Logic of	Prog	grams
CS 6860	Fall	2015

Lecture 21 Thurs. Nov 5, 2015

Lecture 21

We will compare the computational content of constructive proofs in iFOL (also called \mathcal{L}_1) and intuitionistic (impredicative) second order logic (also called \mathcal{L}_2).

We examined the evidence terms for $A \& B \Rightarrow A \lor B$ in *i*FOL. We can have essentially these two evidence terms:

$$\lambda(ab.\operatorname{spread}(ab; a, b.\operatorname{inl}(a)))$$
 or $\lambda(ab.\operatorname{spread}(ab; a, b.\operatorname{inr}(b))).$

What is the "second-order realizer"? Is it "polymorphic" or "uniform" as the first-order ones are? Can we reconstruct the proof from the realizer?

$$\vdash \forall X : \operatorname{Prop.}(A \Rightarrow (B \Rightarrow X) \Rightarrow X) \Rightarrow \forall X : \operatorname{Prop.}((A \Rightarrow X) \Rightarrow ((B \Rightarrow X) \Rightarrow X)) \qquad \lambda(h._)$$

$$h : \forall X : \operatorname{Prop.}(A \Rightarrow (B \Rightarrow X) \Rightarrow X) \quad \vdash \forall X : \operatorname{Prop.}((A \Rightarrow X) \Rightarrow ((B \Rightarrow X) \Rightarrow X)) \quad \text{by } \lambda(X._)$$

$$h : (...), X : \operatorname{Prop.}((A \Rightarrow X) \Rightarrow ((B \Rightarrow X) \Rightarrow X)) \quad \text{ap}(h; X)$$

$$X : \operatorname{Prop.}(h(X) : A \Rightarrow (B \Rightarrow X) \Rightarrow X \quad \vdash (A \Rightarrow X) \Rightarrow ((B \Rightarrow X) \Rightarrow X) \quad \lambda(ax; _)$$

$$X : \operatorname{Prop.}(h(X) : (...), ax : (A \Rightarrow X) \quad \vdash (B \Rightarrow X) \Rightarrow X \quad \lambda(bx._)$$

$$X : \operatorname{Prop.}(h(X) : (...), ax : (A \Rightarrow X), bx : (B \Rightarrow X) \quad \vdash X \quad \text{ap}(h(X); _) = z$$

$$X : \operatorname{Prop.}(ax : (A \Rightarrow X), bx : (B \Rightarrow X) \quad \vdash A \Rightarrow (B \Rightarrow X) \quad \lambda(a._) \stackrel{\triangle}{\longrightarrow} x : \operatorname{Prop.}(A \Rightarrow X), bx : (B \Rightarrow X), a : A, \quad \vdash (B \Rightarrow X) \quad \text{by } bx \mid x : \operatorname{Prop.}(A \Rightarrow X), bx : (B \Rightarrow X), a : A, \quad \vdash (B \Rightarrow X) \quad \text{by } bx \mid x : \operatorname{Prop.}(A \Rightarrow X), bx : (B \Rightarrow X), a : A, \quad \vdash (B \Rightarrow X) \quad \text{by } bx \mid x : \operatorname{Prop.}(A \Rightarrow X), bx : (B \Rightarrow X), a : A, \quad \vdash (B \Rightarrow X) \quad \text{by } bx \mid x : \operatorname{Prop.}(A \Rightarrow X), bx : (B \Rightarrow X), a : A, \quad \vdash (B \Rightarrow X) \quad \text{by } bx \mid x : \operatorname{Prop.}(A \Rightarrow X), bx : (B \Rightarrow X), a : A, \quad \vdash (B \Rightarrow X) \quad \text{by } bx \mid x : \operatorname{Prop.}(A \Rightarrow X), bx : (B \Rightarrow X), a : A, \quad \vdash (B \Rightarrow X) \quad \text{by } bx \mid x : \operatorname{Prop.}(A \Rightarrow X), bx : (B \Rightarrow X), a : A, \quad \vdash (B \Rightarrow X) \quad \text{by } bx \mid x : \operatorname{Prop.}(A \Rightarrow X), bx : (B \Rightarrow X), a : A, \quad \vdash (B \Rightarrow X) \quad \text{by } bx \mid x : \operatorname{Prop.}(A \Rightarrow X), bx : (B \Rightarrow X), a : A, \quad \vdash (B \Rightarrow X) \quad \text{by } bx \mid x : \operatorname{Prop.}(A \Rightarrow X), bx : (B \Rightarrow X), a : A, \quad \vdash (B \Rightarrow X) \quad \text{by } bx \mid x : \operatorname{Prop.}(A \Rightarrow X), bx : (B \Rightarrow X), a : A, \quad \vdash (B \Rightarrow X), a : A, \quad \vdash$$

The realizer is $\lambda(h.\lambda(X.\lambda(ax.\lambda(bx.apseq(h(X);\lambda(a.bx);z.z))))$

What disjunct did we prove?

How could we prove the other one?

We can prove either given h. If we want A, we use h(A), which is:

$$\lambda(ax.\lambda(bx.apseq(h(A);\lambda(a.bx);z.z))).$$

We need $ax \in A \Rightarrow A$ and $bx \in (B \Rightarrow A)$ which must be $\lambda(x.a)$.

If we want B, we use h(B) and we need $A \Rightarrow B$ and $B \Rightarrow B$. So we need $\lambda(x.b)$ for $b \in B$. We can't have empty A or B since we need $A \Rightarrow (B \Rightarrow B) \Rightarrow B$ or $A \Rightarrow (B \Rightarrow A) \Rightarrow A$.

We can prove the following illuminating fact in Nuprl.

Theorem. $\forall A, B : \text{Prop}_1.(A \lor B) \Leftrightarrow \forall X : \text{Prop}_1.((A \Rightarrow X) \Rightarrow ((B \Rightarrow X) \Rightarrow X))$

Proof.

The direction $(A \vee B) \Rightarrow \forall X : \text{Prop}_1 \cdot ((A \Rightarrow X) \Rightarrow ((B \Rightarrow X) \Rightarrow X))$ is trivial.

We have the hypothesis $d: A \vee B$, X: Prop, $ax: A \Rightarrow X$, $bx: B \Rightarrow X \vdash X$.

We use the case split on d, $\operatorname{decide}(d; a._.; b._.)$. In case a:A we use $A\Rightarrow X$ and in case b, $B\Rightarrow X$.

The direction \Leftarrow is more subtle.

We have the hypotheses:

 $A: \operatorname{Prop}_1, B: \operatorname{Prop}_1, h: \forall X: \operatorname{Prop}_1.((A \Rightarrow X) \Rightarrow ((B \Rightarrow X) \Rightarrow X))$ to show $A \vee B$. We substitute $(A \vee B)$ for X in h to get the additional hypothesis.

$$h': A \Rightarrow (A \lor B) \Rightarrow (B \Rightarrow (A \lor B)) \Rightarrow X \vdash X.$$

Then we show $A \Rightarrow (A \lor B)$ to get the hypothesis $(B \Rightarrow (A \lor B)) \Rightarrow X$ and finally show $B \Rightarrow (A \lor B)$ to conclude X.

QED.