
The Structure of Information Networks Problem Set 1
CS 6850 Fall 2008 Due September 19, 2008

The goal of this problem set is to provide practice implementing some basic network anal-
ysis techniques on a moderate-sized network dataset — specifically, a coauthorship network
constructed from a bibliography of computer science papers maintained by Joel Seiferas at the
University of Rochester. The bibliography can be downloaded from

ftp://ftp.cs.rochester.edu/pub/u/joel/papers.lst

Building the coauthorship network. Here are some instructions on how to create the
coauthorship network from the raw bibliography. The short explanation is: each line represents
a paper, and we want to build the undirected graph whose nodes are the people named in
the bibliography, and whose edges join those pairs of people who’ve coauthored a paper in the
bibliography.

The more detailed instructions now follow. Each line in the bibliography describes a distinct
paper, and has the following format:

year [number] conference/journal author & author & ... & author, title

Here, conference/journal is an acronym encoding the conference or journal where the paper
appeared, year is the year of the paper, and number is the volume number of the journal or
conference. We write number in brackets above because it is present in some lines and (when
it is not known or not applicable) absent in others. Authors are given by last name only, and
separated by the & symbol. The list of authors ends with a comma, and the the remainder of
the line is the title. Thus, a sample line from the file is

2005 37 STOC Naor & Schwartz, Balanced Metric Labeling

encoding the paper “Balanced Metric Labeling” by Naor and Schwartz at the 37th STOC
conference in 2005. Finally (as within list of records of this length), it is possible that a few of
the lines in the file are misformatted.

From this bibliography, you should construct a coauthorship network as follows.

• There should be one node for each person. (Note that even if a person is an author
on 50 of the papers listed in the bibliography file, there should still just be one node
corresponding to him or her, not 50.)

• There should be an undirected edge between nodes A and B if and only if they are
coauthors on a paper in the bibliography. (If they are coauthors on multiple papers, there
should still just be a single edge joining them.)

For example, if the file consisted of just the two lines

2005 37 STOC Naor & Schwartz, Balanced Metric Labeling

1996 45 IEEETC Azar & Naor & Rom, Routing Strategies for Fast Networks

then the graph should have node set

{Azar, Naor, Rom, Schwartz}
and edge set

{(Azar,Naor), (Azar, Rom), (Naor, Rom), (Naor, Schwartz)}.



Caveats. Before we move on to the problems themselves, here are two points worth mention-
ing about the network we’re studying here.

(1) As we’ll see at various points in the course, coauthorship networks are a popular kind
of “model system” for large-scale network analysis. This is not so much because there’s
widespread fascination with the coauthoring habits of scientists (though it’s an interesting
topic that some people study as their research area), but because coauthorship networks
are a kind of social network, encoding a particular type of collaboration among people,
for which extremely rich and detailed data is available. As a result, it is a chance to try
out network analysis techniques at very high resolution, in a setting that possesses many
of the properties exhibited by much “messier” and harder-to-measure social networks as
well.

(2) Any time one tries to build a network from a file containing a list of names, there’s the
concern that different people can have the same name, and hence these different people
are being “merged” into a single node. This is definitely something to worry about when
one tries to draw inferences about social structure from the resulting network. However,
in our case, we are using this dataset simply to build an interesting graph on which to
practice various analysis techniques, so for our limited purposes there’s no problem: if
two authors have the same last name, then for us they are the same person.

(2′) In fact, because of the issue in (2), there are papers where someone appears to coauthor
with themselves. We will omit from the network those edges that link some node to itself.

What to hand in. You should hand in the following three things, as hardcopy in class
September 19 (or earlier).

(1) Written answers to the questions on the following pages.

(2) Print-outs of the source code you used to compute the answers. By default, we won’t be
grading the quality of the code itself, but it will be useful to have it in case we run into
any confusion. (It is okay to use packages or software specifically designed for handling
graphs. If you answer the questions by some means where the notion of “source code”
doesn’t exactly apply, then submit whatever analogue of source code we’d need to see
how you answered the questions — for example, a script you wrote as part of some larger
existing package, or a transcript of an interactive session in which you did it.)

(3) A brief description of how to run your code (or code analogue) on the data.

Again, for most of the solutions, we’ll simply be evaluating (1), and only consulting (2) or (3)
as background if necessary.

In addition to the hardcopy printouts of (1)-(3), please send them as attachments in e-mail
to Lars Backstrom, lars@cs.cornell.edu. To assist with e-mail filing, please include “CS 6850
Problem Set 1” in the subject line. (E-mail without this phrase in the subject may not get
recognized as a problem set being handed in.)



The Problems

(1) Recall that the degree of a node is the number of edges it’s incident to. We start by
considering how the degrees of the nodes are distributed.

Thus, for a number j, let nj denote the number of nodes with degree exactly j. Let d∗

be the maximum degree of any node in the network. (This is the maximum total number of
co-authors that any one author has — the maximum j for which nj > 0.)

(a) For each j from 0 to d∗, output the number nj.

(b) Draw a scatterplot in the plane of the ordered pairs (log j, log nj) for those j such that
both j > 0 and nj > 0. (For the version you submit by e-mail, it’s useful to do produce
this as jpeg, png, pdf or some other format we can display and print.) Later in the course,
we’ll see some proposed explanations for why such scatterplots can often be approximated
fairly well by a straight line.

(2) Now we consider the sizes of the connected components in the network.

(a) How many nodes are in the largest connected component? How many nodes are in the
network overall? (Looking at the ratio of these two quantities is a good way to assess
whether we should think of the network as having a “giant” component, or whether it
consists entirely of small components.)

(b) Let kj denote the number of connected components of size j, and let c∗ denote the size
of the second-largest component. For each j from 1 to c∗, output the number kj.

(c) Draw a scatterplot in the plane of the ordered pairs (log j, log kj) for those j such that
both j > 0 and kj > 0. (Again, for the version you submit by e-mail, you can submit this
as jpeg, png, pdf or some other format we can display and print.) The extent to which
logarithmic plots of component sizes should look like straight lines is less heavily studied,
but there is evidence for this as well.

(3) We next consider node-to-node distances in the largest component.

(a) We start by fixing the author name Hartmanis (i.e. Juris Hartmanis, one of Cornell’s
two Turing Award winners) as our “root node.” For each j, let rj denote the number of
nodes at distance exactly j from Hartmanis. (So r0 = 1, and r1 is equal to the degree of
Hartmanis.) Let s∗ denote the largest j for which rj > 0 — this is the farthest anyone in
the bibliography is from Hartmanis, yet still connected to him by a path.

For each j from 1 to s∗, output the number rj.

(b) Choose a node v at distance s∗ from Hartmanis, (i.e. v is as far as possible among nodes
in the component of Hartmanis.) Give the name of the author represented by this node v,
and repeat the analogue of part (a) using v as the root node. It is an interesting question
to consider how different the sets of numbers {rj} are for different root nodes.



(4) Finally, an open-ended question. Describe a further interesting property or pattern of this
network that you identify by experimenting with the data. For this part, you don’t need to
hand in any code, just a write-up of what you were looking for and what you found. (Don’t
worry overly about how scores will be assigned for solutions to this problem.)


