction of programs and formulas.

The resulting framework gives a powerful set of tools for understanding the relative

power and complexity of programming constructs. It constitutes the subject matter

of the remainder of this book.
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Exercises

3.1. Prove Theorem 3.4.

3.2. Let Sn be the set of all truth assignments to atomic propositional symbols

p1, . . . , pn. Elements of Sn are maps u : {p1, . . . , pn} → {0,1} and #Sn = 2n. A

truth table over p1, . . . , pn is a function T : Sn → {0,1}. There are 22n truth tables

over p1, . . . , pn.

MIT Press Math7X9/2010/08/25:15:15 Page 134



Logic 135

Every propositional formula ϕ determines a truth table Tϕ:

Tϕ(u)
def
= u(ϕ),

where the u on the right-hand side is the inductive extension of the truth assignment

u to all formulas over p1, . . . , pn as defined in Section 3.2. An interesting question

is the converse: is it true that for every truth table T there is a corresponding

propositional formula ϕ such that T = Tϕ? Show that this is so.

3.3. Truth tables and the notation Tϕ were defined in Exercise 3.2. A set F of

propositional operators is complete if for every n and every truth table T over

p1, . . . , pn there is a propositional formula ϕ over p1, . . . , pn and F only such that

T = Tϕ. As shown in Exercise 3.2, the set {0,→} is complete.

(a) Show that the sets {∧,¬} and {∨,¬} are also complete.

(b) Show that none of the operators ∧,∨,¬,0,1,→,↔ by themselves are complete.

(c) Show that {↔,¬,0,1} is not complete. (Hint. Show by induction that for any

truth assignment to a formula ϕ built from these connectives alone, if the truth

value of p is changed, then the truth value of ϕ changes iff p has an odd number of

occurrences in ϕ.)

(d) Show that {∨,∧} is not complete. Formulas built from the connectives ∨,∧
only are called monotone.

(e) Show that {∨,∧,→} is not complete. (Hint. Consider the truth assignment that

assigns 0 to every atomic proposition.)

(f) Define a single propositional operator that is complete. Specify the operator by

giving its truth table (see Exercise 3.2). Prove that it is complete.

3.4. In this exercise we develop a useful duality principle for formulas expressed

over the propositional connectives ∧, ∨, and ¬. For any such propositional formula

ϕ, define its dual ϕ′ inductively as follows:

• p′ = p for atomic propositions p,

• (ϕ ∧ ψ)′ = ϕ′ ∨ ψ′,

• (ϕ ∨ ψ)′ = ϕ′ ∧ ψ′,

• (¬ϕ)′ = ¬ϕ′.

In other words, we just change all occurrences of ∨ to ∧ and vice versa. Note that

ϕ′′ = ϕ.
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(a) Considering ϕ → ψ as an abbreviation for ¬ϕ ∨ ψ, 0 as an abbreviation for

p∧¬p (where p is an arbitrary atomic proposition), 1 as an abbreviation for p∨¬p,
ϕ ↔ ψ as an abbreviation for (ϕ → ψ) ∧ (ψ → ϕ), and ϕ ⊕ ψ as an abbreviation

for (¬ϕ ∧ ψ) ∨ (¬ψ ∧ ϕ), show that

• 0′ = 1 and 1′ = 0,

• (ϕ↔ ψ)′ = ϕ′ ⊕ ψ′ and (ϕ⊕ ψ)′ = ϕ′ ↔ ψ′.

(b) Let ϕ be a propositional formula. Let ϕ denote the formula obtained by

replacing all atomic propositions by their negations; that is, if all of the atomic

propositions of ϕ are among p1, . . . , pn, then ϕ = ϕ[p1/¬p1, . . . , pn/¬pn]. Prove
that ϕ′ and ¬ϕ are propositionally equivalent. (Hint. Prove this by induction on

the structure of ϕ using Axioms 3.13(ii) and (iii)).

(c) Show that ϕ is satisfiable iff ϕ′ is valid.

(d) Show that ϕ ≡ ψ iff ϕ′ ≡ ψ′.

(e) Formulate and prove a generalization of these duality results for predicate logic

using (3.4.1).

(f) Formulate and prove a generalization of these duality results for modal logic

using (3.7.1).

3.5. Intuitionistic propositional logic was defined in Section 3.2. Show that the

following propositions are intuitionistically equivalent:

(i) law of double negation: ¬¬ϕ→ ϕ;

(ii) reductio ad absurdum: (¬ϕ→ 0)→ ϕ;

(iii) law of the excluded middle: ¬ϕ ∨ ϕ;
(iv) law of contraposition: (¬ψ → ¬ϕ)→ (ϕ→ ψ);

(v) Peirce’s law: ((ϕ→ ψ)→ ϕ)→ ϕ.

3.6. Prove the validity of axioms (ii)–(iv) and (vi)–(ix) of Axiom System 3.13.

3.7. Prove that the free Σ-algebra generated by a set of a given cardinality is unique

up to isomorphism.

3.8. A Boolean algebra is a structure

B = (B,∧,∨,¬, 0, 1)
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satisfying the following equations:

(x ∨ y) ∨ z = x ∨ (y ∨ z) (x ∧ y) ∧ z = x ∧ (y ∧ z)
x ∨ y = y ∨ x x ∧ y = y ∧ x

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
x ∨ 0 = x x ∧ 1 = x

x ∨ 1 = 1 x ∧ 0 = 0

x ∨ ¬x = 1 x ∧ ¬x = 0

x ∨ x = x x ∧ x = x.

For example, a Boolean algebra of sets is a structure

B = (B,∩,∪,∼,∅, S)
where S is a set, B is a collection of subsets of S, ∩ is set intersection, ∪ is set

union, ∼ is set complementation in S, and ∅ is the empty set.

(a) Show that in any Boolean algebra B, for any a, b ∈ B, a ∨ b = b iff a ∧ b = a.

(Hint. Prove first the equations x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x.)

(b) Prove the De Morgan laws

¬(x ∨ y) = ¬x ∧ ¬y
¬(x ∧ y) = ¬x ∨ ¬y
and the double-negation law

¬¬x = x.

(Hint. Use (a) to show that for all a, b ∈ B, if a∧ b = 0 and a∨ b = 1, then a = ¬b.)

3.9. Let A be a set of propositional letters and let T denote the set of propositions

over A and ∧,∨,¬. For x, y ∈ T , define ϕ ≡ ψ if ϕ↔ ψ is a propositional tautology.

Prove that T/ ≡ is the free Boolean algebra on #A generators. (Hint. Consider the

set of Boolean functions on n inputs f : {0, 1}n → {0, 1}.)

3.10. For finite n, how many elements does the free Boolean algebra on n generators

have?

3.11. Define a ≤ b in a Boolean algebra if a∧b = a (equivalently, by Exercise 3.8(a),

if a ∨ b = b). Prove that ≤ is a partial order with bottom 0 and top 1.
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3.12. A filter F on a Boolean algebra B is a nonempty subset of B such that

a ∈ F, b ∈ F =⇒ a ∧ b ∈ F
a ∈ F, a ≤ b =⇒ b ∈ F.

Find a natural one-to-one correspondence between filters on B and congruences on

B. (Hint. If h : A → B is a homomorphism, consider the set h−1(1) = {a ∈ A |
h(a) = 1B}.)

3.13. An ideal I on a Boolean algebra B is a nonempty subset of B such that

a ∈ I, b ∈ I =⇒ a ∨ b ∈ I
b ∈ I, a ≤ b =⇒ a ∈ I.

Find a natural one-to-one correspondence between filters and ideals on B (see

Exercise 3.12). State the relationship between ideals and congruences analogous to

the hint for Exercise 3.12.

3.14. A filter is consistent if 0 
∈ F . An ultrafilter is a maximal consistent filter;

that is, one that is not properly included in any consistent filter. Show that every

consistent filter is contained in an ultrafilter. (Hint. Show first that if F is a

consistent filter and a ∈ B, then either F (a) of F (¬a) is a consistent filter, where

F (x) = {y ∈ B | ∃z ∈ F x ∧ z ≤ y} is the smallest filter containing F and x. Then

use Zorn’s lemma (see Section 1.6)).

3.15. Show that every Boolean algebra is isomorphic to a Boolean algebra of sets.

(Hint. Given B = (B,∧,∨,¬, 0, 1), take

S
def
= {ultrafilters of B},

a′ def
= {F ∈ S | a ∈ F},

B′ def
= {a′ | a ∈ B},

B′ def
= (B′,∩,∪,∼,∅, S),

where ∼ denotes complementation in S.)

3.16. The rule of congruence is a special case of the following substitution rule:

si = ti, 1 ≤ i ≤ n

t(s1, . . . , sn) = t(t1, . . . , tn)
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where t(x1, . . . , xn) is a term and t(t1, . . . , tn) denotes the result of simultaneously

replacing all occurrences of xi in t with ti, 1 ≤ i ≤ n. Show how to derive this rule

from the other rules of equality.

3.17. Prove Theorem 3.34(i).

3.18. Prove Theorem 3.35. (Hint. First establish that the map h �→ ker h is

invertible up to ≈. The inverse operation takes a congruence≡ on A to the canonical

epimorphism [ ] : A→ A/≡. To verify that the correspondence preserves the lattice

structure, argue that for epimorphisms h1 : A→ B1 and h2 : A→ B2, there exists

an epimorphism g : B1 → B2 such that h2 = h1 ◦ g iff ker h1 refines ker h2.)

3.19. Consider the class of all epimorphisms with domain A. For two such epimor-

phisms h1 : A→ B1 and h2 : A→ B2, write h1 ≤ h2 if there exists an epimorphism

g : B1 → B2 such that h2 = h1 ◦ g, and h1 ≈ h2 if both h1 ≤ h2 and h2 ≤ h1.

Show that h1 ≈ h2 iff there is an isomorphism ι : B1 → B2 such that h2 = h1 ◦ ι.

3.20. Prove Theorem 3.35.

3.21. (a) Prove that the maps Mod and Th defined in Section 3.3 form a Galois

connection (see Exercise 1.24). Conclude that for any set of equational formulas Φ,

ModΦ = ModThModΦ, as required in the proof of Corollary 3.43.

(b) By Exercise 1.24, the maps Mod ◦Th and Th ◦Mod are closure operators.

What are their closed sets?

3.22. Prove that every homomorphism factors into a composition of a monomor-

phism and an epimorphism. In other words, for every homomorphism f : A → C,

there exist an intermediate algebraB, an epimorphism g : A→ B, and a monomor-

phism h : B→ C such that f = g ◦ h.

3.23. Prove that 0x = 0 and x0 = 0 are logical consequences of the axioms for rings

(see Example 3.24).

3.24. In Section 1.5, semilattices were defined as partial orders in which every finite

set of elements has a join (lease upper bound). Show that semilattices form a variety

over the signature ∨ (join) and ⊥ (least element of the semilattice). (Hint. Consider

x ≤ y an abbreviation for x ∨ y = y. Your axiomatization must ensure that ≤ is a
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partial order, that ⊥ is the ≤-least element of the structure, and that ∨ gives the

least upper bound of two elements.)

3.25. Extend Axiom System 3.40 to handle Horn formulas. Prove that your deduc-

tive system is sound and complete.

3.26. Define a quasivariety to be a class of models defined by infinitary Horn

formulas of the form

Φ → s = t,

where Φ is a possibly infinite set of equations. Prove the following variant of

Birkhoff’s theorem (Corollary 3.43). Let D be a class of Σ-algebras. The following

are equivalent:

(i) D is a quasivariety

(ii) D = SPD

(iii) D = {S,P}∗D.

(Hint. Define the infinitary Horn theory of a class of algebras D. Formulate and

prove a theorem similar to Theorem 3.42 for infinitary Horn theories. In the last part

of the proof, modify the definition of Bs,t as follows. Let B be a set of generators

of A and let Δ be the kernel of the unique homomorphism TΣ(B) → A extending

the identity on B. Define Bs,t and us,t such that

Bs,t, us,t � Δ→ s = t

whenever Δ→ s = t is not in the Horn theory of D.)

3.27. Let x, y, z be first-order variables ranging over N. Show how to express the

following predicate in the language of first-order number theory (see Example 3.44):

“At least one of y and z is nonzero, and x is their greatest common divisor.”

3.28. Prove that the following first-order formulas are valid:

∃x ϕ ∨ ∃x ψ ↔ ∃x (ϕ ∨ ψ)
ϕ ↔ ∃x ϕ, x not free in ϕ

Show by example that the proviso “x not free in ϕ” is necessary in the second

formula.
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3.29. Show that if valuations u and v agree on all variables occurring free in ϕ,

then

A, u � ϕ ⇐⇒ A, v � ϕ.

Conclude that if ϕ is a sentence, that is, if ϕ has no free variables, then � does not

depend on the valuation u; that is, if A, u � ϕ for some u, then A, u � ϕ for all u.

3.30. Lemma 3.48 gives conditions under which bound variables can be renamed,

but the proof in the text establishes the equivalence of the two formulas by a

semantic argument. Show that if the conditions of Lemma 3.48 hold, then the same

equivalence can be derived using Axiom System 3.51.

3.31. Prove Lemma 3.49.

3.32. Prove the soundness of Axiom System 3.51.

3.33. A second-order number-theoretic formula in prenex form is universal if all

second-order quantifiers are universal quantifiers; that is, if it is of the form

∀f1 Q1y1 . . . ∀fn Qnyn ϕ, (3.8.1)

where each fi ranges over functions Nki → N for some ki, the Qiyi are blocks

of arbitrary first order quantifiers over individual variables yij ranging over N,
and ϕ is quantifier-free. In the proof of Theorem 2.12, we needed to know that

every universal second-order number-theoretic formula can be transformed to an

equivalent formula of the form

∀f ∃y ϕ, (3.8.2)

where f is a single function variable ranging over functions N → N, y is a single

individual variable ranging over N, and ϕ is quantifier-free. In this exercise we

establish this normal form.

(a) Give rules for second-order quantifiers analogous to the rules of Lemma 3.49 for

first-order quantifiers. State a theorem analogous to Lemma 3.50 for second-order

formulas.

(b) Show that the formula ∀y ψ, where y is an individual variable, is equivalent to

the formula ∀g ψ[y/g(0)], where g is a function variable of type N → N. Conclude
that (3.8.1) can be transformed into an equivalent second-order universal formula

containing no universally quantified individual variables.
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(c) By (a), we can assume without loss of generality that the first-order quantifier

blocks Qiyi in (3.8.1) contain only existential quantifiers. Argue that the formula

∀y ∃f ψ,
where y is an individual variable and f is a function variable of type Nk → N, is
equivalent to the formula

∃g ∀y ψ[f/g(y)],
where g is a function variable of type N→ (Nk → N). This transformation is called

Skolemization, and the function g is called a Skolem function.

(d) Using the transformation of (b) and currying the resulting Skolem functions

(see Exercise 1.19), argue that (3.8.1) can be transformed to an equivalent formula

of the form

∀f1 . . . ∀fm ∃y1 . . . ∃yn ϕ, (3.8.3)

where each fi is a function variable of type Nki → N for some ki and the yj are

individual variables.

(e) Using the pairing function of Exercise 1.20, show how to transform the formula

(3.8.3) into an equivalent formula of the desired form (3.8.2).

3.34. Show that complete lattices are not a variety. (Hint. Use Theorem 3.42.)

3.35. Show that the languages Lωck
1 ω

and Lω1ω are not compact. (Hint. Consider

the countable set

{
∨
n<ω

p(fn(a))} ∪ {¬p(fn(a)) | n < ω}

of infinitary formulas.)

3.36. Show that the languages Lωck
1 ω

and Lω1ω do not satisfy the upward

Löwenheim–Skolem theorem. (Hint. Consider the sentence

∀x
∨
n<ω

x = fn(a)

of Lωck
1 ω

.)

3.37. Prove the following infinitary tautologies using the deductive system of Sec-

tion 3.6.
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(a)
∨
α ϕ↔ ϕ (infinitary idempotence)

(b) ¬∧
α ϕα ↔

∨
α ¬ϕα (infinitary De Morgan law)

(c) ϕ ∧∨
α ψα ↔

∨
α(ϕ ∧ ψα) (infinitary distributive law)

3.38. Complete the proof of Theorem 3.63.

3.39. Give an IND program (see Section 2.2) that accepts a given code of a formula

of Lωck
1 ω

iff the formula is provable. Conclude from Exercise 2.11 that deciding

validity of Lωck
1 ω

formulas is in Π1
1.

3.40. Prove clauses (ii)–(viii) of Theorem 3.70.

3.41. Prove Theorem 3.74.

3.42. Prove that every propositional modal formula is satisfied in a tree model in

which each state has only finitely many successors. (Hint. Start with the tree model

of Theorem 3.74 satisfying the given formula ϕ at the root. Describe an inductive

procedure to move down the tree, labeling certain states with subformulas of ϕ

that need to be satisfied at that state in order to make ϕ true at the root. Make

sure only finitely many successors of each state are labeled. Delete unlabeled states.

Prove by induction that each state of the resulting tree model satisfies its label.)
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