Oct 6, 2009 ## Lecture 12: Definitions of Message Security Instructor: Rafael Pass Scribe: Gabriel Bender ## 1 Multimessage-Secure Encryption Last time, we proved that no stateless encryption scheme is multimessage secure. We can get around this problem by making use of a pseudorandom function. **Proposition 1** Let $\{f_s : \{0,1\}^{|s|} \to \{0,1\}^{|s|}\}$ be a family of pseudorandom functions. Then the following encryption scheme is multimessage-secure: $$Gen(1^n) = (s \leftarrow \{0,1\}^n : s)$$ $Enc_k(m) = (r \leftarrow \{0,1\}^n : r || m \oplus f_k(r))$ $Dec_k(r||c) = (c \oplus f_k(r))$ **Proof.** Suppose not. Then there exist destinguisher \mathcal{D} and messages $m_0, \ldots, m_{q(n)}$ and $m'_0, \ldots, m'_{q(n)}$ s.t. \mathcal{D} distinguishes the following two sets with non-negligible probability: $$\{k \leftarrow Gen(1^n) : Enc_k(m_0), Enc_k(m_1), \dots, Enc_k(m_{q(n)})\}\$$ $\{k \leftarrow Gen(1^n) : Enc_k(m'_0), Enc_k(m'_1), \dots, Enc_k(m'_{q(n)})\}\$ In particular, there exists a polynomial q(n) s.t. for infinitely many $n \in \mathbb{N}$, \mathcal{D} distinguishes the two sets given above. For fixed n, we apply the Hybrid lemma with the following hybrids: $$H_{1} = \{s \leftarrow \{0,1\}^{n}; r_{0}, \dots, r_{q(n)} \leftarrow \{0,1\}^{n}: \\ r_{0} \mid\mid m_{0} \oplus f_{s}(r_{0}), \dots, r_{q(n)} \mid\mid m_{q(n)} \oplus f_{s}(r_{q(n)})\}$$ $$H_{2} = \{RF \leftarrow (\{0,1\}^{n} \rightarrow \{0,1\}^{n}); r_{0}, \dots, r_{q} \leftarrow \{0,1\}^{n}: \\ r_{0} \mid\mid m_{0} \oplus RF(r_{0}), \dots, r_{q(n)} \mid\mid m_{q(n)} \oplus RF(r_{q(n)})\}$$ $$H_{3} = \{r_{0}, \dots, r_{q(n)} \leftarrow \{0,1\}^{n}; P_{0}, \dots, P_{q(n)} \leftarrow \{0,1\}^{n}: \\ r_{0} \mid\mid m_{0} \oplus P_{0}, \dots, r_{q(n)} \mid\mid m_{q(n)} \oplus P_{q(n)}\}$$ $$H_{4} = \{r_{0}, \dots, r_{q} \leftarrow \{0,1\}^{n}; P_{0}, \dots, P_{q(n)} \leftarrow \{0,1\}^{n}: \\ r_{0} \mid\mid m'_{0} \oplus P_{0}, \dots, r_{q(n)} \mid\mid m'_{q(n)} \oplus P_{q(n)}\}$$ $$H_{5} = \{RF \leftarrow (\{0,1\}^{n} \rightarrow \{0,1\}^{n}); r_{0}, \dots, r_{q} \leftarrow \{0,1\}^{n}: \\ r_{0} \mid\mid m'_{0} \oplus RF(r_{0}), \dots, r_{q(n)} \mid\mid m'_{q(n)} \oplus RF(r_{q(n)})\}$$ $$H_{6} = \{s \leftarrow \{0,1\}^{n}; r_{0}, \dots, r_{q(n)} \mid\mid m'_{q(n)} \oplus f_{s}(r_{q(n)})\}$$ H_1 and H_2 are indistinguishable because they can be viewed as the output of the same oracle Turing Machine, with oracle f_s for H_1 and RH for H_2 . By the definition of a pseudorandom function, H_1 and H_2 are therefore indistinguishable. By the same argument, it can distinguish H_6 from H_5 with no better than negligible probability. When all the r_i are distinct, all the $RF(r_i)$ in H_2 are selected independently and at random, so that this distribution is identical to that of H_3 . The probability that there exists i = j s.t. is bounded above by $\binom{q(n)}{2}/2^n$, a union bound over pairs of messages that both messages in a pair are equal. This is a negligible function. So we are unable to distinguish between H_2 and H_3 except with negligible probability. The same argument shows that H_5 and H_4 are indistinguishable. The indistinguishability of H_3 and H_4 follows from the security of the one-time pad cipher: roughly speaking, given an encryption, all plaintext decryptions are equally likely unless we have access to a key. This concludes our proof. ## 2 Stronger Definitions of Security We might also wish to consider definitions of security that are stronger than multimessage security. Let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme. Let A be a non-uniform PPT and $n \in \mathbb{N}, b \in \{0, 1\}$. We define a random variable IND_b^{O₁,O₂}($$\Pi, A, n$$) = $k \leftarrow Gen(1^n); m_0, m_1, \sigma \leftarrow A^{O_1(k)}(1^n);$ $c \leftarrow Enc_k(m_b) : A^{O_2}(C, \sigma)$ Each definition below requires that $$\{IND_0^{O_1,O_2}(\Pi,A,n)\}_{n\in\mathbb{N}} \approx \{IND_1^{O_1,O_2}(\Pi,A,n)\}_{n\in\mathbb{N}}$$ However, the oracles O_1 and O_2 that are available to an adversary depend on the definition: - Chosen-Message (Chosen-Plaintext) Attack/CPA Security: O_1 provides access to Enc_k and O_2 always returns 0 and therefore provides no useful information. - CCA1/Lunch Time Attack: O_1 provides access to both Enc_k and Dec_k ; O_2 always returns 0. - CCA2: O_1 provides access to both Enc_k and Dec_k ; O_2 also provides access to both Enc_k and Dec_k . In this case, we only quantify over Turing Machines A that never invoke the decryption oracle of O_2 on the encrypted input message c. The encryption scheme we proposed at the beginning of the lecture is CPA- secure because knowing the encryption of a message $(r \mid\mid m \oplus f_k(r))$ does us no good unless the selected value of r is the same as for the input ciphertext $(c = r_c \mid\mid m \oplus f_k(r))$. This happens with probability $\frac{1}{2^n}$ for each message that is encrypted by O_1 , and O_1 is allowed to query at most a polynomial number of messages, so the likelihood that it our distinguisher queries $f_s(r_c)$ is negligible. By exactly the same argument, our encryption scheme is CCA1-secure. However, it is not CCA-2 secure because, given an encrypted message, we could query the decryption oracle of O_2 on input $(r_c \mid\mid 0)$ to obtain the value of $f_s(r_c)$.