Announcements:

1. Homework 3 to be released Fri; due a week from Fri, shorter than usual.

2. Email me and Shawn (rok2, so396) if you must switch groups.

3. In class midterm: I’m considering replacing it with a take-home, the week of Nov 6-10. (Flexible start/end.) Please email me if you’re not happy about this.

Recap. Flow satisfies $f(u, v) + f(v, u) = 0$

$$\sum_{v \in V} f(u, v) = 0 \quad \forall u \not\in \{s, t\}.$$

"Feasible" $f(u, v) \leq c(u, v) \quad \forall (u, v)$

Elementary Flow f^e: $s \rightarrow t$ with $\sum_{e \in E} f^e = f(s, t)$

Residual graph G_f, f feasible fBu in G_f.

Capacities $c_f(u, v) = c(u, v) - f(u, v)$

Augmenting path: p from s to t whose edges have strictly positive residual capacity.

Def. An s-t cut in flow network $G_r(V, s, t, c)$ is a partition of V into S, T with $s \in S$, $t \in T$.

For vertex sets Q, R let

$$f(Q, R) = \sum_{u \in Q} \sum_{v \in R} f(u, v) \quad \text{net flow } Q \to R$$

$$c(Q, R) = \sum_{u \in Q} \sum_{v \in R} c(u, v) \quad \text{aggregate capacity } Q \to R$$
Observe:
(a) \(R_1, R_2 \) disjoint \(\Rightarrow f(Q, R_1 \cup R_2) = f(Q, R_1) + f(Q, R_2) \)
(b) \(f(Q, Q) = 0 \quad \forall Q \in V \)

... by skew-symmetry.

Lemma. If \(f \) is any flow and \(ST \) is any st cut,
\[f(S, T) = \text{val}(f) \]

If \(f \) feasible,
\[\text{val}(f) \leq c(S, T) \]

and equality holds if and only if \(f(uv) = c(uv) \)
for all \(u \in S \), \(v \in T \). ("\(S, T \) is saturated by \(f \).")

Proof: By properties (a), (b) above,
\[f(S, T) = f(S, T) + f(S, S) = f(S, TV S) = f(S, V) \]
\[= \sum_{u \in S} \sum_{v \in V} f(uv) \quad \text{inner sum equals zero except when } u = s. \]
\[= \sum_{u \in V} f(S, V) = \text{val}(f). \]

Inequality \(\text{val}(f) \leq c(S, T) \) follows from for \(u \in S, v \in T \)
\[\forall uv \quad f(uv) \leq c(uv) \]
\[\text{this is strict} \]
\[f(S, T) = \sum_{u \in S} \sum_{v \in T} f(uv) \leq \sum_{u \in S} \sum_{v \in T} c(uv) = c(S, T) \]

Theorem (Max-flow Min-cut)
For a flow network \(G \) and a feasible flow \(f \), TFAE:

(i) \(f \) is a maximum flow
(ii) there is no augmenting path in \(G \)
(iii) there exists a st cut with \(c(S, T) = \text{val}(f) \)
(iv) there exists a minimum s-t cut with \(c(S, T) = \text{val}(f) \)

Proof. First (iv) \(\Rightarrow \) (iii) obvious. To prove (iii) \(\Rightarrow \) (iv)
assume \(f, S, T \) satisfy (iii) and assume
S^*, T^* is any s^t cut of minimum capacity.

\[c(S^*, T^*) \leq c(S, T) \quad \text{(def of } S^*, T^*) \]

\[c(S, T) = \text{val}(F) \leq c(S^*, T^*) \]

Hence $c(S^*, T^*) = c(S, T)$ are equal, so $S'T$ is a minimum s^t cut satisfying $\text{val}(F) - c(S, T)$ as required by (iv).

For (i) \Rightarrow (ii) we have $(-ii) \Rightarrow (-i)$.

If G_f has any path P, let

\[s(P) = \min \{ \text{clm}(u) - \text{flx}(u) \mid (u) \text{ an edge of } P \} \]

Then $f + s(P): f^P$ is also a feasible flow, its value is $\text{val}(F) + s(P) > \text{val}(F)$, so f is not a max flow.

For (ii) \Rightarrow (iii): define an augmenting walk to be a sequence $S = \{u_0, u_1, u_2, \ldots, u_k\}$ of vertices, such that residual $\text{cap} > 0$ for all $(u_i, u_{i+1}), 0 \leq i < k$, $c(u_i, u_{i+1}) = \text{flx}(u_i, u_{i+1})$.

Let $S = \{u\}$ be an augmenting walk ending at u^2.

$T = V \setminus S$.

Note $s \in S$ because (S) is augmenting walk.

$u \in T$ because S is augmenting path in G_f.

Every (u, v) with $u \in S, v \in T$ has zero residual capacity. This is because any augmenting walk $S = \{u_0, u_1, \ldots, u_k = v\}$ but $u_0, u_1, \ldots, u_k, u_{k+1} = v$ is not an augmenting walk. $\Rightarrow (u, v)$ has 0 residual capacity. $\therefore = 0$.

We have an s^t cut which is saturated by f, so $c(S, T) = \text{val}(F)$ by Lemma above.
Lastly, for $(iii) \Rightarrow (i)$:

If F is feasible flow, S,T is st cut and $\text{val}(F) = c(S,T)$, then for any feasible flow f^*,

$$\text{val}(f^*) \leq c(S,T) = \text{val}(F)$$

by Lemma

$\therefore \text{val}(F)$ is the maximum value of a feasible flow in G.
