Announcements

1. Improved lecture notes on matchings to be posted tonight.
2. Enrollment capacity to be increased 7 sit. Everyone who was on the waitlist yesterday will have a chance to enroll.

Min-Cost Bipartite Perfect Matching Problem.

Given: bipartite \(G = (L, R, E) \) \(|L| = |R| = \frac{n}{2} \)

costs \(c(u,v) \in [0, \infty] \)

notation: \(c(u,v) = +\infty \) if \((u,v) \not\in E \)

E.g.

\[\begin{array}{cccc}
0 & 2 & \text{5} \\
\text{3} & 0 & \text{4} \\
\text{0} & \text{1} & \text{0} \\
\end{array} \]

Notation. If \(M \) is a matching and \(S \) is any edge set, the "incremental cost of \(S \) relative to \(M \)" is

\[\Delta c(S; M) = c(M \Delta S) - c(M) = c(S \setminus M) - c(S \cap M) \]

Quasi-greedy Min-Cost Matching

initialize \(M = \emptyset \)

while \(M \) is not a perfect matching

let \(P \) be an \(M \)-augmenting path that minimizes \(\Delta c(P; M) \)

\[M
\]

endwhile

output \(M \)
Correct?
Yes, because of the following invariant.
After \(k \) iterations of the main loop, the matching \(M \) has minimum cost among all matchings with \(k \) edges.
Proof is by induction on \(k \). (Surprisingly subtle.)

Why does \(G_M \) have no negative-cost cycles?
If \(C \) were a cycle in \(G_M \) with \(\Delta c(C; M) < 0 \)
that would mean \(c(M \oplus C) - c(M) < 0 \)
\[\Rightarrow c(M \oplus C) < c(M) \]
This inequality can never hold because of our loop invariant, and hence \(G_M \) has no negative cost cycles.

Running time: \(\frac{n}{2} \) loop iterations
\[O(mn) \] Bellman-Ford to find \(|p| \) in each item
\[\therefore O(mn^2). \]
Dijkstra would be \[O(m + n \log n) \]
if we could use it.

Our algorithm will be maintaining (and adjusting)
vertex labels, \(y_u \) for each \(u \in V \).
The reduced cost of edge \(e = (u,v) \) will be
\[c'(u,v) = \begin{cases} c(u,v) - y_u - y_v & \text{if } e \notin M \\ y_u + y_v - c(u,v) & \text{if } e \in M \end{cases} \]
Def. Labeling \(y \) and matching \(M \) are compatible if:

1. \(y_u + y_v \leq c(uv) \quad \forall (uv) \)
2. \(y_u + y_v = c(uv) \quad \forall (uv) \in M \)
3. \(y_u = \max_{w \in L} \frac{1}{2} y_w \quad \forall u \in L \cap F \)
4. \(y_v = \max_{w \in R} \frac{1}{2} y_w \quad \forall v \in R \cap F \)

If \(M \) is a matching and \(y \) is a compatible labeling:

1. We can use Dijkstra's algorithm to find an \(M \)-augmenting path \(P \) that minimizes
 \[\sum_{e \in P} c^M(e) \]
 (Min-cost path from \(L \cap F \) to \(R \cap F \) in \(G_M \)
 with respect to edge costs \(c(uv) \)
 which are non-negative.)
2. Using this path preserves the cost-minimization loop invariant.