1 Definitions of Zero Knowledge

Last class we showed a zero knowledge proof for Graph-Isomorphism. Now we will show that there exist zero knowledge proofs for every language in NP. Logically, this implies that anything that you can prove in a classical manner you can also prove in zero knowledge.

Previously, we defined perfect zero knowledge, which is a very strong form. Today, we relax that definition as follows.

Definition 1 (Zero Knowledge) Let (P, V) be a interactive proof for $L \in NP$, with witness relation R_L. (P, V) is zero knowledge if for all probabilistic polynomial time machines V^* there exists an expected PPT S such that for all nonuniform PPT D there exists a negligible function ε such that $\forall x \in L, w \in R_L(x), z \in \{0, 1\}^*$, D distinguishes the following distributions with probability $\varepsilon(|x|)$:

$$\{\text{View}_{V^*}[P(x, w) \Leftrightarrow V^*(x, z)], \{S(x, z)\}\}.$$

Perfect zero knowledge is exactly the same except that it requires the two distributions to be identical rather than simply indistinguishable.

An alternative definition is to replace VIEW_{V^*} with OUTPUT_{V^*}. The two definitions are equivalent, since the output is included in the view and since V^* could simply output its view.

There is also a stronger notion of zero knowledge known as black-box zero knowledge.

Definition 2 (Zero Knowledge) Let (P, V) be a interactive proof for $L \in NP$, with witness relation R_L. (P, V) is zero knowledge if there exists an expected PPT S such that for all probabilistic polynomial time machines V^* and for all nonuniform PPT D there exists a negligible function ε such that $\forall x \in L, w \in R_L(x), z \in \{0, 1\}^*, r \in \{0, 1\}^*$, D distinguishes the following distributions with probability $\varepsilon(|x|)$:

$$\{\text{View}_{V^*}[P(x, w) \Leftrightarrow V^*(x, z)], \{S^{V^*}(x, z)\}\}.$$

2 Commitment Schemes

We want to show how to construct zero-knowledge proofs for a large class of languages; in order to do so, we need to introduce a new class of cryptographic primitives known as commitment schemes. A commitment can be thought of as the digital equivalent of a
physical locked box. It consists of a two-phase interactive protocol between two parties \(S, R \); in the commit phase, the sender commits to a value \(v \) (puts it in a locked box) and in the reveal phase the sender reveals the value of \(v \). An observer should not be able to determine the value \(v \) from the commitment (when it is in the locked box), and the sender should only be able to reveal one value when it opens the box.

Definition 3 (Commitment Scheme)
\(\text{Com} \) is a commitment scheme if \(\text{Com} \) is polynomial time and there exists a polynomial \(\ell \) such that the following two properties hold:

1. **Hiding:** For every nonuniform PPT \(D \) there exists a negligible function \(\varepsilon \) such that for all \(n \in \mathbb{N} \), \(v_0, v_1 \in \{0, 1\}^n \), \(D \) distinguishes the following distributions with probability at most \(\varepsilon(n) \):
 \[
 \{ r \leftarrow \{0, 1\}^{\ell(n)} : \text{Com}(v_0, r) \}, \{ r \leftarrow \{0, 1\}^{\ell(n)} : \text{Comm}(v_1, r) \}.
 \]

2. **Binding:** For all \(v_0, v_1 \in \{0, 1\}^n \), \(r_0, r_1 \in \{0, 1\}^{\ell(n)} \), if \(v_0 \neq v_1 \) then \(\text{Com}(v_0, r_0) \neq \text{Com}(v_1, r_1) \).

Commitment schemes can be constructed from OWPs (or OWFs):

Lemma 4 If one-way permutation exist, then there exist (perfectly binding) commitment schemes.

Proof. We begin by constructing a single-bit commitment scheme. Let \(f \) be the assumed one-way permutation, and let \(h \) be a hard-core predicate for \(f \). We define a commitment scheme by:

\[
\text{Com}(b; r) = (f(r), h(r) \oplus b).
\]

To decommit, the sender reveals \(r \).

Binding follows immediately; given a commitment \((x, y) \), since \(f \) is a one-way permutation there exists a unique string \(r \) such that \(f(r) = x \), therefore there exists a unique \(b \) such that \(h(r) \oplus y = b \).

Hiding follows from the assumption that \(h \) is a hard-core predicate: assume for contradiction that there exists a n.u. PPT \(D \) and a polynomial \(p \), such that for infinitely many \(n \in \mathbb{N} \), \(D \) distinguishes \(r \leftarrow \{0, 1\}^n : (f(r), h(r) \oplus 0) \) and \(r \leftarrow \{0, 1\}^n : (f(r), h(r) \oplus 1) \) w.p. \(1/p(n) \). By the prediction lemma, there exist a machine \(A \) such that

\[
\Pr[m \leftarrow 0, 1, r \leftarrow \{0, 1\}^n : A(f(r), h(r) \oplus m) = m] \geq \frac{1}{2} + \frac{1}{2p(n)}.
\]

We can now use \(A \) to construct a machine \(A_0 \) that predicts the hard-core predicate \(h \): \(A_0 \) on input \((f(r), y) \) picks \(c \leftarrow 0, 1 \), computes \(m = A(f(r), (y \oplus c)) \), and outputs \(c \oplus m \).
Observe that,

\[Pr[r \leftarrow 0, 1^n : A_0(f(r)) = h(r)] = Pr[r \leftarrow 0, 1^n : c \leftarrow 0, 1 : A(f(r), c) \oplus c = h(r)] = Pr[r \leftarrow 0, 1^n : m \leftarrow 0, 1 : A(f(r), h \oplus b(r)) = m] \geq \frac{1}{2} + \frac{1}{2p(n)}. \]

Therefore the proposed 1-bit commitment scheme is satisfies the hiding property.

To commit to an arbitrary value \(v \in \{0, 1\}^n \), simply use the 1-bit commitment scheme to commit to each bit. Binding is again immediate, and hiding follows from the hybrid lemma.

3 \(NP \subseteq ZK \)

Having constructed commitment schemes, it is possible to prove the existence of zero-knowledge proofs for general classes of problems, specifically for any language in \(NP \).

Theorem 5 If one-way functions exist, then every language in \(NP \) has a zero-knowledge proof.

For simplicity, we will show how to prove this result based on one-way permutations (the protocol is simpler – three rounds instead of four rounds).

Theorem 6 If one-way permutations exist, then every language in \(NP \) has a zero-knowledge proof.

Proof. The proof proceeds in two steps. First, we will give a zero-knowledge proof for 3COLOR. We will then reduce the original language \(L \) to 3COLOR using Cook’s reduction (which ensures that when we reduce an instance \(x \in L \) to an instance \(x' \in L_{3COLOR} \) we can also reduce the witness \(w \) to a witness \(w' \in R_{3COLOR}(x) \) and run the zero knowledge proof for 3COLOR on inputs \(x', w' \).

Recall that 3COLOR is the language consisting of 3-colorable graphs using a standard encoding. \(X = (V, E), c_i \in \{0, 1, 2\}, n = |V|, w = c_0, c_1, \ldots, c_n. \)

A zero knowledge proof of 3COLOR can be defined as follows.

Assume let \(C \) be the commitment scheme constructed from a one-way permutation as defined above. Let \(G(V, E) \) be a graph such that \(V = \{1, \ldots, n\} \) and let \(\pi \) describe a coloring of \(G \).

1. The prover \(P \) uniformly selects a random permutation \(\pi \) over \(\{1, 2, 3\} \). For each \(i = 1, \ldots, n \), \(P \) sends the commitment \(C(\pi(\phi(i))) \) to the verifier \(V \).
2. The verifier \(V \) uniformly selects a random edge \(e \in E \) and sends it to \(P \).
3. Upon receiving \(e = (i, j) \in E \), \(P \) decommits to the \(i^{th} \) and \(j^{th} \) values sent in Step 1.

4. \(V \) verifies that the decommitted values \(\phi(i), \phi(j) \) are different elements of \(\{1, 2, 3\} \) and that they match the commitments received in Step 1.

Recall that there are three independent properties that need to be considered: completeness, soundness, and zero knowledge.

Completeness: If \(G \in \text{3COLOR} \) and \(\phi \) is a valid coloring, then it is clear that \(P \) will always be able to reveal satisfactory values for \(\phi(i) \) and \(\phi(j) \), therefore \(V \) will accept the proof.

Soundness: If \(G \not\in \text{3COLOR} \), then \(\pi \) is not a valid 3-coloring. Therefore there must be at least one edge \(e = (i, j) \in E \) such that \(\phi(i) = \phi(j) \). Since \(V \) chooses the edge in Step 2 uniformly at random, the chance that he will choose an invalid edge is at least \(\frac{1}{|E|} \), and if he chooses that edge it will be impossible for \(P \)'s decommitted values to pass \(V \)'s verification.

Zero Knowledge: Given a (possibly cheating) verifier \(V^* \) (which is required to be a probabilistic polynomial-time machine), we can construct a simulator \(M_{V^*} \) as follows. Given input \((x, y)\) where \(x \) is some encoding of a graph \(G \), \(M_{V^*} \) randomly assigns colors to the vertices of \(G \) and writes down the commitments to these colors. \(M_{V^*} \) then simulates \(V^* \) to choose an edge \(e \in E \) and writes down the result. If the two vertices corresponding to the chosen edge have different colors, then \(M_{V^*} \) decommits to the colors and writes down the result. If the two vertices have the same color, \(M_{V^*} \) rewinds and tries again. The probability that the two vertices have the same color is \(\frac{1}{3} \), therefore the expected number of tries before a valid transcript is obtained is 3. Since each try takes polynomial time and since a constant number of attempts is needed, \(M_{V^*} \) runs in polynomial time as desired. Since both the color assignments of \(M_{V^*} \) and the permutations of \(P \) are chosen uniformly at random, the probability distributions that result from the interactive proof system \((P(x), V^*(x, y))\) and the simulator \(M_{V^*}(x, y) \) are indistinguishable.

The given protocol has non-negligible soundness error. In order to reduce this, we can repeat this proof in sequence, however this increases the number of rounds to super-constant. While it would be nice to simply repeat the proof in parallel instead, the zero-knowledge property is not necessarily maintained under parallel composition. We will learn more about these issues, and about possible ways around them, in the next lecture.