Valuation Classes

Up to now we have had single item or unit demand where the value of a set \(v(S) = \max_{j \in S} v_j \). This value (as all the ones below) is what we normally call \(v_i \) (the value to one person).

24.1 Subadditive

If \(A, B \) are sets and \(v(A) \) and \(v(B) \) are the values of these sets then
\[
v(A) + v(B) \geq v(A \cup B)
\]
We assume this inequality always holds for this class, since without it it is difficult to do anything meaningful.

We will also assume that the value functions are normalized. So \(v(\emptyset) = 0 \) and \(v(S) \leq v(S') \) if \(S \subseteq S' \), i.e., there is free disposal. These two together also imply that \(v(S) \geq 0 \) for all \(S \).

24.2 Decreasing Marginal Utility

If \(S \subseteq S' \) and \(j \) is an item then
\[
v(S + j) - v(S) \geq v(S' + j) - v(S')
\]
Where \(v(S + j) - v(S) \) is the marginal utility of item \(j \) when added to set \(S \).

With the assumption that \(v(\emptyset) = 0 \), the subadditive inequality can be re-written in a form closer to this one:
\[
v(A) - v(\emptyset) \geq v(A \cup B) - v(B)
\]

Theorem 24.1
Decreasing Marginal Utility \(\implies \) Subadditive

We propose that Decreasing Marginal Utility \(\implies \forall S \subseteq S' \text{ and } A, v(S \cup A) - v(S) \geq v(S' \cup A) - v(S') \). We prove this claim by induction on \(|A| \):

Proof: Say \(j \in A, A' = A \setminus \{j\} \) then by induction \(v(S \cup A') - v(S) \geq v(S' \cup A') - v(S') \). By definition \(S \cup A' \leq S' \cup A' \implies v(S \cup A' + j) - v(S' \cup A') \geq v(S' \cup A' + j) - v(S' \cup A') \). Now since \(A' + j = A \) we can see that this is the sum we wanted.

Corollary 24.2
\(S = \emptyset \implies \text{Subadditive inequality where } B = S' \).
An alternative way of writing the Decreasing Marginal Utility inequality is

\[v(A) + v(B) \geq v(A \cap B) + v(A \cup B) \]

for all sets \(A \) and \(B \).

In this form Decreasing Marginal Utility is called Submodular (means the same thing but used in different fields). **Proof:** Rearranging this we get

\[v(A) - v(A \cap B) \geq v(A \cup B) - v(B) \]

which is the same as the equation in the proof above if \(S = A \cap B \) and \(S' = B \).

24.3 Fractionally Subadditive

Fractionally Subadditive is a version of Subadditive where you can take sets fractionally. So we now have a multiplier \(x_A \), sets \(A \), for all sets.

Set \(S \) is covered if \(\sum_{A : i \in A} x_A \geq 1 \forall i \in S \).

If \(S \) is covered by \(x \) then \(\sum_A x_A v(A) \geq v(S) \).

Theorem 24.3 Fractionally Subadditive \(\implies \) Subadditive since \(x_A = x_B = 1 \) makes the set \(S = A \cup B \) covered.

24.4 XOS

This valuation class is algorithmically nice to use but looks very different than the others.

An additive valuation is defined by having value \(v_j \forall \) items \(j \). The total value of a set \(S \) before was \(v(S) = \sum_{j \in S} v_j \). Instead we now have multiple possible values for each item \(b^k_j \), and use

\[v(S) = \max_k \sum_{j \in S} v^k_j \]

Given \(v^k_j \) for \(k = 1, \ldots, n \) on items, where the \(k \) values represent that the item may have different values depending on its different uses.

Claim 24.4 unit demand is a special case of XOS

We have from earlier that unit demand uses \(v(S) = \max_{j \in S} v_j \). This function has no \(k \) so we must make a \(k \) to fit the function. We use

\[v^k_j = \begin{cases} v_j & j = k \\ 0 & \text{otherwise} \end{cases} \]

So that we have the vector \(v_j^* = [0, \ldots, v_j, 0, \ldots, 0] \).

Claim 24.5 XOS is Subadditive
Proof:
We define
\[v(A \cup B) = \max_k \sum_{j \in A \cup B} x_j^k = \sum_{j \in A \cup B} v_j^{k^*} \]
that is, let \(k^* \) be the value where the maximum occurs for the set \(A \cup B \). Now we have
\[
v(A \cup B) = \sum_{j \in A \cup B} v_j^{k^*} \leq \sum_{j \in A} v_j^{k^*} + \sum_{j \in AB} v_j^{k^*} \leq \max_k \sum_{j \in A} x_j^k + \max_k \sum_{j \in B} x_j^k
\]
where the first inequality is true as the items in \(A \cap B \) are now included twice, and the second inequality is true as \(k^* \) is one possible value for the \(k \) in the max.

\[\square \]

Claim 24.6 \(XOS \) is Fractionally Subadditive.

Proof:
Same as Subadditive proof above but now we have \(x_A \)
We have \(x_A \) sets and \(S \) is covered. So \(v(S) = \sum_{j \in S} v_j^{k^*} \), as before \(k^* \) is where the max occurs for set \(S \). Using this and other equations from above we get that
\[
\sum_A x_A v(A) = \sum_A x_A [\max_k \sum_{j \in A} v_j^k] \geq \sum_A x_A \sum_{j \in A} v_j^{k^*} = \sum_j v_j^{k^*} (\sum_{A,j \in A} x_A) \geq \sum_{j \in S} v_j^{k^*} = v(S)
\]
where the last inequality is true because \(S \) is covered so for \(h_j \in S \) we have \(\sum_{A,j \in A} x_A \geq 1 \).

\[\square \]

Facts:
Fractionally Subadditive=\(XOS \)
Submodular \(\implies XOS \)
(Proofs may or may not be covered in a different lecture).