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Lecture 12: Definitions of Message Security

Instructor: Rafael Pass Scribe: Gabriel Bender

1 Multimessage-Secure Encryption

Last time, we proved that no stateless encryption scheme is multimessage secure. We
can get around this problem by making use of a pseudorandom function.

Proposition 1 Let {fs : {0, 1}|s| → {0, 1}|s|} be a family of pseudorandom functions.
Then the following encryption scheme is multimessage-secure:

Gen(1n) = (s← {0, 1}n : s)

Enck(m) = (r ← {0, 1}n : r || m⊕ fk(r))

Deck(r||c) = (c⊕ fk(r))

Proof. Suppose not. Then there exist destinguisher D and messages m0, . . . ,mq(n) and
m′

0, . . . ,m
′
q(n) s.t. D distinguishes the following two sets with non-negligible probability:

{k ← Gen(1n) : Enck(m0), Enck(m1), . . . , Enck(mq(n))}
{k ← Gen(1n) : Enck(m′

0), Enck(m′
1), . . . , Enck(m′

q(n))}

In particular, there exists a polynomial q(n) s.t. for infinitely many n ∈ N, D distin-
guishes the two sets given above. For fixed n, we apply the Hybrid lemma with the
following hybrids:

H1 = {s← {0, 1}n; r0, . . . , rq(n) ← {0, 1}n :

r0 || m0 ⊕ fs(r0), . . . , rq(n) || mq(n) ⊕ fs(rq(n))}
H2 = {RF ← ({0, 1}n → {0, 1}n); r0, . . . , rq ← {0, 1}n :

r0 || m0 ⊕RF (r0), . . . , rq(n) || mq(n) ⊕RF (rq(n))}
H3 = {r0, . . . , rq(n) ← {0, 1}n;P0, . . . , Pq(n) ← {0, 1}n :

r0 || m0 ⊕ P0, . . . , rq(n) || mq(n) ⊕ Pq(n)}
H4 = {r0, . . . , rq ← {0, 1}n;P0, . . . , Pq(n) ← {0, 1}n :

r0 || m′
0 ⊕ P0, . . . , rq(n) || m′

q(n) ⊕ Pq(n)}
H5 = {RF ← ({0, 1}n → {0, 1}n); r0, . . . , rq ← {0, 1}n :

r0 || m′
0 ⊕RF (r0), . . . , rq(n) || m′

q(n) ⊕RF (rq(n))}
H6 = {s← {0, 1}n; r0, . . . , rq(n) ← {0, 1}n :

r0 || m′
0 ⊕ fs(r0), . . . , rq(n) || m′

q(n) ⊕ fs(rq(n))}
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H1 and H2 are indistinguishable because they can be viewed as the output of the same
oracle Turing Machine, with oracle fs for H1 and RH for H2. By the definition of a pseu-
dorandom function, H1 and H2 are therefore indistinguishable. By the same argument,
it can distinguish H6 from H5 with no better than negligible probability.

When all the ri are distinct, all the RF (ri) in H2 are selected independently and at
random, so that this distribution is identical to that of H3. The probability that there
exists i = j s.t. is bounded above by

(
q(n)

2

)
/2n, a union bound over pairs of messages

that both messages in a pair are equal. This is a negligible function. So we are unable to
distinguish between H2 and H3 except with negligible probability. The same argument
shows that H5 and H4 are indistinguishable.

The indistinguishability ofH3 andH4 follows from the security of the one-time pad cipher:
roughly speaking, given an encryption, all plaintext decryptions are equally likely unless
we have access to a key. This concludes our proof.

2 Stronger Definitions of Security

We might also wish to consider definitions of security that are stronger than multi-
message security.

Let Π = (Gen,Enc,Dec) be an encryption scheme. Let A be a non-uniform PPT and
n ∈ N, b ∈ {0, 1}. We define a random variable

INDO1,O2

b (Π, A, n) = k ← Gen(1n);m0,m1, σ ← AO1(k)(1n);

c← Enck(mb) : AO2(C, σ)

Each definition below requires that

{INDO1,O2

0 (Π, A, n)}n∈N ≈ {INDO1,O2

1 (Π, A, n)}n∈N

However, the oracles O1 and O2 that are available to an adversary depend on the defini-
tion:

• Chosen-Message (Chosen-Plaintext) Attack/CPA Security: O1 provides access to
Enck and O2 always returns 0 and therefore provides no useful information.

• CCA1/Lunch Time Attack: O1 provides access to both Enck and Deck; O2 always
returns 0.

• CCA2: O1 provides access to both Enck and Deck; O2 also provides access to both
Enck and Deck. In this case, we only quantify over Turing Machines A that never
invoke the decryption oracle of O2 on the encrypted input message c.
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The encryption scheme we proposed at the beginning of the lecture is CPA- secure because
knowing the encryption of a message (r || m⊕ fk(r)) does us no good unless the selected
value of r is the same as for the input ciphertext (c = rc || m ⊕ fk(r)). This happens
with probability 1

2n for each message that is encrypted by O1, and O1 is allowed to query
at most a polynomial number of messages, so the likelihood that it our distinguisher
queries fs(rc) is negligible. By exactly the same argument, our encryption scheme is
CCA1-secure. However, it is not CCA-2 secure because, given an encrypted message, we
could query the decryption oracle of O2 on input (rc || 0) to obtain the value of fs(rc).
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