Ford-Fulkerson

initialize \(f = 0 \), \(G_f = G \)

while there exists an augmenting path \(P \) in \(G_f \):
 compute \(\delta(P) = \min \) residual capacity on \(P \) \(\in O(n) \)
 update \(f \) to \(f + \delta(P) \cdot f^P \) \(\in O(n) \)
 recompute \(G_f \)
endwhile

output \(f \)

Correctness condition on termination: if we stop, we output a feasible flow with no augmenting path.

\([\text{Int.}]: f < f + \delta(P) \cdot f^P \) preserves feasibility \(\implies f \) is max flow.

\(O(m)\) time per iteration.

If capacities are integer valued, then

(a) \(f \) will always be an integer valued flow
(b) \(G_f \) will have integer capacities

\(\text{val}(f) \) increases by at least 1 per iteration, so the number of iterations bounded by \(\text{val}(f^*) \)
where \(f^* \) is a max flow.

Overall running time \(O(m \cdot \text{val}(f^*)) \).
Let $r = \frac{1}{2} (\sqrt{5} - 1)$ be the positive solution of $r + r^2 = 1$.

This iterates without end.

Algorithm

Ford-Fulkerson

Edmonds-Karp #1
augmenting path that maximizes $\delta(P)$

Edmonds-Karp #2
augmenting path with fewest edges

Running Time

\[O(m \cdot \text{val}(f^*)) \]

\[O(m \cdot \log(n) \cdot \log(n \cdot \text{val}(f^*))) \]

\[O(m^2n) \]

pseudopolynomial (poly if numbers encoded in unary)

weakly polynomial (poly in input size)

strongly polynomial (polynomial with no dependence on # of digits, as long as arithmetic takes $O(d)$)
Dinitz

Push-Relabel

O(n^3)

Orlin's Algorithm

O(mn)

Chen, Kyng, Lie, Peng, Robertson, and Sachdeva (2022)

O(m(n + d) log val(f^*)) w.h.p.,

Fastest known strongly poly

Push-Relabel Algorithm

Maintains two objects: a preflow and a height function.

Def. \(f \) is a preflow if it satisfies

1. \(f(u, v) + f(v, u) = 0 \quad \forall u, v \)
2. \(\sum_{u \in V} f(u, v) \geq 0 \quad \forall v \neq s \) ("excess" of \(v \), net flow arriving into \(v \)),