1 High Dimensional Data

This work was originally done by Gerard Salton at Cornell 20-30 years ago. The techniques are now used by Google.

1.1 Vector Space Model

Suppose we have 1 million documents that we would like to efficiently represent. How can we do this?

Compile a list of words occurring in at least one of the documents. For each document, create a frequency table:

<table>
<thead>
<tr>
<th>Word</th>
<th>Number of Occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>aardvark</td>
<td>0</td>
</tr>
<tr>
<td>abacus</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>antitrust</td>
<td>42</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>ceo</td>
<td>17</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>microsoft</td>
<td>61</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>windows</td>
<td>14</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>zoology</td>
<td>0</td>
</tr>
</tbody>
</table>

From these tables, create a matrix $A = (a_{ij})$ where a_{ij} is the number of occurrences of word j in document i. We would like to reduce the size of A while minimizing the amount of information loss.

Let’s project A onto a k-dimensional space. How do we choose the space?
(1) Choose randomly. This actually works pretty well.

(2) Choose the k-dimensional space B minimizing $|\sum_i \sum_j (A - B)_{ij}|^2_F$, the Frobenius norm of $A - B$.

We will explore the second option.

1.2 Singular Value Decomposition

Suppose matrix C is symmetric. Then C has real-valued eigenvalues, and there exists an orthonormal matrix U such that $C = U \Sigma U^T$ where Σ is the diagonal matrix whose diagonal elements $\sigma_1 \leq \sigma_2 \leq \cdots \leq \sigma_n$ are the eigenvalues of C.

If we replace Σ with the matrix Σ_k, whose first k diagonal entries are $\sigma_1, \sigma_2, \ldots, \sigma_k$ with zeros everywhere else, then it will turn out that $B = U \Sigma_k U^T$ will minimize $|\sum_i \sum_j (C - B)_{ij}|^2_F$ over all k-dimensional spaces B.

So take $A A^T$, whose ij-th element is the dot product of the rows corresponding to documents i and j. This is called the “matrix of similarities” since a larger value for a given element implies more words in common between two papers. Normalizing A so that the diagonal elements of $A A^T$ are one would give relative similarities.

$A A^T$ is symmetric and positive definite (i.e. $x^T A x > 0$ for all non-zero vectors x), so the eigenvalues of $A A^T$ are real and strictly positive. Thus we can find orthonormal U and diagonal Σ^2 and Σ such that $A A^T = U \Sigma^2 U^T = (U \Sigma)(U \Sigma)^T$, where the diagonal elements of Σ^2 are the eigenvalues of $A A^T$ and the diagonal elements of Σ are their positive square roots.

Before we continue our analysis, let’s review a few linear algebra results.

1.3 Linear Algebra Review

Let A be an $n \times n$ real matrix. If there exists a non-zero vector x and scalar λ such that $A x = \lambda x$ then λ is an eigenvalue of A and x is a corresponding eigenvector.

For a given λ and $n \times n$ identity matrix I, $(A - \lambda I) x = 0$ gives a set of homogeneous equations. The set of equations has a non-trivial solution (and thus λ is an eigenvalue) if and only if $\det(A - \lambda I) = 0$.

$\det(A - \lambda I)$ is a degree n polynomial in λ, so it will have n not necessarily distinct roots. These roots are the eigenvalues of A. If a root is of order k
then there exists a vector space of dimension k of eigenvectors corresponding to this root. Our convention will be to normalize a basis of one of these spaces to a unit basis.

Definition 1. Matrices A and B are **similar** if there exists an invertible P such that $A = PBP^{-1}$.

Theorem 2. If A and B are similar then they share the same eigenvalues.

Proof:

\[
det(A - \lambda I) = det(PBP^{-1} - \lambda PIP^{-1}) = det[P(B - \lambda I)P^{-1}] \\
= det P \cdot det(B - \lambda I) \cdot det(P^{-1}) \\
= det(B - \lambda I) \cdot \frac{det P}{det P} \\
= det(B - \lambda I).
\]

\[\Box\]

Definition 3. A is **diagonalizable** if it is similar to a diagonal matrix.

Theorem 4. A is diagonalizable if and only if there exist n linearly independent eigenvectors of A.

Proof: We will just prove in one direction.

Suppose A is diagonalizable. Then $A = PDP^{-1}$, and thus $AP = PD$, for some diagonal D. Let d_i be the i-th diagonal element of D and p_i be the i-th column vector of P. Then

\[
[Ap_1 \quad Ap_2 \quad \cdots \quad Ap_n] = AP = PD = [d_1p_1 \quad d_2p_2 \quad \cdots \quad dnp_n],
\]

where the Ap_i and d_ip_i are column vectors. So for each i, $Ap_i = d_ip_i$. Since P is invertible, its column vectors must be linearly independent and non-zero, so p_1, p_2, \ldots, p_n are linearly independent eigenvectors of A. \[\Box\]

Note also that $\lambda_1 = \max_x x^TAx$ is the largest eigenvalue of A and $|A|_F^2 = \sum_{i=1}^{n} \lambda_i^2$ where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A.

3