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4 1. Preliminaries

For a simple point x, we shall also speak of the successor of x as the
sole successor of x.

We shall usually display ordered trees by placing the origin at the
top and the successor(s) of each point x below x, and in the order, from
left to right, in which they are ordered in the tree. And we draw a line
segment from x to y to signify that y is a successor of x.

We shall have occasion to speak of adding “new” points as successors
of an end point x of a given tree . By this we mean more precisely the
following: For any element y outside 7, by the adjunction of y as the
sole successor of x, we mean the tree obtained by adding y to the set S,
and adding the ordered pair {x,y) to the relation R (looked at as a set
of ordered pairs), and extending the function # by defining £(y)=¢(x)+ 1.
For any distinct elements y,, ..., y,, each outside S, by the adjunction of
Vis---» Vu @8 TESPECtive 1%,2M, .. n'® successors of x, we mean the tree
obtained by adding the y, to S, adding the pairs {x, y;> to R and extending
¢ by setting £(y,)=...=£(,)=£(x)+1, and extending the function
by defining 8(x) to be the sequence (yy,..., y,). [It is obvious that the
extended structure obtained is really a tree].

A tree is called finitely generated if each point has only finitely many
successors. A tree, 7, is called finite if 7 has only finitely many points,
otherwise the tree is called infinite. Obviously, a finitely generated tree
may be-infinite.

We shall be mainly concerned with ordered trees in which each
junction point has exactly 2 successors. Such trees are called dyadic trees.
For such trees we refer to the first successor of a junction point as the
left successor, and the second successor as the right successor.

[Exercise: In a dyadic tree, define x to be to the left of y if there is a
junction point whose left successor dominates x and whose right successor
dominates y. Prove that if x is to the left of y and y is to the left of z,
then x is to the left of z].

§ 1. Formulas of Propositional Logic

We shall use for our undefined logical connectives the following 4
symbols:

(1) ~ [read “not”],

(3) v [read “or],

(2) A [read “and”],
(4) > [read “implies”].

These symbols are respectively called the negation, conjunction, dis-
Jjunction, and implication symbols. The last 3 are collectively called binary
connectives, the first (~) the unary connective.
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Other symbols shall be:

(i) A denumerable set p;,p,, ..., Py ... of symbols called propositional
variables.

(ii) The two symbols (,), respectively called the left parenthesis and
the right parenthesis (they are used for purposes of punctuation). Until
we come to First-Order Logic, we shall use the word “variable” to mean
propositional variable.

We shall use the letters “p”, “q”, “r”, “s” to stand for any of the variables
P1sP2s++s Pns --+ - The notion of formula is given by the following recursive
rules, which enable us to obtain new formulas from those already con-
structed :

Fo: Every propositional variable is a formula.

F,: If Ais a formula so is ~ 4.

F,,F4,F,: If A, B are formulas so are (4 A B), (A v B), (4 > B).

This recursive definition of “formula” can be made explicit as follows.
By a formation sequence we shall mean any finite sequence such that each
term of the sequence is either a propositional variable or is of the form
~ A, where A4 is an earlier term of the sequence, or is of one of the forms
(A AB), (Av B), (A > B), where A4, B are earlier terms of the sequence.
Now we can define 4 to be a formula if there exists a formation sequence
whose last term is 4. And such a sequence is also called a formation
sequence for A. _

For any formula A, by the negation of A we mean ~ A. It will some-
times prove notationally convenient to write A’ in place of ~A4. For
any 2 formulas A, B, we refer to (A A B), (4 v B),(4 o B) as the conjunction,
disjunction, conditional of A, B respectively. In a conditional formula
(4 o> B), we refer to A as the antecedent and B as the consequent.

We shall use the letters “4”, “B”, “C”, “X”, “Y”, “Z” to denote
formulas. We shall use the symbol “b” to denote any of the binary
connectives A, v, o ; and when “b” respectively denotes A, v, o then
(X bY) shall respectively mean (X A Y), (X vY), (X = Y). We can thus
state the formation rules more succinctly as follows:

F,: Every propositional variable is a formula.

F.: If X is a formula so is ~X.

F,: If X, Y are formulas, then for each of the binary connectives b,
the expression (X bY) is a formula.

In displaying formulas by themselves (i.e. not as parts of other
formulas), we shall omit outermost parentheses (since no ambiguity can
result). Also, for visual perspicuity, we use square brackets [ ] inter-
changeably with parentheses, and likewise braces { }. Usually we shall
use square brackets as exterior to parentheses, and braces as exterior to
square brackets.



i o
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Example. Consider the following formula:
(CEYINEI ARG ERAT)
It is easier to read if displayed as follows:

{le=2ar@vn]=@vn}=>~(gVs)

Biconditional—we use “X < Y” asanabbreviation for (X > Y) A (Y= X).
The formula X <Y is called the biconditional of X, Y. It is read “X if and
only if Y or “X is equivalent to Y.

Uniqueness of Decomposition. It can be proved that every formula
can be formed in only one way—i.e. for every formula X, one and only
one of the following conditions holds :

(1) X is a propositional variable.

(2) There is a unique formula Y such that X =Y".

(3) There is a unique pair X,, X, and a unique binary connective b

such that X=(X b X),).
Thus no conjunction can also be a disjunction, or a conditional; no
disjunction can also be a conditional. Also none of these can also be a
negation. And, e.g, (X; A X,) can be identical with (¥; A Y,) only if
X,=Y, and X,=Y, (and similarly with the other binary connectives).
We shall not prove this here; perfectly good proofs can be found, e. g. in
CHURCH [1] or KLEENE [1].

In our discussion below, we shall consider a more abstract approach
in which this combinatorial lemma can be circumvented.

*Discussion. First we wish to mention that some authors prefer the
following formation rules for formulas:

Fy: Same as F.

Fy: If X is a formula, so is ~(X).

5. If X, Y are formulas, so is (X)b(Y).
This second set of rules has the advantage of eliminating, at the outset,
outermost parentheses, but has the disadvantage of needlessly putting
parentheses around variables.

It seems to us that the following set of formation rules, though a bit
more complicated to state, combines the advantages of the two preceding
formulations, and involves using neither more nor less parentheses than
is necessary to prevent ambiguity :

F§: Same as before.

F: If X is a formula but not a propositional variable and p is a
propositional variable, ~(X) and ~p are formulas.
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F3: If X, Y are both formulas, but neither X nor Y is a propositional
variable, and if p, q are propositional variables, then the following
expressions are all formulas :

(@) (X)b(Y),
(b) (X)bg,
(© pb(Y),
(d) pbg.

In all the above 3 approaches, one needs to prove the unique
decomposition lemma for many subsequent results. Now let us consider
yet another scheme (of a radically different sort) which avoids this.

First of all, we delete the parentheses from our basic symbols. We
now define the negation of X, not as the symbol ~ followed by the first
symbol of X, followed by the second symbol of X, etc. but simply as the
ordered pair whose first term is “~” and whose second term is X. And
we define the conjunction of X, Y as the ordered triple whose first term
is X, whose second term is “ A” and whose third term is Y. [In contrast,
the conjunction of X and Y, as previously defined, is a sequence of
n+m+3 terms, where n, m are the respective number of terms of X, Y.
The “3” additional terms are due to the left parenthesis, right parenthesis
and “A”]. Similarly we define the disjunction (conditional) of X, Y as
the ordered triple {X,b,Y)> where b is the binary connective in question.

Under this plan, a formula is either a (propositional) variable, an
ordered pair (if it is a negation) or an ordered triple. Now, no ordered
pair can also be an ordered triple, and neither one can be a single symbol.
Furthermore, an ordered pair uniquely determines its first and second
elements, and an ordered triple uniquely determines its first, second and
third elements. Thus the fact that a formula can be formed in “only one
way” is now immediate.

We remark that with this plan, we can (and will) still use parentheses
to describe formulas, but the parentheses are not parts of the formula.
For example, we write X A(Yv Z) to denote the ordered triple whose
first term is X, whose second term is “ A ”, and whose third term is itself
the ordered triple whose first, second and third terms are respectively,
Y, v, Z. But (under this plan) the parentheses themselves do not belong
to the object language!) but only to our metalanguage®).

The reader can choose for himself his preferred notion of “formula”,
since subsequent developments will not depend upon the choice.

Y The term object language is used to denote the language talked about (in this case
the set of formal expressions of propositional logic), and the term metalanguage is used to
denote the language in which we are talking about the object language (in the present case
English augmented by various common mathematical symbols).



8 I. Preliminaries

Subformulas. The notion of immediate subformula is given explicitly
by the conditions:

I,: Propositional variables have no immediate subformulas.

I,: ~X has X as an immediate subformula and no others.

I,—1,: The formulas XA Y, X vY, X o Y have X, Y as immediate
subformulas and no others.

We shall sometimes refer to X, Y respectively as the left immediate sub-
Sformula, right immediate subformula of X A Y, XVvY, X > Y.

The notion of subformula is implicitly defined by the rules:

Sy: If X is an immediate subformula of Y, or if X is identical with Y,
then X is a subformula of Y. s

S,: If X is a subformula of Y and Y is a subformula of Z, then X is
a subformula of Z.

The above implicit definition can be made explicit as follows: Y is
a subformula of Z iff (i.e. if and only if) there exists a finite sequence
starting with Z and ending with Y such that each term of the sequence
except the first is an immediate subformula of the preceding term.

The only formulas having no immediate subformulas are proposi-
tional variables. These are sometimes called atomic formulas. Other for-
mulas are called compound formulas. We say that a variable p occurs in
a formula X, or that p is one of the variables of X, if p is a subformula
of X.

Degrees; Induction Principles. To facilitate proofs and definitions by
induction, we define the degree of a formula as the number of occurrences
of logical connectives. Thus:

Dq: A variable is of degree 0.

D,: If X is of degree n, then ~X is of degree n+1.

D,—D,: If X, Y are of degrees n,n,, then XA Y, XvY, X oY are
each of degree n, +n,+1.

Example.

pA(gv ~r)is of degree 3.

pA(gvr)is of degree 2.

We shall use the principle of mathematical induction (or of finite
descent) in the following form. Let S be a set of formulas (S may be
finite or infinite) and let P be a certain property of formulas which we
wish to show holds for every element of S. To do this it suffices to show
the following two conditions:

(1) Every element of S of degree 0 has the property P.

(2) If some element of S of degree > 0 fails to have the property P,
then some element of S of lower degree also fails to have property P.

Of course, we can also use (2) in the equivalent form:

(2) For every element X of S of positive degree, if all elements of §
of degree less than that of X have property P, then X also has property P.
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Formation Trees. It is sometimes useful to display all the subformulas
of a given formula X in the form of a dyadic tree which we call a formation
tree for X ... which completely shows the pedigree of X. We start the
tree with the formula X at the origin, and each node of the tree which
is not a propositional variable “branches” into its immediate subfor-
mulas. More precisely, a formation tree for X is an ordered dyadic
tree 7 whose points are formulas (or rather occurrences of formulas,
since the same formula may have several different occurrences on the
tree) and whose origin is (an occurrence of) X, and such that the follow-
ing 3 conditions hold:

(i) Each end point is (an occurrence of) a propositional variable.

(ii) Each simple point is of the form ~ Y and has (an occurrence
of) Y as its sole successor.

(iiiy Each junction point is of the form X b Y and has (occurrences
of) X, Y as respective left and right successors.

As an example the following is a formation tree for the formula

[pAg)>(~pv~~g]Vv(g=> ~p):
[pArg)=>(~pv ~~qg)]v(g>~p)

Prg2(<~pv~~g) q>~p

P/\q/\~l7/\’<‘q q NT
p q NT “’N’q p
p ~q
|
q

We might remark that the subformulas of a given formula X are
precisely those formulas which appear somewhere on the formation
tree for X.

§ 2. Boolean Valuations and Truth Sets

Now we consider, in addition to the formulas of propositional logic,
a set {t, f'} of two distinct elements, ¢, f. We refer to ¢, f as truth-values.
For any set S of formulas, by a valuation of S, we mean a function v
from § into the set {t, f}—i.e. a mapping which assigns to every ele-
ment X of S one of the two values ¢, f. The value v(X)of X under v is
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called the truth value of X under v. We say that X is true under v if
v(X)=t, and false under v if v(X) =f.

Now we wish to consider valuations of the set E of all formulas of
propositional logic. We are not really interested in all valuations of E,
but only in those which are “faithful” to the usual “truth-table” rules
for the logical connectives. This idea we make precise in the following

definition.

Definition 1. A valuation v of E is called a Boolean valuation if for
every X, Y in E, the following conditions hold:

B,: The formula ~X receives the value ¢ if X receives the value f
and f if X receives the value t. =

B,: The formula X A Y receives the value ¢ if X, Y both receive the
value ¢, otherwise X A Y receives the value f.

B;: The formula X v Y receives the value ¢ if at least one of X, ¥
receives the value ¢, otherwise X v Y receives the value f.

B,: The formula X oY receives the value f if X, Y receive the

respective values ¢, f; otherwise X o Y receives the value ¢.
This concludes our definition of a Boolean valuation. We say that two
valuations agree on a formula X if X is either true in both valuations or
false in both valuations. And we say that 2 valuations agree on a set S
of formulas if they agree on every element of the set S.

If S, is a subset of §, and if v, v, are respective valuations of §,, S,
then we say that v, is an extension of v, if v,, v; agree on the smaller set ;.

It is obvious that if 2 Boolean valuations agree on X then they agree
on ~ X (why?), and if they agree on both X, Y they must also agree on
each of XA Y, X v Y, XoY (why?). By mathematical induction it follows
that if 2 Boolean valuations of E agree on the set of all atomic elements
of E (i.e., on all propositional variables) then they agree on all of E.
Stated otherwise, a valuation v, of the set of all atomic elements of E
can be extended to at most one Boolean valuation of E.

By an interpretation of a formula X is meant an assignment of truth
values to all of the variables which occur in X. More generally, by an
interpretation of a set W (of formulas) is meant an assignment of truth
values to all the variables which occur in any of the elements of W, We
can thus rephrase the last statement of the preceding paragraph by
saying that any interpretation v, of E can be extended to at most one
Boolean valuation of E. That v, can be extended to at least one Boolean
valuation of E will be clear from the following considerations.

Consider a single formula X and an interpretation v, of X—or for
that matter any assignment v, of truth values to a set of propositional
variables which include at least all variables of X (and possibly others).
It is easily verified by induction on the degree of X that there exists one
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and only one way of assigning truth values to all subformulas of X such
that the atomic subformulas of X (which are propositional variables)
are assigned the same truth values as under vy, and such that the truth
value of each compound subformula Y of X is determined from the
truth values of the immediate subformulas of Y by the truth-table rules
B, — B,.[We might think of the situation as first constructing a formation
tree for X, then assigning truth values to the end points in accordance
with the interpretation v,, and then working our way up the tree, succes-
sively assigning truth values to the junction and simple points, in terms
of truth values already assigned to their successors, in accordance with
the truth-table rules]. In particular, X being a subformula of itself
receives a truth value under this assignment; if this value is ¢ then we
say that X is true under the interpretation vy, otherwise false under v,.
Thus we have now defined what it means for a formula X to be true
under an interpretation.

Now consider an interpretation, v,, for the entire set E. Each element,
X, of E has a definite truth value under v, (in the manner we have just
indicated); we let v be that valuation which assigns to each element of E
its truth value under the interpretation v,. The valuation v is on the
entire set E, and it is easily verified that v is 2 Boolean valuation, and of
course, v is an extension of v,. Thus it is indeed the case that every inter-
pretation of E can be extended to one (and only one) Boolean valuation
of E.

Tautologies. The notion of tautology is perhaps the fundamental
notion of propositional logic.

Definition 2. X is a tautology iff X is true in all Boolean valuations
of E.

Equivalently, X is a tautology iff X is true under every interpretation
of E. Now it is obvious that the truth value of X under an interpretation
of E depends only on the truth values assigned to the variables which
occur in X. Therefore, X is a tautology if and only if X is true under-every
interpretation of X. Letting n be the number of variables which occur
in X, there are exactly 2" distinct interpretations of X. Thus the task of
determining whether X is or is not a tautology is purely a finite and
mechanical one—just evaluate its truth value under each of its 2" inter-
pretations (which is tantamount to the familiar truth-table analysis).

Definition 3. A formula X is called (truth-functionally) satisfiable
iff X is true in at least one Boolean valuation. A set S of formulas is said
to be (simultaneously) truth-functionally satisfiable iff there exists at
least one Boolean valuation in which every element of S is true. Such a
valuation is said to satisfy S.
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Definition 4. A set S truth-functionally implies a formula X, or X is
truth-functionally implied by S, or is a truth-functional consequence of S
if X is true in every Boolean valuation which satisfies S. We also say
that Y is truth-functionally implied by X if Y is truth functionally implied
by the unit set {X} ...1i.e.if Y is true in every Boolean valuation in which
X is true.

Definition 5. Two formulas X, Y are called truth functionally equi-
valent iff X, Y are true in the same Boolean valuations. [The reader
should note that X truth-functionally implies Y iff X > Y is a tautology,
and that X is truth-functionally equivalent to Y iff the formula XY
is a tautology]. 2

Truth Sets. Let v be a Boolean valuation, and let S be the set of all
formulas which are true under v. It is immediate from the definition of a
Boolean valuation that the set S obeys the following conditions (for
everyX, Y):

S,: Exactly one of the pair (X, ~ X) belongs to S. Stated otherwise
(~X)eSiff X¢8S.

S,: (XAY)isin Siff X, Y are both in S.

S;: (XvY)isin Siff Xe S or YeS.

S, (X>Y)isin Siff X¢ S or YeS.

A set S obeying the above conditions will be called saturated or
will be said to be a truth set. Thus for any Boolean valuation, the set of
all sentences true under the valuation is saturated. Indeed, if v is an
arbitrary valuation, and if S is the set of all sentences which are true
under v, then the following 2 conditions are equivalent:

(1) vis a Boolean valuation,
(2) S is saturated.

Now suppose that we start with a set S, and we define v, to be that
valuation which assigns ¢ to every member of S, and [ to every formula
outside S. [ The function v, is sometimes referred to as the characteristic
function of the set S.] It is again obvious that S is saturated iff v is a
Boolean valuation.

Now the set of all sentences true under v, is obviously S itself. Thus a
set is saturated iff it is the set of all sentences true under some Boolean
valuation. Thus a formula X is a tautology iff it is an element of every
truth set; stated otherwise, the set of tautologies is the intersection of all
truth sets and a formula X is satisfiable iff it is an element of some truth
set. Stated otherwise, the set of satisfiable sentences is the union of all
truth sets. Likewise a set S truth-functionally implies X iff X belongs to
every truth set which includes S.

We thus see that we really do not need to “import” these “foreign”
elements #, f in order to define our basic semantic notions. In some
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contexts it is technically more convenient to use ¢ and f and Boolean
valuations; in other it is simpler to use truth sets.

Exercise 1 [Truth Functional Equivalence]. We shall use “~” in
our metalanguage and write X ~ Y to mean that X is equivalent to Y—
i.e. that the formula XY is a tautology.

Now suppose that X, ~ X,. Prove the following equivalences:

~Xi~~X,,

X AY=X, A Y, YAX ~YAX,,
X, vY=X,vY, YvX,~2Yv X,
X, oY~X,0Y, Yo X, ~Yo X,.

Using these facts, show that for any formula Z which contains X,
as a part, if we replace one or more occurrences of the part X, by X,
the resulting formula is equivalent to Z.

Exercise 2 — [Important for Ch.XV!]. In some formulations of
propositional logic, one uses “t”, “f” as symbols of the object language
itself; these symbols are then called propositional constants. And a
Boolean valuation is redefined by adding the condition that t must be
given the value truth and f falsehood. [Thus, e. g. t by itself is a tautology;
f is unsatisfiable; X o t is a tautology; /> X is a tautology. Also, under
any Boolean valuation ¢t > Y has the same truth value as Y; X o f has
the opposite value to X. Thus ¢ > Y is a tautology iff Y is a tautology;
X o fis a tautology iff X is unsatisfiable. ]

Prove the following equivalences:

(1) XntxX; XAf~f,
(2) X vt Xvf~X,
(3) X o t~t; to X~X,
@ Xofe~X, [foX,
(5) ~t~f; ~fet,

6) XAY~YAX; XvY=YVvX.

Using these facts show that every formula X with propositional
constants is either equivalent to a formula Y which contains no pro-
positional constants or else it is equivalent to t or to f.

Exercise3.Itisconvenient to writea conjunction(..(X; A X)) A... A X))
as X, AX,A...AX,, and the formulas X,,X,,..., X, are called the
components of the conjunction. [Similarly we treat disjunctions.] By a
basic conjunction is meant a conjunction with no repetitions of compo-
nents such that each component is either a variable or the negation of a
variable, but no variable and its negation are both components. [As an
example, p; A ~p, A p3 is a basic conjunction—so is ~p; Apy A ~ps—
SO iS ~p, AP, APps.] By a disjunctive normal formula is mean a formula
CyV...v C,, where each C, is a basic conjunction. [As an example the
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formula (py A ~py Ap3)V(~p; APy Ap3)V(~pi AP, ADs) is a disjunc-
tive normal formula.] A disjunctive normal formula is also sometimes
referred to as a formula in disjunctive normal form. If we allow pro-
positional constants ¢, f into our formal language, then the formula f is
also said to be a disjunctive normal formula.

Prove that every formula can be put into disjunctive normal form—
i.e. is equivalent to some disjunctive normal formula. [Hint: Make a
truth-table for the formula. Each line of the table which comes out “T”
will yield one of the basic conjunctions of the disjunctive normal form.]
. Exercise 4. A binary connective C is said to be definable from connec-
tives Cy,...,C, if there exists a formula in two variables p, g which uses
Jucst the connectives Cy, ..., C, and which is equivalent to the formula
rCaq.

As an example, v is definable from {~, A}, because the formula
~(~pnA ~q)is equivalent to p v q.

Prove: A is definable from {~, v },
o is definable from {~, A },
o is definable from {~, v },
A is definable from {~, o},
v is definable from {~,>}.

Exercise.5. Let us introduce Sheffer’s stroke symbol “|” as a binary
connective for propositional logic, and add the formation rule “If X, Y
are formulas, so is (X|Y)”. [We read “X|Y” as “X is incompatible with Y
or “either X or Y is false”.] A Boolean valuation is then re-defined by
adding the conditions “X |Yis true under v iff at least one of X, Y is false
under v”:

(a) Show that | is definable from the other connectives.

(b) Show that all the other connectives are definable from | (~ is
definable from | in the sense that there is a formula ¢(p) involving just
the stroke connective and one propositional variable p such that ¢(p)
is equivalent to ~ p).

Do the same for the joint denial connective | (where X|Y is read
“both X, Y are false”. Show that all other connectives are definable
from |.

It can be shown that |, | are the only binary connectives which each
suffice to define all other connectives. [This is not easy! The “‘virtuoso”’
reader might wish to try his hand at this as an exercise.]
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Chapter II
Analytic Tableaux

We now describe an extremely elegant and efficient proof procedure
for propositional logic which we will subsequently extend to first order
logic, and which shall be basic to our entire study. This method, which
we term analytic tableaux, is a variant of the “semantic tableaux” of
Beth [1], or of methods of Hintikka [1]. (Cf. also Anderson and
Belnap [1].) Our present formulation is virtually that which we intro-
duced in [1]. Ultimately, the whole idea derives from Gentzen [1], and
we shall subsequently study the relation of analytic tableaux to the
original methods of Gentzen.

§ 1. The Method of Tableaux

We begin by noting that under any interpretation the following eight
facts hold (for any formulas X, Y):

1) a) If ~X is true, then X is false.
b) If ~X is false, then X is true.
2) a) If a conjunction X A Y is true, then X, Y are both true.
b) If a conjunction X A Y is false, then either X is false or Y is false.
3) a) Ifa disjunction X v Y is true, then either X is true or Y is true.
b) If a disjunction X v Y is false, then both X, Y are false.
4) a) If X > Yis true, then either X is false or Y is true.
b) If X o Y is false, then X is true and Y is false.

These eight facts provide the basis of the tableau method.

Signed Formulas. At this stage it will prove useful to introduce the
symbols “T™, “F” to our object language, and define a signed formula as
an expression TX or FX, where X is a (unsigned) formula. (Informally,
we read “TX” as “X is true” and “FX” as “X is false”))

Definition. Under any interpretation, a signed formula TX is called
true if X is true, and false if X is false. And a signed formula FX is called
true if X is false, and false if X is true.

Thus the truth value of TX is the same as that of X; the truth value
of FX is the same as that of ~X.

By the conjugate of a signed formula we mean the result of changing
“T t0 “F” or “F” to “T” (thus the conjugate of TX is FX; the conjugate
of FX is TX).

Ilustration of the Method of Tableaux. Before we state the eight rules
for the construction of tableaux, we shall illustrate the construction
with an example.




