Theorem The dual matroid is a matroid.

Proof. Let $M = (S, I)$ be matroid. A basis of M is a maximal independent set in I. The dual of M is $M^* = (S, I^*)$, where

$$I^* = \{ A \subseteq S \mid I \cap A = \emptyset \text{ for some basis } I \text{ of } M \}.$$

Note that $M^{**} = M$ and that the bases of M^* are the complements of the bases of M. We show that M^* is a matroid. It is clearly closed downward under \subseteq, so we need only show

$$\forall A, B \in I^* \mid |A| < |B| \Rightarrow \exists x \in B - A \ A \cup \{x\} \in I^*.$$

Suppose $A, B \in I^*$ and $|A| < |B|$. There exist bases I, J of M such that $A \cap J = \emptyset$ and $B \cap I = \emptyset$. Complete $I - A$ to a basis K of M by adding elements of J. Then $A \cap K = \emptyset$ and

$$|K| = |K - I| + |K \cap I| = |K - I| + |I - A| = |K - I| + |I| - |I \cap A|,$$

and $|K| = |I|$, so $|K - I| = |I \cap A|$ and

$$|K \cap (B - A)| \leq |K - I| = |I \cap A| \leq |A - B| < |B - A|.$$

There must exist $x \in (B - A) - K$, so $(A \cup \{x\}) \cap K = \emptyset$, which says that $A \cup \{x\} \in I^*$.

\[\qed\]

Theorem Cuts in M are cycles in M^* and vice versa.

Proof. By duality, we only need to show one of the two statements.

$$A \text{ is a cut of } M \iff A \text{ is a minimal set intersecting all bases } I \text{ of } M$$

$$\iff A \text{ is a minimal set intersecting all } S - J \text{ for bases } J \text{ of } M^*$$

$$\iff A \text{ is a minimal set not contained in any basis } J \text{ of } M^*$$

$$\iff A \text{ is a minimal dependent set in } M^*$$

$$\iff A \text{ is a cycle of } M^*.$$

\[\qed\]

Corollary The blue (respectively, red) rule of M is the red (respectively, blue) rule of M^* with the order of the weights reversed.