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1 The Simplex Method

We will present an algorithm to solve linear programs of the form

maximize cTx
subject to Az <b (1)
z>=0

assuming that b > 0, so that © = 0 is guaranteed to be a feasible solution. Let n denote the
number of variables and let m denote the number of constraints.

A simple transformation modifies any such linear program into a form such that each
variable is constrained to be non-negative, and all other linear constraints are expressed as
equations rather than inequalities. The key is to introduce additioinal variables, called slack
variables which account for the difference between and left and right sides of each inequality
in the original linear program. In other words, linear program is equivalent to

maximize cTx
subject to  Ax+y=0> (2)
z,y=0

where z € R" and y € R™.

The solution set of {Az +y =b, x = 0, y = 0} is a polytope in the (n + m)-dimensional
vector space of ordered pairs (z,y) € R™ x R™. The simplex algorithm is an iterative
algorithm to solve linear programs of the form by walking from vertex to vertex, along
the edges of this polytope, until arriving at a vertex which maximizes the objective function
clx.

To illustrate the simplex method, for concreteness we will consider the following linear
program.

maximize 2x1 + 32,

subject to 1+ 29 <8
2.1'1 + Zo < 12
xr, + 2[L‘2 S 14

1,22 >0

This LP has so few variables, and so few constraints, it is easy to solve it by brute-force
enumeration of the vertices of the polytope, which in this case is a 2-dimensional polygon.



The vertices of the polygon are [9], [2], [1], [§], [8]. The objective function 2z + 3z is

maximized at the vertex [2], where it attains the value 22. It is also easy to certify that

this is the optimal value, given that the value is attained at [2]: simply add together the
inequalities

$1+$2§8
Ty + 22° < 14

to obtain
21’1 + 31’2 S 22,

which ensures that no point in the feasible set attains an objective value greater than 22.

To solve the linear program using the simplex method, we first apply the generic trans-
formation described earlier, to rewrite it in equational form as

maximize 221 + 319

subject to T1+ a0 +y1 =8
201 + 19+ yo = 12
1+ 209+ ys =14
T1, T2, Y1, Y2, Y3 2> 0

From now on, we will be choosing a subset of two of the five variables (called the basis),
setting them equal to zero, and using the linear equations to express the remaining three
variables, as well as the objective function, as a function of the two variables in the basis.
Initially the basis is {1, 22} and the linear program can be written in the form

maximize 221 + 319

subject to Y1 =8 —x1 — X9
Yo = 12 — 221 — 29
ys = 14 — xq1 — 229
T1, T2, Y1, Y2, Y3 2> 0

which emphasizes that each of vy, ys, y3 is determined as a function of z, x5. Now, as long
as the basis contains a variable which has a positive coefficient in the objective function,
we select one such variable and greedily increasing its value until one of the non-negativity
constraints becomes tight. At that point, one of the other variables attains the value zero: it
enters the basis, and the variable whose value we increased leaves the basis. For example, we
could choose to increase x; from 0 to 6, at which point yo = 0. Then the new basis becomes
{ya, x2}. Rewriting the equation y, = 12 — 221 — x5 as
1 1

=6— =yy — — 3
T 2y2 2$2, ()
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we may substitute the right side of in place of x; everywhere in the above linear program,
arriving at the equivalent form

maximize 12 — y9 4 229

subject to Y1 =24 Yo — 372
ry=6— %92 — X2
ys =8+ 1yp — 3y
T1,%2,Y1,Y2, Y3 = 0

At this point, x5 still has a positive coefficient in the objective function, so we increase xs
from 0 to 4, at which point y; = 0. Now x5 leaves the basis, and the new basis is {y1, y2}.
We use the equation xo = 4 4y — 2y, to substitute a function of the basis variables in place
of 9 everywhere it appears, arriving at the new linear program

maximize 20 —4y1 + o
subject to Ty =44y — 2y
r=4—y+u
Ys =2 — 12+ 3y
T1,%2,Y1,Y2, Y3 = 0

Now we increase y, from 0 to 2, at which point y3 = 0 and the new basis is {y;,y3}.
Substituting y» = 2 — y3 + 3y, allows us to rewrite the linear program as

maximize 22—y —ys

subject to To=064+1y1 — Y3
r1=2=2y1+ys (4)
Yo =2+ 3y1 — Y3
T1,%2,Y1,Y2, Y3 = 0

At this point, there is no variable with a positive coefficient in the objective function, and
we stop.

It is trivial to verify that the solution defined by the current iteration—namely, x; =
2,19 = 6,y = 0,y = 2, y3 = 0—is optimal. The reason is that we have managed to
write the objective function in the form 22 — y; — y3. Since the coefficient on each of the
variables 1, y3 is negative, and y; and y3 are constrained to take non-negative values, the
largest possible value of the objective function is achieved by setting both y; and y3 to zero,
as our solution does.

More generally, if the simplex method terminates, it means that we have found an equiv-
alent representation of the original linear program in a form where the objective function
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attaches a non-positive coefficient to each of the basis variables. Since the basis variables
are required to be non-negative, the objective function is maximized by setting all the basis
variables to zero, which certifies that the solution at the end of the final iteration is optimal.

There is another way that the simplex method can terminate, which is not illustrated
by the example above. It may happen, in one iteration, that when we choose a variable
with a positive coefficient in the objective function, and we can increase this variable to
an arbitrarily large value without violating any of the non-negativity constraints. (This
situation happens when the increasing variable appears with a non-negative coefficient in
each of the equations that defines the non-basic variables as a linear function of the variables
in the basis.) In that case, we have verified that the optimum of the linear program is equal
to 400, i.e. the objective function ¢’z takes unboundedly large values as x ranges over the
set of vectors satisfying the constraints.

Note that, in our running example, the final objective function assigned coefficient —1 to
both y; and y3. This is closely related to the fact that the simple “certificate of optimality”
described above (before we started running the simplex algorithm) we obtained by summing
the first and third inequalities of the original linear program, each with a coefficient of 1.
We will see in the following section that this is not a coincidence.

Before leaving this discussion of the simplex method, we must touch upon a subtle issue
regarding the question of whether the algorithm always terminates. A basis is an n-element
subset of n + m variables, so there are at most (”J;Lm) bases; if we can ensure that the
algorithm never returns to the same basis as in a previous iteration, then it must terminate.
Note that each basis determines a unique point (z,y) € R""—defined by setting the basis
variables to zero and assigning to the remaining variables the unique values that satisfy
the equation Ax 4+ y = b—and as the algorithm proceeds from basis to basis, the objective
function value at the corresponding points never decreases. If the objective function strictly
increases when moving from basis B to basis B’, then the algorithm is guaranteed never to
return to basis B, since the objective function value is now strictly greater than its value at
B, and it will never decrease. On the other hand, it is possible for the simplex algorithm to
shift from one basis to a different basis with the same objective function value; this is called
a degenerate pivot, and it happens when the set of variables whose value is 0 at the current
solution is a strict superset of the basis.

There exist pivot rules (i.e., rules for selecting the next basis in the simplex algorithm)
that are designed to avoid infinite loops of degenerate pivots. Perhaps the simplest such rule
is Bland’s rule, which always chooses to remove from the basis the lowest-numbered variable
that has a positive coefficient in the objective function. (And, in case there is more than one
variable that may move into the objective function to replace it, the rule also chooses the
lowest-numbered such variable.) Although the rule is simple to define, proving that it avoids
infinite loops is not easy, and we will omit the proof from these notes. Instead, the following
section is devoted to presenting a pivot rule that is much more algorithmically costly, but
leads to an easier and more conceptual proof of termination.



1.1 A non-cycling pivot rule based on infinitesimals

In order for a degenerate pivot to be possible when solving a given linear program using the
simplex method, the equation Az +y = b must have a solution in which n+ 1 or more of the
variables take the value 0. Generically, a system of m linear equations in m + n unknown
does not have solutions with strictly more than n of the variables equal to 0. If we modify the
linear system Ax+y = b by perturbing it slightly, we should expect that such a modification
will, generically, eliminate the possibility of encountering degenerate pivots when running
the simplex algorithm.

These algebraic considerations can also be visualized in geometric terms. The linear
system Ax + y = b consists of m linearly independent equations in m + n unknown, so
its solution set is an n-dimensional subspace of the m + n-dimensional vector space of all
(x,y) pairs. In this n-dimensional space, the inequalities = = 0,y > 0 define m + n half-
spaces, each bounded by a hyperplane of the form {z; = 0} or {y; = 0}. In n-dimensional
space, n hyperplanes in general position will intersect at a single point, whereas n 4+ 1 or
more hyperplanes in general position will have an empty intersection. For example, in three
dimensions, any three planes in general position have one intersection point, whereas four
planes in general position have an empty intersection. However, it is perfectly possible for
four planes (not in general position) to have a non-empty intersection, as when the four faces
of a square pyramid meet at its apex. If one were to run the simplex algorithm to optimize
a linear function on a three-dimensional polyhedron such as a square pyramid, it is possible
that one or more iterations of the algorithm would start at the apex of the pyramid, with
a basis consisting of any three of the four slack variables corresponding to the four sides of
the pyramid. A degenerate pivot would substitute a new basis by replacing one of these
three slack variables with the slack variable that was omitted from the previous basis. After
performing this operation, and setting the variables in the new basis equal to zero, we remain
situated at the same vertex as before, namely the apex of the pyramid.

Now consider modifying the polyhedron by perturbing the height of each face of the
pyramid by a very small amount — potentially a different small quantity for each of the
faces. This operation modifies the shape of the top of the polyhedron slightly; the apex point
is replaced with a very short line segment joining two vertices, as illustrated in Figure [T}
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Figure 1: A pyramid and its generic perturbation

The modified polyhedron has no degenerate vertices; every vertex is situated at the
intersection of three (and only three) faces. The degenerate pivot at the apex of the pyramid
has been replaced by a non-degenerate pivot that makes progress by moving along the short
line segment joining the two topmost vertices of the modified polyhedron.

The foregoing discussion about perturbations could potentially by implemented by adding
a short random vector € to the vector b occurring on the right side of the equation Az+y = b,



resulting in the new equation Az + y = b + €. To justify that this works, one first needs
to reason about the probability that the modified polyhedron has no degenerate vertices.
This probability turns out to be equal to 1, assuming that the distribution of the vector € is
absolutely continuous with respect to Lebesgue measure, but that fact requires proof. Next
one would need to reason about whether every vertex of the new polyhedron is situated near
a vertex of the original polyhedron (i.e., at a distance tending to zero as the length of the
vector € tends to zero). This also turns out to be true, but again requires proof.

Instead of using probability, we will adopt a more algebraic formalism that gracefully
sidesteps some of these issues. The idea will be to treat the coefficients of the linear program
as belonging to an extension field of the real numbers that is still totally ordered, but contains
infinitesimal numbers representing the perturbations.

Definition 1. An ordered field is a field F with a distinguished subset F+q, called the set of
positive elements, that is closed under addition and multiplication, does not contain 0, and
satisfies the property that for every non-zero x € I, exactly one of x and —x is positive. One
can define a total ordering on [ by specifying that x < 2’ if and only if 2’ — z is positive.
Inequalities defined in this way obey the usual algebraic rules for manipulating inequalities,
for example the rule which asserts that the validity of an inequality is preserved under scaling
both sides by the same positive scalar.

Definition 2. If ' is an ordered field that contains R as a subfield, an element x € F is
called finite if there is some r € R such that —r < x < r, and otherwise we refer to x as
infinite. If © # 0 and 2! is infinite we say that x is infinitesimal. The finite elements
constitute a subring F_.,, and the infinitesimals are an ideal in this subring. There is a
surjective homomorphism F_,, — R whose kernel is the ideal of infinitesimal elements. This
homomorphism is defined by mapping each finite x € F to the real number

[x] 2 inf{r e R|r > x}. (5)

Lemma 1. There exists an ordered field F that contains R as a subfield, and whose ideal of
infinitesimal elements is an infinite-dimensional vector space over R.

Proof. Let € be a formal variable (i.e., a symbol with no numerical meaning) and let F be
the field of rational functions R(e). In other words, an element of F is an equivalence class
of fractions P/Q) where P and @ are both polynomials in the formal variable €, with real
coefficients, and ) # 0. The equivalence relation is defined by specifying that P;/Q; =
P,/Qs if and only if PiQs = P2(Q);. For example, 31__3:32 and 7 f:f&g are two expressions
representing the same element of R(e).

The ordering of I is defined as follows. A non-zero polynomial P = ag + aje+ - - - + a,€"
is positive if and only if the first non-zero element of the coefficient sequence ag, a4, ..., a, is
positive. A quotient P/ is positive if and only if P and @ are either both positive or both
negative.

Under this ordering, the monomials €, €2, €3, ... constitute an infinite set of infinitesimal

elements that are linearly independent over R. O]



We defined linear programs and the simplex algorithm using the field of real numbers,
but the problem definition and the algorithm both make sense over any ordered field. In
particular, we can let K be an ordered extension field of R that contains m linearly inde-
pendent infinitesimal elements €1, €s,. .., €,, and we can modify the linear program by
replacing the equation Az +y = b with Ax + y = b + ¢, where € denotes the column vector

(€1,€2, ..., €m)T.

Claim 2. Fiz a matrix A and vector b over the real numbers, and fix an ordered extension
field B O R that contains m linearly independent infinitesimal elements €y, €, ..., €. Let
€= (€1,€2,...,6,)7. For any x € F" and y € F™ satisfying Ax +y = b+ ¢, at most n of the
elements x1,...,Tn,Y1,...,Ym are equal to 0.

Proof. For ¢ =1,...,m the equation
€ = Zaijxj + vy — bz
j=1

shows that €; belongs to the R-linear subspace of K generated by {1,21,...,Zn, Y1, .., Ym}-
Of course, the element 1 € F also belongs to this subspace, which we will denote by L. Since
1,€1,..., €, are linearly independent over R, the dimension of L over R is at least m+ 1. In
particular, since the set {1,21,...,Z,,Y1,...,Ym} contains a basis for L, it must contain at
least m + 1 non-zero elements, and hence at most n elements are equal to 0. O]

Claim 3. Fiz A,b,F, e as in[Claim 3 When one solves the linear program

Marimize c'x
subject to  Ax+y=>b+e (6)
r,y=0

using the simplex method, there are no degnerate pivots and the algorithm terminates after

performing at most (m:”) pivots.

Proof. A degenerate pivot, by definition, occurs when n + 1 or more coordinates of the
vectors x,y are non-zero. shows that this can never happen when (z,y) belongs
to the solution set of Ax + y = b+ €. Hence, there are no degenerate pivots. This means
that the value of the objective function ¢z (interpreted as an element of the ordered field
IF) strictly increases with each iteration of the algorithm. Consequently, no two iterations of
the algorithm can use the same basis, and the number of iterations is bounded above by the

number of bases, which is (™). O

A pivot rule that guarantees termination. To define a non-cycling pivot rule for the
simplex method solving an ordinary linear program (i.e., with coefficients in R) our strategy
will be to run the simplex method in tandem on two linear programs: one defined over R
with constraint set {Az +y = b, z,y > 0}, and another defined over the extension field F
with constraint set {Azx +y = b+ ¢, z,y = 0}. Let us distinguish the two linear programs

7



by calling the first one LPg and the second one LPr. We run the simplex method to solve
LPp, and we let 2 y® denote the values of the vectors z,y at the start of iteration ¢,
for t = 0,1,...,T, where T either denotes the final iteration of the algorithm, or the last
iteration in which all components of the vector z(*) are finite.

Recall the homomorphism z +— [z] from Fo to R defined in equation (5). We will
abuse notation and apply this homomorphism to vector spaces as well: if x is a vector with
components in F_., we let [z] denote the vector over R obtained by applying the operation
x; — [x;] to each component of x. Now take the sequence of vector pairs {z(, y1L  rep-
resenting the execution of the simplex method solving LPr and translate it to the sequence
of vector pairs {[z], [y®]}_,. This sequence represents an initial segment of a valid exe-
cution of the simplex method solving LPgr. In every iteration, n of the variables in the set
{[:cg»t)] lj=1,...,n}U {[yz(t)] |i=1,...,m} are equal to zero, because the n variables in the
basis of the corresponding iteration of the LPp are equal to 0, and [0] = 0. The remaining
m variables in the set are non-negative, because their counterparts in the LPp execution are
non-negative, and the homomorphism x — [x| preserves non-negativity.

To conclude our analysis we will show that {[z®], [y¥]}L, represents a terminating
execution of the simplex method solving LPr. By the definition of 7', we know that in
iteration 7' the simplex method solving LPy either terminates (because when the objective
function is written in terms of the current basis, every coefficient is non-positive) or it
chooses a variable in the basis and increases its value from 0 to an infinite element of F.
In the former case the simplex method solving LPr also terminates at iteration T" because
its objective function coefficients are non-positive. (The homomorphism x +— [x] preserves
non-positivity.) In the latter case, the simplex method solving LPg terminates in iteration
T because it discovers that the optimum is equal to +o0.

1.2 The simplex method takes exponential time in the worst case

An example due to Klee and Minty illustrates that the simplex method can take exponential
time in the worst case. Consider the linear program

maximize Ty
subject to 0<z <1 (7)

0x; <xipp <1 —dxy forl1<i<n

Here, ¢ is a positive number less than 1/2.

The polyhedron defined by the constraints of this linear program is shaped like an n-
dimensional hypercube with tilted sides, as depicted in [Figure 2| Tt is called a Klee-Minty
cube. There is an execution of the simplex method that visits each of the 2" vertices of
the Klee-Minty cube, starting from (0,0,...,0) and ending at (0,0,...,1). The sequence
of vertices can be defined recursively as follows. The “back face” of the Klee-Minty cube,
where the equation z,, = dx,_; is satisfied, is a copy of the (n — 1)-dimensional Klee-Minty
cube. We run an execution of the simplex method on this (n — 1)-dimensional Klee-Minty
cube, with the modified objective function x,,_;. The equation x, = dx,,_; guarantees that



Figure 2: A Klee-Minty cube in three dimensions

the true objective function increases as the modified objective function increases, which
means that this remains a valid execution of the simplex method on the back face of the
n-dimensional Klee-Minty cube. After reaching the vertex (0,0,...,1,d), we move from the
back face to the front face, where the equation x, = 1 — dx,_; is satisfied, arriving at the
vertex (0,0,...,1,1 —¢). Then we run through the vertices of the front face by reversing
the order in which we visited the corresponding vertices on the back face. As we do this,
ZTn_1 strictly decreases with each pivot; due to the equation x,, = 1 — dx,,_; this means that
x, strictly increases with each pivot, confirming that this is a valid execution of the simplex
algorithm.

2 The Simplex Method and Strong Duality

An important consequence of the correctness and termination of the simplex algorithm is
linear programming duality, which asserts that for every linear program with a maximization
objective, there is a related linear program with a minimization objective whose optimum
matches the optimum of the first LP.

Theorem 4. Consider any pair of linear programs of the form

maximize cTx minimize b™n
subject to Ax =b and subject to AT =c (8)
xz>=0 n>=0

If the optimum of the first linear program is finite, then both linear programs have the same
optimum value.

Proof. Before delving into the formal proof, the following intuition is useful. If a; denotes the

ith row of the matrix A, then the relation Az < b can equivalently be expressed by stating

that a]x < b; for j = 1,...,m. For any m-tuple of non-negative coefficients 7y, ..., 7y, we



can form a weighted sum of these inequalities,

i miajx < Zm: nibi, (9)
j=1 j=1

obtaining an inequality implied by Az < b. Depending on the choice of weights 7y, ..., 7,
the inequality @ may or may not imply an upper bound on the quantity c¢Tx, for all x = 0.
The case in which @D implies an upper bound on ¢Tz is when, for each variable z; (j =
1,...,n), the coefficient of z; on the left side of @D is greater than or equal to the coefficient
of z; in the expression cTz. In other words, the case in which @D implies an upper bound on

cTx for all x > 0 is when
i=1

We can express @ and more succinctly by packaging the coefficients of the weighted
sum into a vector, 1. Then, inequality @ can be rewritten as

nT Az < nTh, (11)
and the criterion expressed by can be rewritten as
nTA = . (12)

The reasoning surrounding inequalities @D and can now be summarized by saying that
for any vector n € R™ satisfying n = 0 and nTA > ¢T, we have

cTe <nTAx < n'b (13)

for all z »= 0 satisfying Az < b. (In hindsight, proving inequality is trivial using the
properties of the vector ordering < and our assumptions about z and 7.)

Applying , we may immediately conclude that the minimum of 17b over all n = 0
satisfying nTA > ¢T, is greater than or equal to the maximum of ¢Tz over all z > 0 satisfying
Ax < b. That is, the optimum of the first LP in is less than or equal to the optimum of
the second LP in , a relation known as weak duality.

To prove that the optima of the two linear programs are equal, as asserted by the theo-
rem, we need to furnish vectors z, n satisfying the constraints of the first and second linear
programs in , respectively, such that ¢Tz = bT. To do so, we will make use of the sim-
plex algorithm and its termination condition. At the moment of termination, the objective
function has been rewritten in a form that has no positive coefficient on any variable. In
other words, the objective function is written in the form v — £Tx — 1Ty for some coefficient
vectors £ € R™ and n € R™ such that £, 7 > 0.

An invariant of the simplex algorithm is that whenever it rewrites the objective function,
it preserves the property that the objective function value matches ¢ for all pairs (x,y) €
R™ x R™ such that Ax + y = b. In other words, we have

VeeR" v—Ex—nT(b— Ax) = cTx. (14)
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Equating the constant terms on the left and right sides, we find that v = n7b. Equating the
cofficient of x; on the left and right sides for all j, we find that nTA = {7 4 ¢ > ¢T. Thus,
the vector n satisfies the constraints of the second LP in ({§]).

Now consider the vector (x,y) which the simplex algorithm outputs at termination. All
the variables having a non-zero coefficient in the expression —(Tx — 1Ty belong to the algo-
rithm’s basis, and hence are set to zero in the solution (z,y). This means that

v=v—E"r—nly=ce

and hence, using the relation v = n7b derived earlier, we have cTx = b™n as desired. O]
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