Lecture 5 Shortest Paths and Transitive Closure

5.1 Single-Source Shortest Paths

Let $G = (V, E)$ be an undirected graph and let ℓ be a function assigning a nonnegative length to each edge. Extend ℓ to domain $V \times V$ by defining $\ell(v, v) = 0$ and $\ell(u, v) = \infty$ if $(u, v) \not\in E$. Define the length of a path $p = e_1 e_2 \ldots e_n$ to be $\ell(p) = \sum_{i=1}^{n} \ell(e_i)$. For $u, v \in V$, define the distance $d(u, v)$ from u to v to be the length of a shortest path from u to v, or ∞ if no such path exists. The single-source shortest path problem is to find, given $s \in V$, the value of $d(s, u)$ for every other vertex u in the graph.

If the graph is unweighted (i.e., all edge lengths are 1), we can solve the problem in linear time using BFS. For the more general case, here is an algorithm due to Dijkstra [28]. Later on we will give an $O(m + n \log n)$ implementation using Fibonacci heaps. The algorithm is a type of greedy algorithm: it builds a set X vertex by vertex, always taking vertices closest to X.

\footnote{In this context, the terms “length” and “shortest” applied to a path refer to ℓ, not the number of edges in the path.}
Algorithm 5.1 (Dijkstra’s Algorithm)

\[X := \{s\}; \]
\[D(s) := 0; \]
for each \(u \in V - \{s\} \) do
\[D(u) := \ell(s,u); \]
while \(X \neq V \) do
 let \(u \in V - X \) such that \(D(u) \) is minimum;
 \[X := X \cup \{u\}; \]
 for each edge \((u,v)\) with \(v \in V - X \) do
\[D(v) := \min(D(v), D(u) + \ell(u,v)) \]
end while

The final value of \(D(u) \) is \(d(s,u) \). This algorithm can be proved correct by showing that the following two invariants are maintained by the while loop:

- for any \(u \), \(D(u) \) is the distance from \(s \) to \(u \) along a shortest path through only vertices in \(X \);
- for any \(u \in X \), \(v \not\in X \), \(D(u) \leq D(v) \).

5.2 Reflexive Transitive Closure

Let \(E \) denote the adjacency matrix of the directed graph \(G = (V, E) \). Using Boolean matrix multiplication, the matrix \(E^2 \) has a 1 in position \(uv \) iff there is a path of length exactly 2 from vertex \(u \) to vertex \(v \); i.e., iff there exists a vertex \(w \) such that \((u,w),(w,v)\) \(\in E \). Similarly, one can prove by induction on \(k \) that \((E^k)_{vw} = 1 \) iff there is a path of length exactly \(k \) from \(u \) to \(v \).

The reflexive transitive closure of \(G \) is

\[
E^* = I \lor E \lor E^2 \lor \cdots
= I \lor E \lor E^2 \lor \cdots \lor E^{n-1}
= (I \lor E)^{n-1}.
\]

The infinite join is equal to the finite one because if there is a path connecting \(u \) and \(v \), then there is one of length at most \(n - 1 \).

Suppose that two \(n \times n \) Boolean matrices can be multiplied in time \(M(n) \). Then \(E^* = (I \lor E)^{n-1} \) can be calculated in time \(O(M(n) \log n) \) by squaring \(E \) \(\log n \) times. We will show below how to calculate \(E^* \) in time \(O(M(n)) \).

Conversely, if there is an algorithm to compute \(E^* \) in time \(T(n) \), then \(M(n) \) is \(O(T(n)) \) (under the reasonable assumption that \(M(3n) \) is \(O(M(n)) \)); to multiply \(A \) and \(B \), place them strategically into a \(3n \times 3n \) matrix, then take its reflexive transitive closure:

\[
\begin{bmatrix}
0 & A & 0 \\
0 & 0 & B \\
0 & 0 & 0
\end{bmatrix}
= \begin{bmatrix}
I & A & AB \\
0 & I & B \\
0 & 0 & I
\end{bmatrix}.
\]
The product AB can be read off from the upper right-hand block.

Here is a divide and conquer algorithm to find E^* in time $M(n)$.

Algorithm 5.2 (Reflexive Transitive Closure)

1. Divide E into 4 submatrices A, B, C, D of size roughly $\frac{n}{2} \times \frac{n}{2}$ such that A and D are square.

$$E = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

2. Recursively compute D^*. Compute

$$F = A + BD^*C.$$

Recursively compute F^*.

3. Set

$$E^* = \begin{bmatrix} F^* & F^*BD^* \\ D^*CF^* & D^* + D^*CF^*BD^* \end{bmatrix}.$$

Essentially, we are partitioning the set of vertices into two disjoint sets U and V, where A describes the edges from U to U, B describes edges from U to V, C describes edges from V to U, and D describes edges from V to V. We compute reflexive transitive closures on these sets recursively and use this information to describe the reflexive transitive closure of E. Note that we compute two reflexive transitive closures, a few matrix multiplications (whose complexity is given by M) and a few matrix additions (whose complexity is assumed to be quadratic) of matrices of roughly half the size of E. This gives the recurrence

$$T(n) = 2T\left(\frac{n}{2}\right) + cM\left(\frac{n}{2}\right) + d\left(\frac{n}{2}\right)^2$$

where c and d are constants. Under the quite reasonable assumption that $M(2n) \geq 4M(n)$, the solution to this recurrence is $O(M(n))$.

5.3 All-Pairs Shortest Paths

Let E denote the adjacency matrix of a directed graph with edge weights. Replace the 1’s in E by the edge weights and the 0’s by ∞. Apply Algorithm 5.2 to calculate E^*, except use $+$ instead of \wedge and \min instead of \vee. We will show next time that this solves the all-pairs shortest path problem.