1 Review:

1.1 Intuition:

A One-Way Function is a function that is easy to compute, but hard to invert. We’ve defined three kinds (worst-case, weak, and strong). They differ on how they define “hard”:

- **Worst-Case**: Always hard to invert, no matter what the key is
- **Weak**: Hard to invert with good probability
- **Strong**: Can only invert with negligible probability

1.2 Rigorous Definitions:

Definition 1. A function $\varepsilon : \mathbb{N} \rightarrow \mathbb{R}$ is negligible if $\forall c, \exists n_0 s.t. \forall n > n_0$, $\varepsilon(n) < 1/n^c$.

Note that μ is not negligible if \exists a polynomial p s.t for infinitely many n, $\mu(n) \geq \frac{1}{p(n)}$.

Definition 2. f is a strong OWF if:

1. f is easy to compute: \exists a PPT C s.t $\forall x$, $C(x) = f(x)$
2. f is hard to invert: \forall nuPPT A, \exists a negligible function ε s.t $\forall n \in \mathbb{N}$:
 \[
 \Pr[x \leftarrow \{0,1\}^n : A(1^n, f(x)) \in f^{-1}(f(x))] \leq \varepsilon(n)
 \]

Definition 3. f is a weak OWF if:

1. f is easy to compute: \exists a PPT C s.t $\forall x$, $C(x) = f(x)$
2. f is hard to invert: \exists a polynomial q s.t \forall nuPPT A, $\forall n \in \mathbb{N}$:
 \[
 \Pr[x \leftarrow \{0,1\}^n : A(1^n, f(x)) \in f^{-1}(f(x))] \leq 1 - \frac{1}{q(n)}
 \]

The 1^n are input to A to allow A to compute in time polynomial in n. If that were not there, then A would have to compute in time polynomial in $\log(f(x))$, which could be considerably smaller than n. If $f(x) \in O(n)$, then for A to even return its answer, it would have to use exponential time in the size of its input (since $n = 2^{\log n}$).
2 Hardness Amplification:

The rest of the lecture will focus on the following theorem:

Theorem 1. The existence of a weak OWF \(\iff\) the existence of a strong OWF.

The \(\leftarrow\) direction is trivial, so we just need to prove the \(\Rightarrow\) direction. The proof of that direction follows immediately from the following theorem:

Theorem 2. Let \(f : \{0, 1\}^* \rightarrow \{0, 1\}^*\) be a weak OWF. Let \(f'(x_1, \ldots, x_m) = y_1, \ldots, y_m\) where \(y_i = f(x_i)\). Then \(\exists m\) (polynomial in \(n\)) st \(f'\) is a strong OWF.

Proof. Let \(f\) be a weak OWF, and \(q(n)\) as in the definition of a weak OWF for \(f\). First, we need to determine what \(m\) should be. We need \(m\) sufficiently large s.t \((1 - \frac{1}{q(n)})^m\) is negligible. \(m = 2nq(n)\) does the trick:

\[
(1 - \frac{1}{q(n)})^{2nq(n)} = \left(1 - \frac{1}{q(n)}\right)^{q(n)} < e^{-2n} < 2^{-n}
\]

Let \(f'\) be as defined above with \(m = 2nq(n)\). Assume \(f'\) is not strong, which implies \(\exists\) nuPPT \(A\) and polynomial \(p'\) st for infinitely many \(n'\):

\[
\Pr[x \leftarrow \{0, 1\}^{n'} : A \text{ inverts } f'] \geq \frac{1}{p'(n')}
\]

By definition of \(f'\), this means that:

\[
\Pr[x_i \leftarrow \{0, 1\}^n : A(f'(x_1, \ldots, x_m)) \in f'^{-1}(f'(x_1, \ldots, x_m))] \geq \frac{1}{p'(mn)}
\]

For convenience of notation, let \(p(n) = p'(mn)\). Then we have:

\[
\Pr[x_i \leftarrow \{0, 1\}^n : A(f'(x_1, \ldots, x_m)) \in f'^{-1}(f'(x_1, \ldots, x_m))] \geq \frac{1}{p(n)}
\]

Now we need to construct a machine \(B\) to invert \(f\) using machine \(A\). Let \(y\) be the input to \(B\). Since \(A\) is only guaranteed to work with some probability on random input, we must make sure the input we give to \(A\) is random. Define a machine \(C\) on input \(y\) as follows:

\[
i \leftarrow \{1, \ldots, m\}
\]

\[
x_j \leftarrow \{0, 1\}^n \text{ and } y_j = f(x_j) \ \forall \ j \neq i
\]

\[
y_i = y
\]

\[
z_1, \ldots, z_m \leftarrow A(y_1, \ldots, y_m)
\]

If \(f(z_i) = y\), output \(z_i\). Otherwise, output \(\bot\).
Then define B on input y as follows:

Run $C(y)$ up to $2nm^2p(n)$ times, outputing the first answer different than ⊥.
If $C(y)$ outputs ⊥ each time, output ⊥ as well.

Now we need to show that B inverts f with probability greater than $1 - \frac{1}{q(n)}$, which will contradict the definition of f being a weak OWF, as desired.

For $x \in \{0, 1\}^n$, define x to be **good** if:

$$\Pr [C(f(x)) \neq ⊥] \geq \frac{1}{2m^2p(n)}$$

And **bad** if that does not hold.

Lemma 3. If the number of good elements of $\{0, 1\}^n$ is greater than or equal to $2^n \left(1 - \frac{1}{2q(n)} \right)$, then we get our contradiction.

Proof. Let $x \in \{0, 1\}^n$.

$$\Pr [B(x) = ⊥] = \Pr [(B(x) = ⊥) \cap (x \text{ is bad})] + \Pr [(B(x) = ⊥) \cap (x \text{ is good})]$$

$$\leq \Pr [x \text{ is bad}] + \Pr [B(x) = ⊥ | x \text{ is good}]$$

$$\leq \frac{1}{2q(n)} + \left(1 - \frac{1}{2m^2p(n)} \right)^{nm^2p(n)}$$

$$< \frac{1}{2q(n)} + e^{-n} < \frac{1}{2q(n)} + 2^{-n} < \frac{1}{q(n)}$$

which implies:

$$\Pr [B \text{ succeeds on input } f(x)] > 1 - \frac{1}{q(n)}$$

This contradicts the definition of weak OWF, as desired.

Now we just need to show that the hypothesis of Lemma 3 holds. Assume for contradiction that the number of bad elements is greater than $\frac{2^n}{2q(n)}$. Consider:

$$\Pr [A(f(x_1, \ldots, x_m)) \text{ succeeds}] = \Pr [(A \text{ succeeds}) \cap (\exists i \text{ st } x_i \text{ is bad})]$$

$$+ \Pr [(A \text{ succeeds}) \cap (\forall i, x_i \text{ is good})]$$

To get our contradiction, we need to show that this is less than $\frac{1}{p(n)}$. Consider each term separately:

$$\Pr [(A \text{ succeeds}) \cap (\exists i \text{ st } x_i \text{ is bad})] \leq \sum_{i=1}^{n} \Pr [(A \text{ succeeds}) \cap (x_i \text{ is bad})]$$

$$\leq \sum_{i=1}^{n} \Pr [A \text{ succeeds } | x_i \text{ is bad}]$$

4-3
And by the definition of bad, \(\forall i \):
\[
\Pr [A \text{ succeeds} \mid x_i \text{ is bad}] \leq m \cdot \Pr [C(f(x_i)) \neq \bot \mid x_i \text{ is bad}]
\]
\[
< m \cdot \frac{1}{2m^2p(n)} = \frac{1}{2mp(n)}
\]

Thus, the first term is bounded by:
\[
\Pr [(A \text{ succeeds}) \cap (\exists i \text{ st } x_i \text{ is bad})] \leq \sum_{i=1}^{m} \Pr [A \text{ succeeds} \mid x_i \text{ is bad}]
\]
\[
< m \cdot \frac{1}{2mp(n)} = \frac{1}{2p(n)}
\]

Now let’s consider the second term:
\[
\Pr [(A \text{ succeeds}) \cap (\forall i, x_i \text{ is good})] \leq \Pr [\forall i, x_i \text{ is good}]
\]
\[
\leq \left(1 - \frac{1}{2q(n)}\right)^{2q(n)n}
\]
\[
< e^{-n} < 2^{-n}
\]

Thus, we get:
\[
\Pr [A(f(x_1, \ldots, x_m)) \text{ succeeds}] < \frac{1}{2p(n)} + 2^{-n} < \frac{1}{p(n)}
\]

This contradicts the definition of \(p \). Therefore, there are at least \(2^n \left(1 - \frac{1}{2q(n)}\right) \) good elements. Hence, lemma 3 applies, and we still get a contradiction. Therefore, \(f' \) is a strong OWF, as desired. \(\Box \)