Lecture Notes on Spectral Analysis of Graphs
 Lecturer: Jon Kleinberg
 Scribed by: Melanie Pivarski and Sharad Goel

1 Introduction

Recall that given a graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$, we define its expansion $\alpha(G)$ as,

$$
\alpha(G)=\min _{U \subset V} \frac{|\delta(U)|}{\min (|U|,|V-U|)}
$$

Previously, we estimated $\alpha(G)$ via the all-pairs multi-commodity flow problem. Now we will try to estimate $\alpha(G)$ through an eigenvalue analysis.

Definition 1.1 Given an n by n matrix M, we call λ an eigenvalue of M if there exists $0 \neq x \in R^{n}$ such that $M x=\lambda x$. We say x is an eigenvector associated with λ.

Definition 1.2 Given an undirected graph $G=(V, E)$ with $|V|=n$, its adjacency matrix A is given by $A_{i j}=1$ if $(i, j) \in E$ and $A_{i j}=0$ otherwise.

Note that the above definition implies that A is symmetric. From now on we will restrict our attention to graphs G that have no self loops, in which case $A_{i i}=0$.

So what is the combinatorial meaning of $A x$? If we think of $x \in R^{n}$ as an assignment of numbers x_{i} to each vertex i of G , then $A x$ corresponds to the operation of assigning to each node in G the sum of its neighbors' values.

Also observe that in the case where G is d-regular A has d ones in each row, so $A \overrightarrow{1}=d * \overrightarrow{1}$. I.e. if G is d-regular then d is an eigenvalue of A.

Lemma 1.3 Let $G(V, E)$ be a connected, d-regular graph with adjacency matrix A. If $x \neq c \overrightarrow{1}$ is an eigenvector of A with eigenvalue λ, then $\lambda<d$.

Proof. Let $S=\left\{i \mid x_{i}=\max _{j} x_{j}\right\}$. We have $\emptyset \neq S \neq V$ since $x \neq c \overrightarrow{1}$. Since G is connected, there exists an edge $(\mathrm{i}, \mathrm{j}) \in \mathrm{E}$ with $i \in S, j \notin S$. So $(A x)_{i}<d * x_{i}$ since $(A x)_{i}$ is the sum of d components of x , all of which are $\leq x_{i}$ and at least one of which (namely x_{j}) that is strictly $<x_{i}$. So $\lambda<d$.

If G were not connected, then the above lemma is not necessarily true: Let C, V-C be two components of G. let $x=\left[x_{1}, \ldots, x_{n}\right]$ with $x_{i}=1$ if $i \in C$ and zero otherwise. Since C is d-regular, $A x=d x$. In fact, the number of components of G equals the dimension of the space of eigenvectors with eigenvalue d.

Now we state (without proof) two basic facts about matrices:

Claim 1.4 Suppose M is a symmetric n by n matrix. Then the eigenvalues of M are real and M has n orthonormal eigenvectors w_{1}, \ldots, w_{n} (note that $\left\{w_{i}\right\}$ spans R^{n}). Furthermore, if λ_{i} is the eigenvalue associated with w_{i}, then $M=P D P^{T}$ where $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $P=\left[w_{1}, \ldots, w_{n}\right]$.

Claim 1.5 Let M be an n by n matrix. The following are equivalent:
(i) If λ is an eigenvalue of M, then $\lambda \geq 0$.
(ii) $x^{T} M x \geq 0$ for all $x \in R^{n}$

If these properties hold then we call M positive semi-definite. If M is symmetric then the above are equivalent to,
(iii) $M=N^{T} N$ for some matrix N.

Lemma 1.6 Let M be a symmetric, positive semi-definite matrix with orthonormal eigenvectors w_{1}, \ldots, w_{n} and associated eigenvalues $0 \leq \lambda_{1} \leq \ldots \leq \lambda_{n}$. Let $S=\left\{x \in R^{n} \mid x \perp w_{1}\right\}$ and let $S_{1}=\{x \in S \mid\|x\|=1\}$. Then,

$$
\lambda_{2}=\min _{0 \neq x \in S} \frac{x^{T} M x}{x^{T} x}=\min _{x \in S_{1}} x^{T} M x .
$$

Proof. The second equality follows since we can replace x by $x /\|x\|$.
Take $x \in R^{n}$. Since $\left\{w_{i}\right\}$ spans R^{n}, we can find α_{i} such that $x=\sum_{i=1}^{n} \alpha_{i} w_{i}$. So,

$$
M x=M \sum_{i=1}^{n} \alpha_{i} w_{i}=\sum_{i=1}^{n} \alpha_{i} * M w_{i}=\sum_{i=1}^{n} \alpha_{i} \lambda_{i} .
$$

And since $\left\{w_{i}\right\}$ is an orthonormal set,

$$
x^{T} M x=\sum_{i, j} \alpha_{i} \alpha_{j} \lambda_{i} w_{i} w_{j}=\sum_{i=1}^{n} \lambda_{i} \alpha_{i}^{2} .
$$

Now, $x \in S_{1}$ iff $\sum_{i=1}^{n} \alpha_{i}{ }^{2}=1$ and $\alpha_{1}=0$. And to minimize $\sum_{i=1}^{n} \lambda_{i} \alpha_{i}^{2}$ subject to $\alpha_{1}=0$ and $\sum_{i=1}^{n} \alpha_{i}^{2}=1$ we set $\alpha_{2}=1, \alpha_{i}=0$ for $i \neq 2$. So,

$$
\min _{x \in S_{1}} x^{T} M x=\lambda_{2}
$$

2 Which matrix do we use?

Up until now, we've been looking at A, the adjacency matrix of G. Another useful matrix is L, the Laplacian matrix of G, where L is defined as follows.

Definition 2.1 Given a graph $G=(V, E)$ we define the Laplacian matrix L by $L_{i j}=\operatorname{deg}(i)$ if $i=j, L_{i j}=-1$ if $(i, j) \in E$, and 0 otherwise.

So if $\phi=\operatorname{diag}(\operatorname{deg}(1), \ldots \operatorname{deg}(n))$, then $L=\phi-A$. Because L has row and column sums equal to 0,0 is an eigenvalue of L, and $\overrightarrow{1}$ is the corresponding eigenvector. This is very useful because it also holds for nonregular graphs, G.

In order to use [1.5], we want to show $L=N^{T} N$ for some matrix N. We can define N by letting each column correspond to a node $1 \ldots n$, and each row correspond to an edge $e_{1} \ldots e_{m}$, where $|E|=m$, and placing ± 1 in the entries corresponding to edges and endpoints. Specifically, we will set $N_{i j}=1$ if $e_{i}=(j, k)$ for some $k>j, N_{i j}=-1$ if $e_{i}=(j, k)$ for some $k<j$, and $N_{i j}=0$ otherwise.

Thus, $L=N^{T} N$, so from [1.5] we have $0=\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$. Notice that here all of our eigenvalues are "flipped", so instead of looking at λ_{n-1}, we are interested in the behaviour of λ_{2}.

In order to bound λ_{2}, we will consider $x \in \mathbb{R}^{n}$, which is a labeling on V . So the new label on node i is $(L x)_{i}=\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)$. In $x^{T} L x$, this means each edge will appear in the sum as $x_{i}\left(x_{i}-x_{j}\right)+x_{j}\left(x_{j}-x_{i}\right)=\left(x_{i}-x_{j}\right)^{2}$, and so $x^{T} L x=\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}$.

Then we can find the first two eigenvalues in the following way:

$$
\lambda_{1}=\min _{0 \neq x \in \mathbb{R}} \frac{x^{T} L x}{x^{T} x}=\min _{0 \neq x \in \mathbb{R}} \frac{\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i} x_{i}^{2}}=0
$$

and so for the corresponding eigenvector, ω_{1}, we have $\left(\omega_{1}\right)_{i}=\left(\omega_{1}\right)_{j} \forall i, j$.

$$
\lambda_{2}=\min _{0 \neq x \in \mathbb{R}, x \omega_{1}=0} \frac{\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i} x_{i}^{2}}
$$

This acts like a 1-D embedding problem where one wants to minimize the strain on the edges. We will use this to obtain upper and lower bounds on λ_{2} in terms of $\alpha(G)$. Note that this is equivalent to finding upper and lower bounds on $\alpha(G)$ in terms of λ_{2}.

Claim 2.2 $2 \alpha \geq \lambda_{2} \geq \frac{\alpha^{2}}{2 \Delta}$ where $\Delta=$ maximum degree of G.
Notice that for expander graphs, 2α and $\frac{\alpha^{2}}{2 \Delta}=\frac{\alpha}{\Delta} \frac{\alpha}{2}$ are close. But for other graphs, $\frac{\alpha}{\Delta}$ could be quite small. Here we will prove the easier half of this inequality. The other part, while not conceptually difficult, is based on a more elaborate argument using the Cauchy-Schwarz inequality.

Lemma $2.32 \alpha \geq \lambda_{2}$

Proof. Pick any $x \in \mathbb{R}^{n}$ with $\sum x_{i}=0$. Then

$$
\lambda_{2} \leq \frac{\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i} x_{i}^{2}}
$$

Look at a partition $(A, B), a=|A| \leq|B|=b$ which achieves $\alpha: \frac{e(A, B)}{a}=\alpha$. Then set $x_{i}=\frac{1}{a}$ if $x_{i} \in A$, and $x_{i}=\frac{-1}{b}$ if $x_{i} \in B$. So

$$
\sum x_{i}=a \frac{1}{a}+b \frac{-1}{b}=0
$$

We also have

$$
\sum x_{i}^{2}=a \frac{1^{2}}{a^{2}}+b \frac{(-1)^{2}}{b^{2}}=\frac{1}{a}+\frac{1}{b}
$$

Thus we obtain:

$$
\frac{\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i} x_{i}^{2}}=\frac{e(A, B)\left(\frac{1}{a}+\frac{1}{b}\right)^{2}}{\frac{1}{a}+\frac{1}{b}}=e(A, B)\left(\frac{1}{a}+\frac{1}{b}\right) \leq 2 \frac{e(A, B)}{a}=2 \alpha
$$

