Lecture 34 Linear Equations and Polynomial GCDs

It is still open whether one can find the greatest common divisor (gcd) of two integers in NC. In this lecture we will show how to compute the gcd of two polynomials in NC. We essentially reduce the problem to linear algebra. First we show how to solve systems of linear equations in NC; then we reduce the polynomial gcd problem to such a linear system.

34.1 Systems of Linear Equations

We are given a system of m linear equations in n unknowns

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{align*}
\]

(47)

and wish to find a solution vector x_1, \ldots, x_n if one exists. This is equivalent to solving the matrix-vector equation

\[
Ax = b
\]

(48)

where A is an $m \times n$ matrix whose ij^{th} element is a_{ij}, x is a column vector of n unknowns, and b is an m-vector whose i^{th} element is b_i.

We have already seen how to solve the following problems in NC:

181
• compute the rank of a matrix;
• find a maximal linearly independent set of columns of a matrix;
• invert a nonsingular square matrix.

The last allows us to solve the system (47) if A is square and nonsingular. What about cases where the system is not square, or where it is square but A is singular?

If we just wish to determine whether the system (48) has a solution at all, we can append b to A as a new column and ask whether this matrix has the same rank as A. If so, then b can be expressed as a linear combination of the columns of A; the coefficients of this linear combination provide a solution x to (48). If not, then b lies outside the subspace spanned by the columns of A and no such solution exists.

The following NC algorithm will produce a solution to (48) if one exists. First we can assume without loss of generality that A is of full column rank; that is, the columns are linearly independent. If not, we can find a maximal linearly independent set A' of columns of A; if b can be expressed as a linear combination of columns of A, then it can be expressed as a linear combination of the columns of A', and any solution to $A'x = b$ gives a solution to (48) by extending the solution vector with zeros.

Assume now that A is of full column rank. Using the same technique, we can find a maximal linearly independent set of rows. Since the row rank and column rank of a matrix are equal, the resulting matrix A'' is square and nonsingular, so the system $A''x = b''$ has a unique solution, where b'' is obtained from b by dropping the same rows as were dropped from A to get A''. Either x is also a solution to (48), or no solution exists.

34.2 Resultants and Polynomial GCDs

Suppose we are given two polynomials

$$f(x) = a_mx^m + a_{m-1}x^{m-1} + \cdots + a_0$$
$$g(x) = b_nx^n + b_{n-1}x^{n-1} + \cdots + b_0$$

and wish to find their gcd. The usual sequential method is the Euclidean algorithm, which generates a sequence of polynomials

$$f_0, f_1, \ldots, f_n,$$

where $f_0 = f$, $f_1 = g$, and f_{i+1} is the remainder obtained when dividing f_{i-1} by f_i. In other words, f_{i+1} is the unique polynomial of degree less than the degree of f_i for which there exists a quotient q_i such that

$$f_{i-1} = q_i f_i + f_{i+1}. \quad (49)$$
This sequence is called the *Euclidean remainder sequence*. It must end, since the degrees of the \(f_i \) decrease strictly. The last nonzero polynomial \(f_n \) in the list is the gcd of \(f \) and \(g \). This is proved by showing that a polynomial divides \(f_{i-1} \) and \(f_i \) iff it divides \(f_i \) and \(f_{i+1} \), which is immediate from (49). It follows that all adjacent pairs \(f_i, f_{i+1} \) in the sequence have the same gcd. Since \(f_{n+1} = 0, f_n \) divides \(f_{n-1} \), therefore gcd \((f_n, f_{n-1}) = f_n \) and gcd \((f, g) = f_n \) as well.

One can obtain an NC algorithm using the classical *Sylvester resultant* \[17, 15\]. This technique is based on the following relationship:

Lemma 34.1

(i) There exist polynomials \(s \) and \(t \) with \(\deg s < \deg g \) and \(\deg t < \deg f \) such that \(\gcd (f, g) = sf + tg \).

(ii) For any polynomials \(s \) and \(t \), \(\gcd (f, g) \) divides \(sf + tg \).

Proof.

(i) The proof is by backwards induction on \(n \). For the basis, take \(s = 0 \) and \(t = 1 \). Then \(\deg s = -1 < \deg f_n \) (\(\deg 0 = -1 \) by convention), \(\deg t = 0 < \deg f_{n-1} \), and \(sf_{n-1} + tf_n = f_n \). For the induction step, assume there exist \(s \) and \(t \) with \(\deg s < \deg f_{i+1} \), \(\deg t < \deg f_i \), and \(sf_i + tf_{i+1} = f_n \). Using (49), we have

\[
\begin{align*}
f_n &= sf_i + tf_{i+1} \\
 &= sf_i + t(f_{i-1} - q_if_i) \\
 &= tf_{i-1} + (s - q_i)f_i .
\end{align*}
\]

Moreover, since \(\deg q_i = \deg f_{i-1} - \deg f_i \), we have that \(\deg t < \deg f_i \) and \(\deg (s - q_i) < \deg f_{i-1} \).

(ii) Certainly \(\gcd (f, g) \) divides \(f \) and \(g \). It therefore divides any \(sf + tg \).

\(\square\)

Using Lemma 34.1, we can express the polynomial gcd problem as a problem in linear algebra. Arrange the coefficients of \(f \) and \(g \) in staggered columns to form a square matrix \(S \) as in the following figure, with \(n = \deg g \) columns of coefficients of \(f \) and \(m = \deg f \) columns of coefficients of \(g \). The figure
illustrates the case \(m = 5 \) and \(n = 4 \).

\[
S = \begin{bmatrix}
a_5 & 0 & 0 & 0 & b_4 & 0 & 0 & 0 \\
a_4 & a_5 & 0 & 0 & b_3 & b_4 & 0 & 0 \\
a_3 & a_4 & a_5 & 0 & b_2 & b_3 & b_4 & 0 \\
a_2 & a_3 & a_4 & a_5 & b_1 & b_2 & b_3 & b_4 \\
a_1 & a_2 & a_3 & a_4 & b_0 & b_1 & b_2 & b_3 \\
a_0 & a_1 & a_2 & a_3 & 0 & b_0 & b_1 & b_2 \\
0 & a_0 & a_1 & a_2 & 0 & 0 & b_0 & b_1 \\
0 & 0 & a_0 & a_1 & 0 & 0 & 0 & b_0 \\
0 & 0 & 0 & a_0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

The matrix \(S \) is called the *Sylvester matrix* of \(f \) and \(g \). If we multiply \(S \) on the right by a column vector

\[
x = (s_{n-1}, s_{n-2}, \ldots, s_0, t_{m-1}, t_{m-2}, \ldots, t_0)^T
\]

containing the coefficients of polynomials \(s \) and \(t \) of degree at most \(n - 1 \) and \(m - 1 \), respectively, then the product \(Sx \) gives the coefficients of the polynomial \(sf + tg \), which is of degree at most \(m + n - 1 \).

Theorem 34.2 The matrix \(S \) is nonsingular if and only if the gcd of \(f \) and \(g \) is 1.

Proof.

\((\rightarrow)\) Suppose \(\gcd(f, g) \neq 1 \). Then \(\deg \gcd(f, g) > 0 \). By Lemma 34.1(ii), there exist no \(s \) and \(t \) with \(sf + tg = 1 \), therefore the system \(Sx = (0, \ldots, 0, 1)^T \) has no solution.

\((\leftarrow)\) Suppose \(S \) is singular. Then there exists some nonzero vector \(x \) such that \(Sx = 0 \). This says there exists some pair of polynomials \(s, t \) such that \(sf + tg = 0 \), \(\deg s < \deg g \), and \(\deg t < \deg f \). Then \(sf = -tg \) and \(\deg sf = \deg tg < \deg fg \). Since \(f \) and \(g \) both divide \(sf = -tg \), so does their least common multiple (lcm), thus \(\deg \text{lcm}(f, g) < \deg fg \). Since \(\gcd(f, g) \cdot \text{lcm}(f, g) = fg \),

\[
\deg \gcd(f, g) = \deg fg - \deg \text{lcm}(f, g) > 0,
\]

therefore \(\gcd(f, g) \neq 1 \).

\(\square\)

By Theorem 34.2, we can determine whether the polynomials \(f \) and \(g \) have a nontrivial gcd by computing the determinant of \(S \). This quantity is called the *resultant* of \(f \) and \(g \).

Let us now show how to compute the gcd. Suppose

\[
\gcd(f, g) = x^d + c_{d-1}x^{d-1} + c_{d-2}x^{d-2} + \cdots + c_1x + c_0,
\]
assuming without loss of generality that the leading coefficient is 1. Let \(c \) be the column vector

\[
 c = (0, 0, \ldots, 0, 1, c_{d-1}, c_{d-2}, \ldots, c_1, c_0)^T.
\]

By Lemma 34.1(i), \(Sx = c \) for some \(x \). For any \(e \), let \(S^{(e)} \) be the matrix obtained by dropping the last \(e \) rows of \(S \), and let \(c^{(e)} \) be the vector obtained by dropping the last \(e \) elements of \(c \). Let \(u^{(e)} \) be the vector of the form \((0, 0, \ldots, 0, 1)^T\) of length \(m + n - e \). Note that \(c^{(d)} = u^{(d)} \), where \(d \) is the degree of \(\text{gcd} (f, g) \). Since \(Sx = c \), we have

\[
 S^{(d)} x = u^{(d)} = c^{(d)} \quad (51)
\]

Moreover, for no \(e < d \) does

\[
 S^{(e)} x = u^{(e)} \quad (52)
\]

have a solution; if it did, then \(Sx \) would give a polynomial \(sf + tg \) of degree strictly less than the degree of \(\text{gcd} (f, g) \), contradicting Lemma 34.1(ii). We can thus find the degree \(d \) of \(\text{gcd} (f, g) \) by trying all \(e \) in parallel and taking \(d \) to be the least \(e \) such that (52) has a solution. Once we have found \(d \) and a solution \(x \) for (51), we are done: the solution vector \(x \) is also a solution to \(Sx = c \), thereby giving coefficients of polynomials \(s \) and \(t \) such that

\[
 \text{gcd} (f, g) = sf + tg = Sx.
\]

It is interesting to note that the traditional Euclidean algorithm for polynomial \(\text{gcd} \) amounts to triangulation of the Sylvester matrix (50) by Gaussian elimination.