
Algorithmic Game Theory Problem Set 3
CS 6840 Spring 2014 Due Friday, March 21st

The questions on this problem set are of varying difficulty. For full credit, you need to solve at
least 4 of the 5 problems below. A full solution for each problem includes proving that your answer
is correct. If you cannot solve a problem, write down how far you got, and why are you stuck.

You may discuss the questions with other students, but need to write down the solution yourself.
Please acknowledge the students you discussed the questions with on your write-up. You may use
any fact we proved in class without proving the proof or reference, and may read the relevant
chapters of the book. However, you may not use other published papers, or the Web to
find your answer.

Solutions can be submitted on CMS in pdf format (only). Please type your solution or write
extremely neatly to make it easy to read. If your solution is complex, say more than about half a
page, please include a 3-line summary to help us understand the argument.

We will post answers to questions on Piazza.

(1) Consider an extension of the cost-sharing problem from March 5th. Suppose the game
has n players. In class we had each congestible element e ∈ E have a fixed cost ce, and the cost
of the edge when k ≤ n users share the edge was ce(k) = ce/k. Now assume that the cost of
providing the service is not fixed ce, but rather grows with the number of users. Let totalCe(k)
denote the total cost with k users. We will assume that totalCe(0) = 0 and totalCe(k) is monotone
non-decreasing with k. As before, we will use fair-sharing to share the cost, and charge each of the
k users ce(k) = totalCe(k)/k, when k users share the edge. Notice that this remains a congestion
game for any function totalCe(k)

(a) Suppose the functions totalCe(k) are all concave, implying that totalCe(k + 1) − totalCe(k)
is monotone decreasing (non-increasing) in k. Show that the price of stability bound of
H(n) = 1 + 1

2 + . . . + 1
n , we shown in class for the special case when the cost is fixed, also

extends to this more general class of problems.

(b) Does the price of stability bound claimed in part (a) also apply without the concave assump-
tion on the cost? How bad can the price of stability get without this assumption?

(2) Consider a routing game (congestion game) with linear congestion costs ce(x) = aex+ be on
each edge e for nonnegative integers ae and be. Assume that there are k players, and each player
wants to route a unit of flow on a single path (atomic congestion game). Recall that this game is
(5/3, 1/3)-smooth, and hence has a price of anarchy bounded by at most 5

2 .

(a) Show that the price of stability of this game is at most 2, i.e., that the game has a Nash
equilibrium that has cost at most twice the minimum possible cost. Hint: take advantage of
the potential function.

(b) Next, consider the game play when at each iteration, a player is selected and the selected
player best responds to the current play by selecting the path that is currently cheapest.
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Show that if the total costs c(s) =
∑

i ci(s) is more than 2.5 times the minimum possible cost
at a strategy vector s, then some player i has an alternate strategy s′i such that

ci(s)− ci(s′i, s−i) ≥
1

3k
(2c(s)− 5c(s∗)).

(c) Suppose at each iteration, the player that can make the maximum possible improvement in
his cost will best respond. Let C be a bound on the maximum cost of any path, say C =
nmaxe aek+be, where n is the number of nodes in the graph. Show that after O(k log(ε−1C))
steps the total cost of the solution will be bounded by at most (2.5 + ε)c(s∗). Hint: use the
connection between cost and the potential function from part (a).

(3) An interesting question in the cost-sharing game from March 5th is the possible positive
effect of cooperation. For this problem, consider only the original version with fixed cost ce. In
the bad example of two parallel edges that all players have to choose between, cooperation would
lead to the optimal solution. To be concrete, we define strong Nash equilibrium when not only
single players do not want to deviate, but no group of players have incentive to deviate together.
More precisely, we will consider a cost minimization game. For two strategy vectors s and s′ and a
set of players A we will consider the vector (s′A, s−A) where players in set A use strategy s′ while
players outside A use the old strategy s. We think of this as the outcome when all players in A
collectively deviate to strategy s′. We say that a strategy vector s is a strong Nash equilibrium, if
for any subset of players A, and any alternate strategy vector s′ there exists a player i ∈ A such
that ci(s

′
A, s−A) > ci(s), i.e, for any group of players A, and any possible deviation s′, some player

in A rather stay with the original strategy.

(a) Consider the game of the Prisoner Dilemma discussed in the first class. Recall that this game
has a unique Nash equilibrium when both players confess. Is this Nash equilibrium a strong
Nash? Does this game have a strong Nash? please explain your answer.

(b) Consider a cost-sharing game with fixed cost ce for each element e ∈ E. Let s be a strong
Nash equilibrium, and s∗ be an optimal solution. Prove that there is a player i such that
ci(s) ≤ ci(s

∗), i.e., whose cost in the strong Nash is less than or equal to his cost in the
optimal solution.

(c) Show that there is an ordering of the players such that if we use OPTi to denote the optimal
solution of just the first i players (when players j > i do not participate in the game), and
use cj(OPTi) to denote the cost of player j in this solution (for j ≤ i), then ci(s) ≤ ci(OPTi)
for all i. Note that part (b) is the special case of this for i = n.

(d) Use parts (b-c) to show that the total cost of any strong Nash equilibrium in this game is at
most H(n) times the optimal cost. Hint: use the fact that cost-sharing is a potential game
with potential function Φ(s) that satisfies cost(s) ≤ Φ(s) ≤ H(n)cost(s).

(4) Consider a problem of selling k identical items to n bidders. Assume this time that a bidder
may be interested in more than one item. Suppose bidder i is interested in ni copies of the item,
and has value vi for getting this many items. We assume bidders are ”single minded” and have no
value for fewer than ni items. The VCG auction requires to find the subset I of maximum total
value

∑
i∈I vi, subject to the restriction that

∑
i∈I ni ≤ k. Here we use variants of a greedy method.
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(a) For this part, we consider only the optimization aspect of the problem. Assume that vi and ni
are known, and consider the greedy mechanism that sorts agents in decreasing order of vi/ni
and assigns them items “till the supplies last”. Assume that each ni is small compared to k,
say cni ≤ k for a constant c > 1, and show that this algorithm is a 1 − 1/c approximation
algorithm, that is, finds a solution that has value at least a c

c−1 of the maximum possible.

(b) Now consider the greedy algorithm in the game theoretic context. For the remainder of this
problem, assume that ni is public knowledge, and only vi is private. Consider the following
mechanism. Ask players for a bid bi (willingness to pay), and sort by bi/ni, and assigns goods
to agents till the supplies last. The traditional definition of critical price would assign the
minimal the per-unit price at which the bidder is still getting assigned his ni unit. Is the
greedy mechanism with this price truthful (that is, is bidding the true value always a Nash
equilibrium)?

(c) A simpler version of “critical price” charges each agent the minimal per-unit price that he/she
had to bid to keep his spot in the sorted order. More formally, if agent i requires ni units,
and is right before agent j in the sorted order, then the price i gets changed is ni

bj
nj

. Is this

mechanism truthful?

(d) Consider a Nash equilibrium of the above mechanism, where we assume bi ≤ vi for all i.
(Note that bidding above vi is dominated). Show a bound on the price of anarchy for this
mechanism. That is, bound the total value

∑
vi of all agents who are assigned their required

items in Nash compared to the highest possible. You may want to start with the special case
when ni = 1 for all i, and see how this generalizes to agents requiring larger bundles.

(e) Does your analysis of part (d) extend to the case when the quantity ni is also private, and
agents need to announce (qi, bi) pairs as bids? Assume there is free disposal, so getting more
than ni items is just as useful as getting exactly ni items, but agents have no value for less
than their required ni items.

(5) Give a lower bound on the Bayesian price of anarchy of the first-price auction (for inde-
pendent but non-identical distributions). Extra credit: Give a lower bound that exceeds the best
known lower bound of about 1.05.
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