The MAX-CUT problem is: given a graph G (undirected) and integer $k > 0$, can the vertex set $V(G)$ be partitioned into A, B such that at least k edges are "cut" by the partition (meaning one endpoint in A, the other in B).

How to prove MAX-CUT is NP-hard?

A promising gadget for a 3SAT reduction, but it becomes tricky to represent clauses.

For reducing 3-COLORABILITY ≤P MAX-CUT...
Proposed Reduction: Given graph H which is an instance of 3-Colorability, construct G whose vertex set is:

- $\frac{1}{2} \times 7$ (root vertex)
- $\{u_0, u_1, u_2\}$ (3 gadget nodes corresponding) to each $u \in V(H)$

and edge set is

- Edges from X to every other vertex
- Edges (u_i, u_j) for all $u \in V(H)$ and $i \neq j$ in $\{0, 1, 2, 3\}$.
- Edges (u_i, v_i) for all $(u, v) \in E(H)$ and $i \in \{0, 1, 2\}$.

Finally, we ask if I a cut of size $4n + 2m$ edges. ($n = \#$ whites in H, $m = \#$ edges in H).

Conclusion:

- Cuts that cut $> 4n$ black edges don't exist.
- Cuts that cut exactly $4n$ black edges and at least $2m$ purple edges do correspond to proper 3-colorings of H.
- Cuts that cut $< 4n$ black, but $\geq 4n + 2m$ edges in total may exist.
violating correctness of reduction.

If black edges have weight $w > 3m$ (total # purple edges)
then cuts of total weight $4nw + 2m$ must cut $4n$ black edges and,
in addition, at least $2m$ purples.

Conclusion 2. There is a slightly more general problem, \textsc{Weighted MAX CUT},
where the input is:

- graph G
- edge weights $w(u,v) \in \mathbb{N}$
- target cut weight K

and the question is: does \exists a
vertex partition A,B st.
\[\sum_{u \in A, v \in B} w(u,v) > K ? \]

Then the reduction above, with
black edge weights set to $w = 3m+1$
and purple edge weights set to 1
and $K = 4nw + 2m$, is a valid reduction
\textsc{3-Colorability} \leq \textsc{Weighted MAX-CUT}
If we allow multigraphs (i.e. where two vertices can potentially be connected by multiple edges) then we can represent an edge of weight w by w parallel edges, and the reduction above becomes a reduction 3-COLORABILITY \leq_p MULTIGRAPH MAX-CUT.

If we want our reduction to output a simple graph, we require one more gadget. As before, let

$H = \text{instance of } 3$-COLORABILITY

$n = \# \text{ vertices of } H$

$m = \# \text{ edges of } H$

$w = 3m+1$

and now set

$M = 6nw + 3m + 1$

Replace each vertex (other than x) in the original reduction with $2M$ vertices forming a complete
bipartite graph with M vertices on each side.

Thus, our reduction takes H and outputs a graph G with

- root vertex X
- vertices $u_{i;j}$ for all $u \in V(H)$, $i \in \{0, 1, 2\}$, $j \in \{1, 2, 3, ..., 2M\}$
- blue edges $(u_{i;j}, u_{i;k})$
 whenever $u \in V(H)$, $i \in \{0, 1, 2\}$, $j-k$ odd
- black edges $(u_{i;j}, u_{l;j})$ for $i \in \{0, 1, 2\}$ and $1 \leq j \leq w$
- black edges $(u_{i;j}, u_{l;j})$ for distinct $i, l \in \{0, 1, 2\}$ and $1 \leq j \leq w$
- purple edges $(u_{i;4}, v_{i;4})$
 whenever $(u_i, v_i) \in E(H)$ and $i \in \{0, 1, 2\}$.

This graph G has $3nM^2$ blue edges,
6nw black edges, 3m purple edges.

MAX-CUT: Is there a partition that cuts at least
$$k = 3nM^2 + 4nw + 2m$$ edges of G?
Def. A partition of the set
$$V_{u,i} = \{ u_{ij} \mid 1 \leq j \leq 2m^2 \}$$
into sets $$A_{ui}, B_{ui}$$ is "pure"

if either
$$A_{ui} = \{ u_{ij} \mid j \text{ odd} \}, \quad B_{ui} = \{ u_{ij} \mid j \text{ even} \}$$
or
$$A_{ui} = \{ u_{ij} \mid j \text{ even} \}, \quad B_{ui} = \{ u_{ij} \mid j \text{ odd} \}$$

A partition of $$V(G) = \{ x_j \mid u_{ij} \in V_{u,i} \}$$
into sets $$A, B$$ is pure if

the partition $$i = A \cup V_{ui} \cup B \cup V_{ui} \cup V$$ is pure for all $$u, i$$.

Lemma. A pure partition cuts $$3nM^2$$ blue edges. Any other partition cuts at most $$3nM^2 - M$$ blue edges.

Proof. Every blue edge has endpoints $$u_{ij}$$ and $$u_{ik}$$ for some $$u \in V(H)$$,
$i \leq 2i, 2j$, and $j \in [2M]$ with $j-k$ odd. By definition a pure partition cuts every such edge.

If a partition A, B is not pure, then there is j,k such that (A_{ij}, B_{ij}) is not a pure partition of V_{ij}. If one of A_{ij}, B_{ij} is empty, then none of the blue edges in $G[V_{ij}]$ is cut, so at least M^2 blue edges are uncut. If A_{ij}, B_{ij} are both non-empty but (A_{ij}, B_{ij}) is not pure, then at least one of the sets $\{u_{ij} \mid j \text{odd} \}$ or $\{u_{ij} \mid j \text{even} \}$ intersects both A_{ij} and B_{ij}.

Assume WLOG that it is $\{u_{ij} \mid j \text{odd} \}$. There are M vertices in $u_{ij} \mid j \text{even} \}$ and each of them has at least 1 blue edge to another vertex on its side of the partition. Hence at least M blue edges...
Back to analyzing the reduction.

If H is 3-colorable and $c: V(H) \to \{0,1,2\}$ is a valid coloring

let

$$A = \{x \notin V(H) \mid u \in V(H), i=(lu), \ j \ \text{even} \}
\cup \{u_{ij} \mid u \in V(H), i=(lu), \ j \ \text{odd} \}
\cup \{u_{ij} \mid u \in V(H), i \neq (lu), \ j \ \text{odd} \}$$

$$B = V(G) \setminus A$$

Then the partition (A, B) cuts:

- all blue edges
- 4w black edges in each induced subgraph $G[\{x \notin V(H) \cup V_0 \cup V_2 \cup V_2 \}, \ u \in V(H)]$
- 2m purple edges.

hence K edges in total.
Conversely, if \(\exists \) a partition \((A, B)\) that cuts \(K\) edges in total:

1. The partition must be pure. Otherwise there are at least \(M\) uncult blue edges. By the choice of \(M > 6n_n + 3m\) the combined number of cut black and purple edges can't possibly compensate the loss of \(M\) blue edges from the cut.

2. For every \(u \in V(H) \), exactly one of \(u \) is \((0, 1, 2)\) satisfies \(\{u, j, j\} \in e\). Otherwise at most \(3w\) of the black edges in induced subgraph

\[
G[\{x \in V_{u0} \cup V_{u1} \cup V_{u2}\}]
\]

are cut. By choice of \(w > 3m\), no number of cut purple edges can compensate the loss of \(w\).
black edges from the cut.

3) Color each vertex $u \in V(H)$ with the unique color $c(u)=i$ such that $\{u, j\} \in \mathcal{E}$ with i even. $\mathcal{E} \subseteq A$.

This must constitute a proper coloring of H, as otherwise fewer than $2m$ purple edges would be cut.