Lambda Calculus

Topics

1. Programming language classification: functional, imperative, pure, impure, object oriented

Simplest to study mathematically is functional programming, it is a core of other languages, well related to math.

2. Functions have been key in mathematics since the 1700’s.

From the study of motion, the idea of a function emerged. By 1673 Leibniz (ancestor of most computer scientists) used the terms “function”, “constant”, “variable”, “parameter”.

Euler 1755- New definition of function: “If some quantities depend on others in such a way as to undergo variation when the latter are varied, then the former are called functions of the latter”

Dirichlet 1827 defines common notations

\[
\begin{align*}
 y &= f(x) \\
 y &= x^2,
\end{align*}
\]

but not precise, Bourbaki uses \(x \mapsto x^2\)

3. The move toward set theory in 1908 led to an effort to code all mathematical concepts as sets. Students are probably familiar with functions as single valued relations, relation \(R(x, y)\) is a set of ordered pairs, a subset of \(A \times B\)

For example \(y = x^2\) on numbers \(\{<0, 0>, <1, 1>, <2, 4>, <3, 0>, \ldots\}\), if \(<a, b>, <a, b'>\) appear, then \(b = b'\).

4. We don’t use this definition, we want a function to be a rule of correspondence given by an algorithm.

Church 1932 A set of postulates for the foundations of mathematics[1].

1940 He captured this with his Lambda Calculus. [2]
We define the pure λ-calculus as a starting point. Its syntax is given as a collection (type) of λ-terms, inductively defined. There are these variants.

Definition 1 Thompson book Def 2.1

There are 3 kinds of λ-expressions:

- Variables \(v_0, v_1, v_2, \ldots\)
- Applications \((e_1, e_2)\) for \(e_1, e_2\) λ-expressions
- Abstractions \((\lambda x.e)\) for \(x\) a var, \(e\) a λ-expression

Definition 2 λ-terms

- Variables \(x_1, x_2, \ldots\)
- \((\lambda x.M)\)
- \((N M)\)

Syntactic conventions for abbreviations:

C1. Application binds more tightly than abstraction.

\[\lambda x.xy \text{ means } (\lambda x. (xy)) \text{ not } ((\lambda x.y))\]

C2. Application associates to the left.

\[xyz \text{ means } ((xy)z)\]

C3. \(\lambda x_1.\lambda x_2.\lambda x_3.e\) means \((\lambda x_1. (\lambda x_2. (\lambda x_3.e)))\)

Note there are variations in the literature that we will read.

Definition 3 From Stenlund Combinators λ-Terms and Proof Theory, D. Reidel 1972, p.11, Ch 1 §4

- A variable
- (Possibly constants)
- \((a, b)\) application, write \(a_1 a_2 \ldots a_n\) for \((\ldots((a_1 a_2) a_3)\ldots)\)
- \(\lambda x.a\)

Since there is so much variation and chance for ambiguity, we introduce an unambiguous definition using abstract syntax, a key idea from early work that led to Lisp. It’s from one of the seminal papers. This is by John McCarthy (1963) \[3\].

1Definition 2 comes from the “Barendregt Bible”, The Lambda Calculus, its Syntax and Semantics, N-H 1981
Definition 4 Abstract syntax for the Lambda Calculus - λ-terms

- Variables $x, y, z, x_1, y_1, z_1, ...$
- Abstraction $\lambda(x.t)$ t is a λ-term, x is a variable
- Application $ap(f; a)$ f, a λ-terms

<table>
<thead>
<tr>
<th>The identity function</th>
<th>Applying the identity function to itself</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thompson $(\lambda x.x)$</td>
<td>$(\lambda x.x)(\lambda x.x)$</td>
</tr>
<tr>
<td>Barendregt $(\lambda x.x)$</td>
<td>$(\lambda x)(\lambda x)$</td>
</tr>
<tr>
<td>Stenlund $\lambda x.x$</td>
<td>$(\lambda x)(\lambda x)$</td>
</tr>
<tr>
<td>Abstract $\lambda(x.x)$</td>
<td>$ap(\lambda(x.x); \lambda(x.x))$</td>
</tr>
</tbody>
</table>

These definitions are all inductive. Thompson does not mention this. Barendregt mentions it in a footnote. Stenlund is explicit. It is clear in the abstract syntax based on defining other mathematical expressions, such as arithmetic expressions: exp

- Variables $x, y, z, x_1, y_1, z_1, ...$
- Constants 0, 1
- $add(exp, exp)$
- $mult(exp, exp)$

$0, 1, add(0, 0), mult(0, 0), mult(0, 1),..., add(add(0, 0), add(0, 1)), ...$

In the Coq and Nuprl programming languages, types can be defined inductively. The Coq type for the lambda calculus is this:

```
inductive term: Type =
| var  (v : var) |
| lam  (v : var)(t : term) |
| ap   (t : term)(t : term) |
```

Subterms

Free Variables

$Free(x) = x$

$Free(\lambda(x.b)) = Free(b) - \{x\}$

$Free(ap(f; a)) = Free(f) \cup Free(a)$

Equality

α-Equality

Substitution $e[a/x]$

à la Barendregt: with variable convention: all bound variables are chosen different from the free variables.
\[
x[a/x] = a \\
y[a/x] = y \text{ if } x \neq y \\
\lambda(y.b)[a/x] = \lambda(y.b[a/x]) \\
ap(f; t)[a/x] = ap(f[a/x]; t[a/x])
\]

See lecture notes from Lecture 2, 2010 for an account of “safe substitution” (2.2) that allows us to safely substitute open terms. Why is this important?

In normal use of \(\lambda\)-terms and in programming languages, open terms have meaning with reference to some context or environment. We don’t want to break that link by having the binding operator, \(\lambda(x.___)\), capture the external link.

Typically in mathematics, say calculus, we can’t apply a function to itself! So \((x x)\) as a term and \((\lambda x.x \lambda x.x)\) are not common.

Here is a simple \(\lambda\)-term that does not appear in ordinary mathematics and might seem crazy:

\[
\lambda(x.ap(x; x)) \text{ also written as } \lambda x.x x
\]

Even more strange from CS6110 lecture notes:

\[
\Omega = ap(\lambda(x.ap(x; x)); \lambda(x.ap(x; x))) \\
\Omega = (\lambda x.x x)(\lambda x.x x)
\]

References

