
Cornell University, Fall 2019 CS 6820: Algorithms
Supplemental lecture notes on flows 23–27 Sep 2019

1 Consequences of the max-flow min-cut theorem

In combinatorics, there are many examples of “min-max theorems” asserting that the mini-
mum of XXX equals that maximum of YYY, where XXX and YYY are two different combinatorially-
defined parameters related to some object such as a graph. Often these min-max theorems
have two other salient properties.

1. It’s straightforward to see that the maximum of YYY is no greater than the minimum
of XXX, but the fact that they are equal is usually far from obvious, and in some cases
quite surprising.

2. The theorem is accompanied by a polynomial-time algorithm to compute the minimum
of XXX or the maximum of YYY.

Most often, these min-max relations can be derived as consequences of the max-flow min-cut
theorem. (Which is, of course, one example of such a relation.) This also explains where the
accompanying polynomial-time algorithm comes from.

There is a related phenomenon that applies to decision problems, where the question is
whether or not an object has some property P, rather than a question about the maximum or
minimum of some parameter. Once again, we find many theorems in combinatorics asserting
that P holds if and only if Q holds, where:

1. It’s straightforward to see that Q is necessary in order for P to hold, but the fact that
Q is also sufficient is far from obvious.

2. The theorem is accompanied by a polynomial-time algorithm to decide whether prop-
erty P holds.

Once again, these necessary and sufficient conditions can often be derived from the max-flow
min-cut theorem

The main purpose of this section is to illustrate five examples of this phenomenon. Before
getting to these applications, it’s worth making a few other remarks.

1. The max-flow min-cut theorem is far from being the only source of such min-max
relations. For example, many of the more sophisticated ones are derived from the
Matroid Intersection Theorem, which is a topic that we will not be discussing this
semester.

2. Another prolific source of min-max relations, namely LP Duality, has already been
discussed informally this semester, and we will be coming to a proof later on. LP

1

duality by itself yields statements about continuous optimization problems, but one
can often derive consequences for discrete problems by applying additional special-
purpose arguments tailored to the problem at hand.

3. The “applications” in these notes belong to mathematics (specifically, combinatorics)
but there are many real-world applications of maximum flow algorithms. See Chap-
ter 7 of Kleinberg & Tardos for applications to airline routing, image segmentation,
determining which baseball teams are still capable of getting into the playoffs, and
many more.

1.1 Preliminaries

The combinatorial applications of max-flow frequently rely on an easy observation about
flow algorithms. The following theorem asserts that essentially everything we’ve said about
network flow problems remains valid if some edges of the graph are allowed to have infinite
capacity. Thus, in the following theorem, we define the term flow network to be a directed
graph G = (V,E) with source and sink vertices s, t and edge capacities (ce)e∈E as before
— including the stipulation that the vertex set V is finite — but we allow edge capacities
c(u, v) to be any non-negative real number or infinity. A flow is defined as before, except
that when c(u, v) =∞ it means that there is no capacity constraint for edge (u, v).

Theorem 1. If G is a flow network containing an s-t path made up of infinite-capacity edges,
then there is no upper bound on the maximum flow value. Otherwise, the maximum flow value
and the minimum cut capacity are finite, and they are equal. Furthermore, any maximum
flow algorithm that specializes the Ford-Fulkerson algorithm (e.g. Edmonds-Karp or Dinic)
remains correct in the presence of infinite-capacity edges, and its worst-case running time
remains the same.

Proof. If P is an s-t path made up of infinite capacity edges, then we can send an unbounded
amount of flow from s to t by simply routing all of the flow along the edges of P . Otherwise,
if S denotes the set of all vertices reachable from s by following a directed path made up of
infinite-capacity edges, then by hypothesis t 6∈ S. So if we set T = V \ S, then (S, T) is an
s-t cut and every edge from S to T has finite capacity. It follows that c(S, T) is finite, and
the maximum flow value is finite.

We now proceed by constructing a different flow problem Ĝ with the same directed graph
structure finite edge capacities ĉe, and arguing that the outcome of running Ford-Fulkerson
doesn’t change when its input is modified from G to Ĝ. The modified edge capacities in Ĝ
are defined by

ĉ(u, v) =

{
c(u, v) if c(u, v) <∞
c(S, T) + 1 if c(u, v) =∞.

If (S ′, T ′) is any cut in Ĝ then either ĉ(S ′, T ′) > ĉ(S, T) = c(S, T), or else ĉ(S ′, T ′) = c(S ′, T ′);
in particular, the latter case holds if (S ′, T ′) is a minimum cut in Ĝ. To see this, observe
that if ĉ(S ′, T ′) ≤ ĉ(S, T) = c(S, T), then for any u ∈ S ′, v ∈ T ′, we have ĉ(u, v) ≤ c(S, T)

2

and this in turn implies that ĉ(u, v) = c(u, v) for all u ∈ S ′, v ∈ T ′, and consequently
ĉ(S ′, T ′) = c(S ′, T ′).

Since Ĝ has finite edge capacities, we already know that any execution of the Ford-
Fulkerson algorithm on input Ĝ will terminate with a flow f whose value is equal to the
minimum cut capacity in Ĝ. As we’ve seen, this is also equal to the minimum cut capacity
in G itself, so the flow must be a maximum flow in G itself. Every execution of Ford-Fulkerson
on Ĝ is also a valid execution on G and vice-versa, which substantiates the final claim about
running times.

1.2 Menger’s Theorem

As a first application, we consider the problem of maximizing the number of disjoint paths
between two vertices s, t in a graph. Menger’s Theorem equates the maximum number of
such paths with the minimum number of edges or vertices that must be deleted from G in
order to separate s from t.

Definition 1. Let G be a graph, either directed or undirected, with distinguished vertices
s, t. Two s − t paths P, P ′ are edge-disjoint if there is no edge that belongs to both paths.
They are vertex-disjoint if there is no vertex that belongs to both paths, other than s and t.
(This notion is sometimes called internally-disjoint.)

Definition 2. Let G be a graph, either directed or undirected, with distinguished vertices
s, t. An s − t edge cut is a set of edges C such that every s − t path contains an edge of
C. An s− t vertex cut is a set of vertices U , disjoint from {s, t}, such that every s− t path
contains a vertex of U .

Theorem 2 (Menger’s Theorem). Let G be a (directed or undirected) graph and let s, t be
two distinct vertices of G. The maximum number of edge-disjoint s − t paths equals the
minimum cardinality of an s− t edge cut, and the maximum number of vertex-disjoint s− t
paths equals the minimum cardinality of an s − t vertex cut. Furthermore the maximum
number of disjoint paths can be computed in polynomial time.

Proof. The theorem actually asserts four min-max relations, depending on whether we work
with directed or undirected graphs and whether we work with edge-disjointness or vertex-
disjointness. In all four cases, it is easy to see that the minimum cut constitutes an upper
bound on the maximum number of disjoint paths, since each path must intersect the cut
in a distinct edge/vertex. In all four cases, we will prove the reverse inequality using the
max-flow min-cut theorem.

To prove the results about edge-disjoint paths, we simply make G into a flow network by
defining c(u, v) = 1 for all directed edges (u, v) ∈ E(G); if G is undirected then we simply set
c(u, v) = c(v, u) = 1 for all (u, v) ∈ E(G). The theorem now follows from two claims: (A) an
integer s− t flow of value k implies the existence of k edge-disjoint s− t paths and vice versa;
(B) a cut of capacity k implies the existence of an s− t edge cut of cardinality k and vice-
versa. To prove (A), we can decompose an integer flow f of value k into a set of edge-disjoint
paths by finding one s − t path consisting of edges (u, v) such that f(u, v) = 1, setting the

3

flow on those edges to zero, and iterating on the remaining flow; the transformation from
k disjoint paths to a flow of value k is even more straightforward. To prove (B), from an
s − t edge cut C of cardinality k we get an s − t cut of capacity k by defining S to be all
the vertices reachable from s without crossing C; the reverse transformation is even more
straightforward.

To prove the results about vertex-disjoint paths, the transformation uses some small “gad-
gets”. Every vertex v in G is transformed into a pair of vertices vin, vout, with c(vin, vout) = 1
and c(vout, vin) = 0. Every edge (u, v) in G is transformed into an edge from uout to vin with
infinite capacity. In the undirected case we also create an edge of infinite capacity from vout
to uin. Now we solve max-flow with source sout and sink tin. As before, we need to establish
two claims: (A) an integer sout− tin flow of value k implies the existence of k vertex-disjoint
s− t paths and vice versa; (B) a cut of capacity k implies the existence of an sout− tin vertex
cut of cardinality k and vice-versa. Claim (A) is established exactly as above. Claim (B) is
established by first noticing that in any finite-capacity cut, the only edges crossing the cut
must be of the form (vin, vout); the set of all such v then constitutes the s− t vertex cut.

1.3 The König-Egervary Theorem

Recall that a matching in a graph is a collection of edges such that each vertex belongs to at
most one edge. A vertex cover of a graph is a vertex set A such that every edge has at least
one endpoint in A. Clearly the cardinality of a maximum matching cannot be greater than
the cardinality of a minimum vertex cover. (Every edge of the matching contains a distinct
element of the vertex cover.) The König-Egervary Theorem asserts that in bipartite graphs,
these two parameters are always equal.

Theorem 3 (König-Egervary). If G is a bipartite graph, the cardinality of a maximum
matching in G equals the cardinality of a minimum vertex cover in G.

Proof. The proof technique illustrates a very typical way of using network flow algorithms:
we make a bipartite graph into a flow network by attaching a “super-source” to one side and
a “super-sink” to the other side. Specifically, if G is our bipartite graph, with two vertex
sets X, Y , and edge set E, then we define a flow network Ĝ = (X ∪ Y ∪ {s, t}, c, s, t) where
the following edge capacities are nonzero, and all other edge capacities are zero:

c(s, x) = 1 for all x ∈ X
c(y, t) = 1 for all y ∈ Y

c(x, y) =∞ for all (x, y) ∈ E

For any integer flow in this network, the amount of flow on any edge is either 0 or 1. The
set of edges (x, y) such that x ∈ X, y ∈ Y, f(x, y) = 1 constitutes a matching in G whose
cardinality is equal to |f |. Conversely, any matching in G gives rise to a flow in the obvious
way. Thus the maximum flow value equals the maximum matching cardinality.

If (S, T) is any finite-capacity s − t cut in this network, let A = (X ∩ T) ∪ (Y ∩ S).
The set A is a vertex cover in G, since an edge (x, y) ∈ E with no endpoint in A would
imply that x ∈ S, y ∈ T, c(x, y) =∞ contradicting the finiteness of c(S, T). The capacity of

4

the cut is equal to the number of edges from s to T plus the number of edges from S to t
(no other edges from S to T exist, since they would have infinite capacity), and this sum is
clearly equal to |A|. Conversely, a vertex cover A gives rise to an s − t cut via the reverse
transformation, and the cut capacity is |A|.

1.4 Hall’s Theorem

Theorem 4. Let G be a bipartite graph with vertex sets X, Y and edge set E. Assume
|X| = |Y |. For any W ⊆ X, let Γ(W) denote the set of all y ∈ Y such that (w, y) ∈ E for at
least one w ∈ W . In order for G to contain a perfect matching, it is necessary and sufficient
that each W ⊆ X satisfies |Γ(W)| ≥ |W |.

Proof. The stated condition is clearly necessary. To prove it is sufficient, assume that
|Γ(W)| ≥ |W | for all W . Transform G into a flow network Ĝ as in the proof of the König-
Egervary Theorem. If there is a integer flow of value |X| in Ĝ, then the edges (x, y) such that
x ∈ X, y ∈ Y, f(x, y) = 1 constitute a perfect matching in G and we are done. Otherwise,
there is a cut (S, T) of capacity k < n. We know that

|X ∩ T |+ |Y ∩ S| = k < n = |X ∩ T |+ |X ∩ S|

from which it follows that |Y ∩ S| < |X ∩ S|. Let W = X ∩ S. The set Γ(W) is contained
in Y ∩ S, as otherwise there would be an infinite-capacity edge crossing from S to T . Thus,
|Γ(W)| ≤ |Y ∩S| < |W |, and we verified that when a perfect matching does not exist, there
is a set W violating Hall’s criterion.

1.5 Dilworth’s Theorem

In a directed acyclic graph G, let us say that a pair of vertices v, w are incomparable if there
is no path passing through both v and w, and define an antichain to be a set of pairwise
incomparable vertices.

Theorem 5. In any finite directed acyclic graph G, the maximum cardinality of an antichain
equals the minimum number of paths required to cover the vertex set of G.

The proof is much trickier than the others. Before presenting it, it is helpful to introduce
a directed graph G∗ called the transitive closure of G. This has same vertex set V , and its
edge set E∗ consists of all ordered pairs (v, w) such that v 6= w and there exists a path in
G from v to w. Some basic facts about the transitive closure are detailed in the following
lemma.

Lemma 6. If G is a directed acyclic graph, then its transitive closure G∗ is also acyclic. A
vertex set A constitutes an independent set in G∗ (i.e. no edge in E∗ has both endpoints in
S) if and only if A is an antichain in G. A sequence of vertices v0, v1, . . . , vk constitutes a
path in G∗ if and only if it is a subsequence of a path in G. For all k, G∗ can be partitioned
into k or fewer paths if and only if G can be covered by k or fewer paths.

5

Proof. The equivalence of antichains in G and independent sets in G∗ is a direct consequence
of the definitions. If v0, . . . , vk is a directed walk in G∗ — i.e., a sequence of vertices such
that (vi−1, vi) is an edge for each i = 1, . . . , k — then there exist paths Pi from vi−1 to vi
in G, for each i. The concatenation of these paths is a directed walk in G, which must be
a simple path (no repeated vertices) since G is acyclic. This establishes that v0, . . . , vk is
a subsequence of a path in G, as claimed, and it also establishes that v0 6= vk, hence G∗

contains no directed cycles, as claimed. Finally, if G∗ is partitioned into k paths then we
may apply this construction to each of them, obtaining k paths that cover G. Conversely,
given k paths P1, . . . , Pk that cover G, then G∗ can be partitioned into paths P ∗1 , . . . , P

∗
k

where P ∗i is the subsequence of Pi consisting of all vertices that do not belong to the union
of P1, . . . , Pi−1.

Using these facts about the transitive closure, we may now prove Dilworth’s Theorem.

Proof of Theorem 5. Define a flow network Ĝ = (W, c, s, t) as follows. The vertex set W
contains two special vertices s, t as well as two vertices xv, yv for every vertex v ∈ V (G). The
following edge capacities are nonzero, and all other edge capacities are zero.

c(s, xv) = 1 for all v ∈ V
c(xv, yw) =∞ for all (v, w) ∈ E∗

c(yw, t) = 1 for all w ∈ V
For any integer flow in the network, the amount of flow on any edge is either 0 or 1. Let
F denote the set of edges (v, w) ∈ E∗ such that f(xv, yw) = 1. The capacity and flow
conservation constraints enforce some degree constraints on F : every vertex of G∗ has at
most one incoming edge and at most one outgoing edge in F . In other words, F is a union
of disjoint paths and cycles. However, since G∗ is acyclic, F is simply a union of disjoint
paths in G∗. In fact, if a vertex doesn’t belong to any edge in F , we will describe it as a
path of length 0 and in this way we can regard F as a partition of the vertices of G∗ into
paths. Conversely, every partition of the vertices of G∗ into paths translates into a flow in
Ĝ in the obvious way: for every edge (v, w) belonging to one of the paths in the partition,
send one unit of flow on each of the edges (s, xv), (xv, yw), (yw, t).

The value of f equals the number of edges in F . Since F is a disjoint union of paths,
and the number of vertices in a path always exceeds the number of edges by 1, we know that
n = |F |+ p(F). Thus, if the maximum flow value in Ĝ equals k, then the minimum number
of paths in a path-partition of G∗ equals n − k, and Lemma 6 shows that this is also the
minimum number of paths in a path-covering of G. By max-flow min-cut, we also know that
the minimum cut capacity in Ĝ equals k, so to finish the proof, we must show that an s− t
cut of capacity k in Ĝ implies an antichain in G — or equivalently (again using Lemma 6)
an independent set in G∗ — of cardinality n− k.

Let S, T be an s− t cut of capacity k in Ĝ. Define a set of vertices A in G∗ by specifying
that v ∈ A if xv ∈ S and yvinT . If a vertex v does not belong to A then at least one of
the edges (s, xv) or (yv, t) crosses from S to T , and hence there are at most k such vertices.
Thus |A| ≥ n−k. Furthermore, there is no edge in G∗ between elements of A: if (v, w) were
any such edge, then (v, w′) would be an infinite-capacity edge of Ĝ crossing from S to T .
Hence there is no path in G between any two elements of A, i.e. A is an antichain.

6

2 The Push-Relabel Algorithm

In this section we present an algorithm to compute a maximum flow in O(n3) time. Un-
like the algorithms presented in earlier lectures, this one is not based on augmenting paths.
Augmenting-path algorithms maintain a feasible flow at all times and terminate when the
residual graph has no s − t path. The push-relabel algorithm maintains the invariant that
the residual graph contains no s − t path, and it terminates when it has found a feasible
flow. The state of the algorithm before terminating is described by a more general structure
called a preflow.

Definition 3. A preflow in a flow network G = (V,E, c, s, t) is a function f : V 2 → R that
satisfies

1. skew-symmetry: f(u, v) = −f(v, u) for all u, v ∈ V

2. semi-conservation:
∑

u∈V f(u, v) ≥ 0 for all v 6= s

3. capacity: f(u, v) ≤ c(u, v) for all u, v ∈ V .

The non-negative quantity x(v) =
∑

u∈V f(u, v) is called the excess of v with respect to f .

Note that a preflow is a flow if and only if every vertex except s and t has zero excess.
The preflow-push algorithm works by always pushing flow away from vertices with positive
excess. This is done using an operation Push(v, w) that pushes enough flow on edge (v, w)
to either saturate the edge or remove all of the excess at v. The former case is called a
saturating push, the latter is a push.

Push(v, w):
δ ← min{x(v), r(v, w)}
f(v, w)← f(v, w) + δ
f(w, v)← f(w, v)− δ

Note that the quantity δ in the Push operation is carefully chosen to ensure that if f is
a preflow before performing Push(v, w) then it remains a preflow afterward. This is because
x(v) decreases by δ, hence it cannot become negative, and f(v, w) increases by δ, hence it
cannot exceed f(v, w) + r(v, w) = c(v, w).

To keep track of where and when to push flow in the network, and to ensure that flow is
going toward the sink, the algorithm makes use a height function taking non-negative integer
values. The height function will satisfy the following invariants.

1. boundary conditions: h(s) = n, h(t) = 0;

2. steepness condition: for all edges (v, w) in the residual graph Gf , h(v) ≤ h(w) + 1.

The following two lemmas underscore the importance of the height function invariants.

Lemma 7. If f is a flow, h is a height function satisfying the steepness condition, and
v0, v1, . . . , vk is a path in the residual graph Gf , then h(v0) ≤ h(vk) + k.

7

Proof. The proof is by induction on k. When k = 0 the lemma holds vacuously. For
k > 0, the induction hypothesis and the steepness condition imply h(v0) ≤ h(v1) + 1 ≤
h(vk) + (k − 1) + 1, and the lemma follows.

Lemma 8. If f is a flow and h is a height function satisfying the boundary and steepness
conditions, then f is a maximum flow.

Proof. To prove that f is a maximum flow it suffices to prove that Gf has no path from s
to t. Since Gf has only n vertices, every simple path v0, . . . , vk in Gf satisfies k ≤ n− 1 and
hence, by Lemma 7, h(v0) ≤ h(vk) + n − 1. The boundary condition now implies that the
endpoints of the path cannot by s and t.

The following algorithm, known as the push-relabel algorithm, computes a maximum
flow by maintaining a preflow f and height function h satisfying the boundary and steepness
conditions. The flow f is modified by a sequence of Push operations, and the height function
h is modified by a sequence of Relabel operations, each of which increments the height
of a vertex to enable future push operations without risking a violation of the steepness
condition. (To see why Push(v, w) may risk violating the steepness condition, note that it
may introduce a new edge (w, v) into the residual graph. Hence, Push(v, w) should only be
applied when h(v) ≥ h(w)− 1.)

Algorithm 1 Push-Relabel Algorithm

Initialize h(s) = n and h(v) = 0 for all v 6= s.

Initialize f(u, v) =

c(u, v) if u = s

−c(v, u) if v = s

0 otherwise.

Initialize x(s) = 0 and x(v) = c(s, v) for all v 6= s.
while there exists v such that x(v) > 0 do

Pick v of maximum height among the vertices with x(v) > 0.
if there exists w such that r(v, w) > 0 and h(v) > h(w) then

Push(v, w)
else

h(v)← h(v) + 1
end if

end while
return f

By design, the algorithm maintains the invariants that f is a preflow and h satisfies the
boundary and steepness conditions. Hence, if it terminates, by Lemma 8 it must return
a maximum flow. The remainder of the analysis is devoted to proving termination and
bounding the running time. Our first task will be to bound the heights of vertices with
positive excess.

Lemma 9. If f is a preflow and v is a vertex with x(v) > 0, then Gf contains a path from
v to s.

8

Proof. Let A denote the set of all u such that Gf contains a path from u to s, and let
B = V \ A. Note that Gf contains no edges from B to A. We have∑

v∈B

x(v) =
∑
v∈B

∑
u∈V

f(u, v)

=
∑
v∈B

∑
u∈A

f(u, v) (All other terms cancel, by skew-symmetry.)

=
∑
v∈B

∑
u∈A

−f(v, u)

≤
∑
v∈B

∑
u∈A

r(v, u) = 0,

which shows that the sum of excesses of the vertices in B is non-positive. Since s 6∈ B and s
is the only vertex that has negative excess, it follows that every vertex in B has zero excess.
In other words, all of the vertices with positive excess belong to A, QED.

Lemma 10. If f is a preflow and h is a height function satisfying the boundary and steepness
conditions, then h(v) ≤ 2n− 1 for all v such that x(v) > 0.

Proof. This follows directly from Lemmas 7 and 9 and the fact that h(s) = n.

It’s time to start bounding the number of operations the algorithm performs.

Relabelings. Since the graph has n vertices and the height of each one never exceeds 2n,
the number of relabel operations is bounded by 2n2.

Saturating pushes. Each time a saturating push occurs on edge (v, w), it is removed
from Gf . Also, note that Push(v, w) is only executed if h(v) > h(w). In order for (v, w)
to reappear as an edge of Gf , it must regain positive residual capacity through application
of the operation Push(w, v). However, in order for Push(w, v) to take place, it must be
the case that the height of w increased to exceed that of v, meaning that w was relabeled
at least twice. Since w is relabeled at most 2n times in total, we conclude that edge (v, w)
experiences at most n saturating pushes. Summing over all m edges of the graph and their
reversals, the algorithm performs at most 2mn saturating pushes.

Non-saturating pushes. This is the hardest part of the analysis. To bound non-saturating
pushes we define

H = max{h(v) | x(v) > 0}

and divide the algorithm’s execution into phases during which H is constant. In other words,
each time the value of H changes, a phase ends and the next phase begins. Now, since H can
only increase when a relabel operation takes place, the total amount by which H increases is
bounded by 2n2. The H starts at 0 and is always non-negative, the total amount by which
H decreases is also at most 2n2. Hence, the number of phases is bounded by 4n2. During
a phase, we claim that each vertex experiences at most one non-saturating push. Indeed,

9

during a phase we only perform Push(v, w) if h(v) = H and x(v) > 0. If the operation is
a non-saturating push then x(v) = 0 afterward, and the only way for v to acquire positive
excess is if some other operation Push(u, v) is later performed. However, for Push(u, v) to
be performed we would need to have h(u) = H+1, implying that the next phase has already
begun. Thus, during a phase there can be at most one non-saturating push per node, or n
non-saturating pushes in total. As there are at most 4n2 phases, there can be at most 4n3

non-saturating pushes.

10

	Consequences of the max-flow min-cut theorem
	Preliminaries
	Menger's Theorem
	The König-Egervary Theorem
	Hall's Theorem
	Dilworth's Theorem

	The Push-Relabel Algorithm

