
CS 683 — Learning, Games, and Electronic Markets Spring 2007

Notes from Week 1: Algorithms for sequential prediction

Instructor: Robert Kleinberg 22-26 Jan 2007

1 Introduction

In this course we will be looking at online algorithms for learning and prediction.
These algorithms are interesting in their own right — as a topic in theoretical com-
puter science — but also because of their role in the design of electronic markets
(e.g. as algorithms for sequential price experimentation, or for online recommenda-
tion systems) and their role in game theory (where online learning processes have
been proposed as an explanation for how players learn to play an equilibrium of a
game).

2 Online algorithms formalism

For general background on online algorithms, one can look at the book Online Com-

putation and Competitive Analysis by Borodin and El-Yaniv, or read the notes from
an online algorithms course taught by Michel Goemans at MIT, available by FTP at

ftp://theory.csail.mit.edu/pub/classes/18.415/notes-online.ps

In this section we give an abstract definition of online algorithms, suitable for the
prediction problems we have studied in class.

Definition 1. An online computation problem is specified by:

1. A set of inputs I =
∏∞

t=1 It.

2. A set of outputs O =
∏∞

t=1 Ot.

3. A cost function Cost : I ×O → R.

For a positive integer T , we will define

I [T] =
T
∏

t=1

It, O[T] =
T
∏

t=1

Ot.

W1-1

One should interpret an element i = (i1, i2, . . .) ∈ I as a sequence representing
the inputs revealed to the algorithm over time, with it representing the part of the
input revealed at time t. Similarly, one should interpret an element o = (o1, o2, . . .)
as a sequence of outputs produced by the algorithm, with ot being the output at time
t.

Remark 1. The definition frames online computation problems in terms of an infinite

sequence of inputs and outputs, but it is easy to incorporate problems with a finite
time horizon T as a special case of the definition. Specifically, if |It| = |Ot| = 1 for
all t > T then this encodes an input-output sequence in which no information comes
into or out of the algorithm after time T .

Definition 2. An online algorithm is a sequence of functions

Ft : I [t]→ Ot.

An adaptive adversary (or, simply, adversary) is a sequence of functions

Gt : O[t− 1]→ It.

An adversary is called oblivious if each of the functions Gt is a constant function.
If F is an online algorithm and G is an adaptive adversary, the transcript of F

and G is the unique pair Trans(F, G) = (i, o) ∈ I × O such that for all t ≥ 1,

it = Gt(o1, o2, . . . , ot−1)

ot = Ft(i1, i2, . . . , it).

The cost of F and G is Cost(F, G) = Cost(Trans(F, G)).

One should think of the algorithm and adversary as playing a game in which the
adversary specifies a component of the input based on the algorithm’s past outputs,
and the algorithm responds by producing a new output. The transcript specifies the
entire sequence of inputs and outputs produced when the algorithm and adversary
play this game.

Remark 2. Designating an oblivious adversary is equivalent to designating a single
input sequence i = (i1, i2, . . .) ∈ I .

Remark 3. Our definition of algorithm and adversary makes no mention of computa-
tional constraints (e.g. polynomial-time computation) for either party. In general we
will want to design algorithms which are computationally efficient, but it is possible
to ask meaningful and non-trivial questions about online computation without taking
such constraints into account.

In defining randomized algorithms and adversaries, we think of each party as
having access to infinitely many independent random bits (represented by the binary
digits of a uniformly distributed element of [0, 1]) which are not revealed to the other
party.

W1-2

Definition 3. A randomized online algorithm is a sequence of functions

Ft : I [t]× [0, 1]→ Ot.

A randomized adaptive adversary is a sequence of functions

Gt : O[t− 1]× [0, 1]→ It.

A randomized adversary is called oblivious if the output of each function Gt(o, y)
depends only on the parameter y.

If F and G are a randomized algorithm and randomized adaptive adversary, re-
spectively, then the transcript of F and G is the function Trans(F, G) : [0, 1]× [0, 1]→
I ×O which maps a pair (x, y) to the unique input-output pair (i, o) satisfying:

it = Gt(o1, o2, . . . , ot−1, y)

ot = Ft(i1, i2, . . . , it, x)

for all t ≥ 1. The cost of F and G is Cost(F, G) = E[Cost(Trans(F, G)(x, y))], when
the pair (x, y) is sampled from the uniform distribution on [0, 1]2.

Remark 4. A randomized oblivious adversary is equivalent to a probability distri-
bution over input sequences i = (i1, i2, . . .) ∈ I .

Remark 5. In class I defined a randomized algorithm using an infinite sequence of
independent random variables (x1, x2, . . .) ∈ [0, 1]∞, and similarly for a randomized
adversary. Consequently the transcript Trans(F, G) was described as a function from
[0, 1]∞ × [0, 1]∞ to I × O. This was unnecessarily complicated: a single random
number x ∈ [0, 1] contains infinitely many independent random binary digits, so it
already contains as much randomness as the algorithm would need for an entire infinite
sequence of input-output pairs. Accordingly, in these notes I have simplified the
definition by assuming that the algorithm’s and adversary’s random bits are contained
in a single pair of independent random real numbers (x, y), with x representing the
algorithm’s supply of random bits and y representing the adversary’s supply.

3 Binary prediction with one perfect expert

As a warm-up for the algorithms to be presented below, let’s consider the following
“toy problem.” The algorithm’s goal is to predict the bits of an infinite binary
sequence ~B = (B1, B2, . . .), whose bits are revealed one at a time. Just before the
t-th bit is revealed, a set of n experts make predictions b1t, b2t, . . . , bnt ∈ {0, 1}. The
algorithm is allowed to observe all of these predictions, then it makes a guess denoted
by at ∈ {0, 1}, and then the truth, Bt, is revealed. We are given a promise that there
is at least one expert whose predictions are always accurate, i.e. we are promised that
∃i ∀t bit = Bt.

W1-3

This prediction problem is a special case of the framework described above. Here,
It = {0, 1} × {0, 1}n and Ot = {0, 1}. The input it contains all the information
revealed to the algorithm after it makes its (t − 1)-th guess and before it makes its
t-th guess: thus it consists of the value of Bt−1 together with all the predictions
b1t, . . . , bnt. The output ot is simply the algorithm’s guess at. The cost Cost(i, o) is
the number of times t such that at 6= Bt.

Consider the following algorithm, which we will call the “Majority algorithm”: at
each time t, it consults the predictions of all experts who did not make a mistake
during one of the first t − 1 steps. (In other words, it considers all experts i such
that bis = Bs for all s < t.) If more of these experts predict 1 than 0, then at = 1;
otherwise at = 0.

Theorem 1. Assuming there is at least one expert i such that bit = Bt for all t, the

Majority algorithm makes at most blog2(n)c mistakes.

Proof. Let St denote the set of experts who make no mistakes before time t. Let
Wt = |St|. If the Majority algorithm makes a mistake at time t, it means that at least
half of the experts in St made a mistake at that time, so Wt+1 ≤ bWt/2c. On the
other hand, by assumption we have |Wt| ≥ 1 for all t. Thus the number of mistakes
made by the algorithm is bounded above by the number of iterations of the function
x 7→ bx/2c required to get from n down to 1. This is blog2(n)c.

Remark 6. The bound of blog2(n)c in Theorem 1 is information-theoretically op-
timal, i.e. one can prove that no deterministic algorithm makes strictly fewer than
blog2(n)c mistakes on every input.

Remark 7. Although the proof of Theorem 1 is very easy, it contains the two essential
ingredients which will reappear in the analysis of the Weighted Majority and Hedge
algorithms below. Namely, we define a number Wt which measures the “remaining
amount of credibility” of the set of experts at time t, and we exploit two key properties
of Wt:

• When the algorithm makes a mistake, there is a corresponding multiplicative
decrease in Wt.

• The assumption that there is an expert whose predictions are close to the truth
implies a lower bound on the value of Wt for all t.

The second property says that Wt can’t shrink too much starting from its initial value
of n; the first property says that if Wt doesn’t shrink too much then the algorithm
can’t make too many mistakes. Putting these two observations together results in
the stated mistake bound. Each of the remaining proofs in these notes also hinges
on these two observations, although the manipulations required to justify the two
observations become more sophisticated as the algorithms we are analyzing become
more sophisticated.

W1-4

Algorithm WMA(ε)

/* Initialization */
wi ← 1 for i = 1, 2, . . . , n.

/* Main loop */
for t = 1, 2, . . .

/* Make prediction by taking weighted majority vote */
if
∑

i : bit=0 wi >
∑

i : bit=1 wi

output at = 0;
else

output at = 1.

Observe the value of Bt.

/* Update weights multiplicatively */
Et ← {experts who predicted incorrectly}
wi ← (1− ε) · wi for all i ∈ Et.

end

Figure 1: The weighted majority algorithm

4 Deterministic binary prediction: the Weighted

Majority Algorithm

We now present an algorithm for the same binary prediction problem discussed in
Section 3. This new algorithm, the Weighted Majority algorithm, satisfies a provable
mistake bound even when we don’t assume that there is an expert who never makes
a mistake. The algorithm is shown in Figure 1. It is actually a one-parameter family
of algorithms WMA(ε), each with a preconfigured parameter ε ∈ (0, 1).

Theorem 2. Let M denote the number of mistakes made by the algorithm WMA(ε).
For every integer m, if there exists an expert i which makes at most m mistakes, then

M <

(

2

1− ε

)

m +

(

2

ε

)

ln(n).

Proof. Let wit denote the value of wi at the beginning of the t-th iteration of the
main loop, and let Wt =

∑n

i=1 wit. The hypothesis implies that there is an expert i
such that wiT ≥ (1− ε)m for all T , so

WT > wiT ≥ (1− ε)m (1)

W1-5

for all T . On the other hand, if the algorithm makes a mistake at time t, it implies
that

∑

i∈Et

wit ≥
Wt

2
,

hence

Wt+1 =
∑

i∈Et

(1− ε) · wit +
∑

i6∈Et

wit

=
n
∑

i=1

wit − ε
∑

i∈Et

wit

≤ Wt

(

1−
ε

2

)

.

For any T > 0, we find that

WT

W0
=

T−1
∏

t=0

Wt+1

Wt

≤
(

1−
ε

2

)M

(2)

where M is the total number of mistakes made by the algorithm WMA(ε). Combining
(1) with (2) and recalling that W0 =

∑n

i=1 wi0 =
∑n

i=1 1 = n, we obtain

(1− ε)m

n
<

WT

W0

≤
(

1−
ε

2

)M

.

Now we take the natural logarithm of both sides.

ln(1− ε)m− ln(n) < ln
(

1−
ε

2

)

M (3)

ln(1− ε)m− ln(n) < −(ε/2)M (4)

ln

(

1

1− ε

)

m + ln(n) > (ε/2)M (5)

(

2

ε

)

ln

(

1

1− ε

)

m +

(

2

ε

)

ln(n) > M (6)

(

2

1− ε

)

m +

(

2

ε

)

ln(n) > M (7)

where (4) was derived from (3) using identity (21) from the appendix of these notes,
and (7) was derived from (6) using identity (22) from the appendix.

5 Randomized prediction: the Hedge Algorithm

We now turn to a generalization of the binary prediction problem: the “best expert”
problem. In this problem, there is again a set of n experts, which we will identify

W1-6

Algorithm Hedge(ε)

/* Initialization */
wx ← 1 for x ∈ [n]

/* Main loop */
for t = 1, 2, . . .

/* Define distribution for sampling random strategy */
for x ∈ [n]

pt(x)← wx

/(

∑n

y=1 wy

)

end

Choose xt ∈ [n] at random according to distribution pt.
Observe cost function ct.

/* Update score for each strategy */
for x ∈ [n]

wx ← wx · (1− ε)ct(x)

end

end

Figure 2: The algorithm Hedge(ε).

with the set [n] = {1, 2, . . . , n}. In each time step t, the adversary designates a cost
function ct from [n] to [0, 1], and the algorithm chooses an expert xt ∈ [n]. The cost
function Ct is revealed to the algorithm only after it has chosen xt. The algorithm’s
objective is to minimize the sum of the costs of the chosen experts, i.e. to minimize
∑∞

t=1 ct(xt).
Observe that this problem formulation fits into the formalism specified in Sec-

tion 2; the input sequence (i1, i2, . . .) is given by it = ct−1, the output sequence
(o1, o2, . . .) is given by ot = xt, and the cost function is

Cost(i, o) =

∞
∑

t=1

it+1(ot) =

∞
∑

t=1

ct(xt).

Also observe that the binary prediction problem is a special case of the best expert
problem, in which we define ct(x) = 1 if bxt 6= Bt, 0 otherwise.

Figure 2 presents a randomized online algorithm for the best expert problem. As
before, it is actually a one-parameter family of algorithms Hedge(ε) with a preconfig-
ured parameter ε ∈ (0, 1). Note the algorithm’s similarity to WMA(ε): it maintains a
vector of weights, one for each expert, and it updates these weights multiplicatively
using a straightforward generalization of the multiplicative update rule in WMA. The

W1-7

main difference is that WMA makes its decisions by taking a weighted majority vote
of the experts, while Hedge makes its decisions by performing a weighted random
selection of a single expert.

Theorem 3. For every randomized adaptive adversary, for every T > 0, the expected

cost suffered by Hedge(ε) satisfies

E

[

T
∑

t=1

ct(xt)

]

<

(

1

1− ε

)

E

[

min
x∈[n]

T
∑

t=1

ct(x)

]

+

(

1

ε

)

ln(n). (8)

Proof. Let wxt denote the value of wx at the beginning of the t-th iteration of the
main loop, and let Wt =

∑n

x=1 wxt. Note that wxt, Wt are random variables, since they
depend on the adversary’s choices which in turn depend on the algorithm’s random
choices in previous steps. For an expert x ∈ [n], let c1..T (x) denote the total cost

c1..T (x) =

T
∑

t=1

ct(x).

Let x∗ = arg minx∈[n] c1..T (x). We have

WT > wx∗t = (1− ε)c1..T (x∗)

and after taking logarithms of both sides this becomes

ln(WT) > ln(1− ε)c1..T (x∗) (9)

On the other hand, we can bound the expected value of ln(WT) from above, using an
inductive argument. Let w∗t denote the vector of weights (w1t, . . . , wnt).

E(Wt+1 |w∗t) =
n
∑

x=1

E
(

(1− ε)ct(x)wxt |w∗t

)

(10)

≤

n
∑

x=1

E ((1− εct(x))wxt |w∗t) (11)

=

n
∑

x=1

wxt − εE

(

n
∑

x=1

ct(x)wxt |w∗t

)

(12)

= Wt ·

(

1− εE

(

n
∑

x=1

ct(x)pt(x) |w∗t

))

(13)

= Wt · (1− εE(ct(xt) |w∗t)) (14)

E(ln(Wt+1) |w∗t) ≤ ln(Wt) + ln(1− εE(ct(xt) |w∗t)) (15)

≤ ln(Wt)− εE(ct(xt) |w∗t) (16)

W1-8

εE(ct(xt) |w∗t) ≤ ln(Wt)− E(ln(Wt+1) |w∗t) (17)

εE(ct(xt)) ≤ E(ln(Wt))−E(ln(Wt+1)) (18)

εE

(

T
∑

t=1

ct(xt)

)

≤ ln(n)−E(ln(WT)). (19)

Here, (11) is derived using identity (23) from the appendix, (13) is derived using
the fact that pt(x) = wxt/Wt, (14) is derived using the observation that xt is a
random element sampled from the probability distribution pt(·) on [n], (15) and (16)
are derived using the identities (24) and (21) respectively, (18) is derived by taking
the unconditional expectation of both sides of the inequality, and (19) is derived by
summing over t and recalling that W0 = n.

Combining (9) and (19) we obtain

εE

(

T
∑

t=1

ct(xt)

)

< ln(n)− ln(1− ε)E(c1..T (x∗))

E

(

T
∑

t=1

ct(xt)

)

<

(

1

ε

)

ln(n) +
1

ε
ln

(

1

1− ε

)

E(c1..T (x∗))

E

(

T
∑

t=1

ct(xt)

)

<

(

1

ε

)

ln(n) +

(

1

1− ε

)

E(c1..T (x∗))

where the last line is derived using identity (22) from the appendix.

6 Appendix: Some useful inequalities for logarithms

and exponential functions

In various steps of the proofs given above, we applied some useful inequalities that
follow from the convexity of exponential functions or the concavity of logarithms. In
this section we collect together all of these inequalities and indicate their proofs.

Lemma 4. For all real numbers x,

1 + x ≤ ex (20)

with equality if and only if x = 0.

Proof. The function ex is strictly convex, and y = 1 + x is the tangent line to y = ex

at (0, 1).

Lemma 5. For all real numbers x > −1,

ln(1 + x) ≤ x (21)

with equality if and only if x = 0.

W1-9

Proof. Take the natural logarithm of both sides of (20).

Lemma 6. For all real numbers y ∈ (0, 1),

1

y
ln

(

1

1− y

)

<
1

1− y
. (22)

Proof. Apply (21) with x = y

1−y
, then divide both sides by y.

Lemma 7. For every pair of real numbers x ∈ [0, 1], ε ∈ (0, 1),

(1− ε)x ≤ 1− εx (23)

with equality if and only if x = 0 or x = 1.

Proof. The function y = (1− ε)x is strictly convex and the line y = 1− εx intersects
it at the points (0, 1) and (1, 1− ε).

Lemma 8. For every random variable X, we have

E(ln(X)) ≤ ln(E(X)) (24)

with equality if and only if there is a constant c such that Pr(X = c) = 1.

Proof. Jensen’s inequality for convex functions says that if f is a convex function and
X is a random variable,

E(f(X)) ≥ f(E(X)),

and that if f is strictly convex, then equality holds if and only if there is a constant c
such that Pr(X = c) = 1. The lemma follows by applying Jensen’s inequality to the
strictly convex function f(x) = − ln(x).

W1-10

