The Design
and Analysis
of Algorithms

Dexter C. Kozen

With 72 lllustrations

Springer-Verlag
New York Berlin Heidelberg London Paris
Tokyo Hong Kong Barcelona Budapest




Dexter C. Kozen
Department of Computer Science
Cornell University

Series Editor:
David Gries
Department of Computer Science

Upson Hall Cornell University

Ithaca, NY 14853-7501 Upson Hall

USA ithaca, NY 14853-7501
USA

Library of Congress Cataloging-in-Publication Data
Kozen, Dexter, 1951- __
The design and analysis of algorithms / Dexter C, Kozen.
p. cm.
Includes bibliographical references and index.
ISBN 0-387-97687-6
1. Computer algorithms. 1. Title.
QA76.9.A43K69 1991
005,1—dc20 91-38759

Printed on acid-free paper.

© 1992 Springer-Verlag New York, Inc.

Al rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New
York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or here-

after developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this pubilication,
even if the former are not especially identified, is not to be taken as a sign that such names,
as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used

freely by anyone.

Production managed by Bill Imbornoni; manufacturing supervised by Jacqui Ashri.
Photocomposed from a LaTeX file.

Printed and bound by R.R. Donnelley & Sons, Inc., Harrisonburg, VA.

Printed in the United States of America.

987654321

ISBN 0-387-97687-6 Springer-Veriag New York Berlin Heidelberg
ISBN 3-540-97687-6 Springer-Verlag Berlin Heidelberg New York



Lecture 16 Max Flow

Suppose we are given a tuple G = (V,¢, s,t), where V is a set of vertices,
s,t € V are distinguished vertices called the source and sink respectively, and
¢ is a function ¢ : V2 — R, assigning a nonnegative real capacity to each pair
of vertices. We make G into a directed graph by defining the set of directed
edges

E = {(u,v)]|c(u,v) >0} .

Intuitively, we can think of the edges as wires or pipes along which electric
current or fluid can flow; the capacity c(e) represents the carrying capacity of
the wire or pipe, say in amps or gallons per minute. The maz flow problem
is to determine the maximum possible flow that can be pushed from s to {,
and to find a routing that achieves this maximum. The following definition is
intended to capture the intuitive idea of a flow.

Definition 16.1 A function f : V2 — R is called a flow if the following three
conditions are satisfied:

(a) skew symmetry: for all u,v € V,
flu,v) = —f(v,u);

(b) conservation of flow at interior vertices: for all vertices u not in {s,t},

S f(u,v) = 0

veV

84



LECTURE 16 Max Frow 85

(c) capacity constraints: f < ¢ pointwise: 7. e., for all u, v,
flu,v) < cfu,v) .
We say that (u,v) is saturated if f(u,v) = c(u,v). O

If we think of edges (u,v) for which f(u,v) > 0 as carrying flow out of u,
and edges (u, v) for which f(u,v) < 0 (or equivalently by (a), f(v,u) > 0) as
carrying flow into u, then condition (b) says that the total flow out of any
interior vertex is equal to the total flow into that vertex, or in other words,
the net flow (total flow out minus total flow in) at any interior vertex is 0.

It follows from (a) that f(u,u) = 0 for any vertex u.

Figure 1 illustrates a graph with capacities ¢ (ordinary typeface) and a
flow f on that graph (italic). Edges not shown have a capacity of 0 and a flow
that is the negative of the flow in the opposite direction; e.g., ¢(u, s) = 0 and
f(u,s) = —4. If neither an edge nor its opposite is shown (e.g. (s,t)), then
the capacities and flows in both directions are 0.

Figure 1

Definition 16.2 An s, t-cut (or just cut, when s,¢ are understood) is a pair
A, B of disjoint subsets of V whose union is V such that s € A, t € B. The
capacity of the cut A, B, denoted c(A4, B), is

c(4,B) = > c(u,v),

u€A, veB

i.e., the total capacity of the edges from A to B. If f is a flow, we define the
flow across the cut A, B to be

f(AB) = 3 fluv).
ucA, veB

]

Note that by condition (a) of Definition 16.1, f(A, B) gives the net flow across
the cut from A to B; that is, the sum of the positive flow values on edges from
A to B minus the sum of the positive flow values on edges from B to A.



86 LECTURE 16 MaAX FLOW

Definition 16.3 The value of a flow f, denoted |f|, is defined to be

1fl = f{shV —{s})
> f(s,0),

veV

or in other words the net flow out of s. 0

In the example of Figure 1, |f| = 6.

Although Definition 16.3 defines the value of the flow f with respect to
the cut {s},V — {s}, the flow value will be the same no matter where it is
measured:

Lemma 16.4 For any s,t-cut A, B and flow f,

Proof. Induction on the cardinality of 4, using condition (b) of Definition
16.1. O

In particular,

f{shv—{s}) = F(V—-{th{th,

which says that the net flow out of s equals the net flow into ¢.
The flow across any cut surely cannot exceed the capacity of the cut. This
is expressed in the following lemma:

Lemma 16.5 For any s,t-cut A, B and flow f,
Ifl < c(4,B).
Proof. Lemma 16.4 and condition (c). O

The main result of this lecture will be the Maz Flow-Min Cut Theorem, which
states that the minimum cut capacity is achieved by some flow; i.e., the in-
equality in Lemma 16.5 is an equality for some cut A, B and some flow f*.
The flow f* necessarily has maximum value among all flows on G by Lemma,
16.5, and is called a maz flow. The flow f* is not unique, but its value is.

16.1 Residual Capacity

Definition 16.6 Given a flow f on G with capacities ¢, we define the restdual
capacity function r . V2 = R to be the pointwise difference

r = c¢c—f.

The residual graph associated with G = (V, E, ¢) and flow f is the graph
Gf = (V, Ef,T’), where

E; = {(u,v) ]| r(u, v) > 0} .



LECTURE 16 Max FLow 87

The residual capacity r(u,v) represents the amount of additional flow that
could be pushed along the edge (u, v) without violating the capacity constraint
(c) of Definition 16.1. In case the flow f(u,v) is negative, this “additional
flow” could involve backing off the positive flow from v to u. For example, if
c(u,v) =8 and f(u,v) = 6, and (v, u) & G so that ¢(v, u) = 0, then r(u, v) = 2
and r(v,u) = c(v,u) — f(v,u) = 0—(—6) = 6. The residual graph for the flow
in Figure 1 is given in Figure 2 below.

Note that the residual graph Gy can have an edge where there was none
in G. However, Gy has no edges (u,v) where neither (u,v) nor (v,u) were
present in G, so |Ey| < 2 |E|.

Intuitively, the formation of the residual graph translates the problem by
making f the new origin (zero flow). Solving the residual flow problem is
tantamount to solving the original flow problem; a solution to the residual
flow problem can be added to f to obtain a solution to the original problem.
This observation is formalized in the following lemma.

Lemma 16.7 Let f be a flow in G, and let G; be its residual graph.

(a) The function f' is a flow in Gy iff f + f' is a flow in G.

(b) The function f' is a maz flow in Gy if f + f' is a maz flow in G.

(c) The value function is additive; i.e., |f + f'| = |f| + |f'| and |f — f'| =
£l =1f].

(d) If f is any flow and f* a maz flow in G, then the value of a maz flow
in Gy is | f*| — |f].

Proof.

(a) Since f is a flow, it satisfies skew symmetry (f(u,v) = — f(v,v)) and
conservation at interior vertices (3, f(u,v) = 0). Thus f’ satisfies these
properties iff f + f' does. To show that the capacity constraints are
satisfied, recall that the capacities of G are given by r = ¢ — f, where
c is the capacity function of G. Then

ff<r iff f'<c—f
if f+f<ec.
(b) This follows directly from (a).
(c) By the definition of flow value,
If£F1 = 2(f(s,0) £ f'(s,0))
= D f(5,9)£ 3 f(s,0)

= |fl£1f1.
(d) This follows directly from (b) and (c).



88 LECTURE 16 MAx FLow

16.2 Augmenting Paths

Definition 16.8 Given G and flow f on G, An augmenting path is a directed
path from s to ¢ in the residual graph Gy. m]

An augmenting path represents a sequence of edges on which the capacity
exceeds the flow, 7.e., on which the flow can be increased. As observed above,
on some edges this “increase” may actually involve decreasing a positive flow
in the opposite direction.

Figure 2 illustrates the residual graph associated with the flow in the ex-
ample of Figure 1 and an augmenting path. The minimum capacity of any
edge in this path is 2, so the flow can be increased on these edges by 2, result-
ing in a new flow in the original graph with value 2 greater than that of |f].
Note that the “increase” on (u,v) is essentially a decrease of a positive flow
on (v, u).

Figure 2

We are now ready to state and prove the main theorem of this lecture:

Theorem 16.9 (Max Flow-Min Cut Theorem [34]) The following
three statements are equivalent:

(a) f is a maz flow in G = (V, E,c);
(b) there is an s,t-cut A, B with c¢(A, B) = |f|;

(c) there does not exist an augmenting path.

Proof.

(b) — (a) This is immediate from Lemma 16.5.

(a) — (c) Suppose there is an augmenting path ug, U1, ..., U, With s = ug
and t = u,. Let

d = min{r(u;,uis1)|0<i<n} > 0.

The quantity d is the smallest residual capacity along the augmenting path
and is called the bottleneck capacity. An edge along the augmenting path with
that capacity is called a bottleneck edge. Define the following flow g in the
residual graph Gy:

glui,uip1) = d, 0<i<m
g(uit1, i) —-d, 0<i<n
g(u,v) = 0, for all other pairs (u,v).



LECTURE 16 MaAX FLow 89

Then g is a flow in G4 with value d. By Lemma 16.7, f + g is a flow in G and
1 +9l = If]+1gl = If] + d.

(c) — (b) Assume there is no augmenting path. Let A consist of all vertices
reachable from s by paths in the residual graph. Let B =V — A. There are
no edges in the residual graph from A to B; thus in G, all edges from A
to B are saturated, i.e. f(u,v) = c(u,v). It follows from Lemma 16.4 that
o(4,B) = |fl. 0



Lecture 17 More on Max Flow

The Max Flow-Min Cut Theorem gives an algorithm for finding a flow with
maximum value in a given network as long as the capacities are rational num-
bers. This algorithm was first published in 1956 by Ford and Fulkerson (34].

The algorithm works as follows. We begin with the zero flow, then repeat-
edly find an augmenting path p and push d additional units of flow along p
from s to t, where d > 0 is the bottleneck capacity of p (minimum edge capac-
ity along p). We continue until it is no longer possible to find an augmenting
path, i.e. until the residual graph has no path from s to t. We know at that
point by the Max Flow-Min Cut Theorem that we have a max flow.

If the edge capacities are integers, this algorithm increases the flow value
by at least 1 with each augmentation, hence achieves a maximum flow after
at most |f*| augmentations. Moreover, each augmentation increases the flow
by an integral amount, so |f*| is an integer. Unfortunately, |f*| can be
exponential in the representation of the problem, and the algorithm can run
for this long if the augmenting paths are not chosen with some care.

Example 17.1 The following diagram illustrates the first few augmentations
in a flow problem with large capacities. The residual graphs are shown on
the left-hand side and the augmenting paths on the right. This sequence of

augmentations will take 2!°! steps to converge to a max flow, which has value
9101

90



LECTURE 17 MORE ON Max Frow 91

2100 _ 2100

2100 2100 -1 2100
1 2100 7/
s 1 t
-1 UA’: ~1

O

In fact, if the capacities are irrational, the process of repeated augmenta-
tion along indiscriminately chosen augmenting paths may not produce a max
flow after a finite time, as the following example shows.

Example 17.2 Let r be the positive root of the quadratic z2 + z — 1:

—1
= —+—~\/5 ~ .618...
2
Then r? = 1 — r, and more generally, r**? = r* — r"*+1 for any n > 0. Also,
since0 <r<1,

1 >r > > 8 > ... 5 0.
Note
— -3
r+2 = = r.

Consider the following flow network:

1 R )

s ' r t
2




92 LECTURE 17 MORE ON MaAx FLow

The three horizontal interior edges (call them the flumes) have the capacities
shown, and all other edges have capacity r + 2. The max flow value is 1 +
r + r? = 2, since this is the minimum cut capacity obtained by cutting the
flumes; any other cut has capacity at least r + 2 > 2.

Suppose that in the first augmenting step, we push one unit of flow directly
from s to t along the top flume. This leaves residual capacities of 0, r, and r°
on the flumes.

Now we perform the following loop, which after n iterations will result in
the flumes having residual capacities 0, r"*!, and r"*? in some order: choose
the flume with minimum nonzero residual capacity, say d, and push d units
of flow from s forward along that flume, back through the saturated flume,
and then forward through the remaining flume to t. Suppose that we start
with residual capacities 0, 7", and r"*! on the flumes. The minimum nonzero
residual capacity is r**1, and the new residual capacities will be r**!, r* —
rtl — pn+2 and 0, respectively. The situation is the same as before, only
rotated. |

The loop can be repeated indefinitely, leaving ever higher powers of r on
the flumes. We always have sufficient residual capacity on the non-flumes.
The residual capacities tend to 0, so the flow value tends to the maximum
flow value 2.

With irrational capacities, the sequence of augmentations need not even
converge to the maximum flow value. An example of this behavior can be
obtained from the graph above by adding an edge (s,t) of weight 1. The
same infinite sequence of augmentations converges to a flow of value 2, but
the maximum flow value is 3. O

17.1 Edmonds and Karp’s First Heuristic

Edmonds and Karp [30] suggested two heuristics to improve this situation.
The first is the following:

Always augment by a path of maximum bottleneck capacity.

Definition 17.3 A path flowin G is a flow f that takes nonzero values only
on some simple path from s to t. In other words, there exist a number d and

a simple path uo, uy, . .., ux With s = uo, t = ux, and such that
flup,uip)) = d, 0<i<k-—1
flup,u) = —d, 0<i<k—1

f(u,v) = 0, for all other (u,v).

O

Lemma 17.4 Any flow in G can be expressed as a sum of at most m path
flows in G and a flow in G of value 0, where m is the number of edges of G.



LECTURE 17 MORE oN MaAx FrLow 93

Proof. Let f be a flow in G. If |f| = 0, we are done. Otherwise, assume
|| > O (the argument for |f| < 0 is symmetric, interchanging the roles of s
and t). Define a new capacity function ¢'(e) = max{f(e),0} and let G’ be the
graph with these capacities. Then f is still a flow in G’, and since ¢ < ¢, any
flow in G’ is also a flow in G. By the Max Flow-Min Cut Theorem, the null
flow in G’ must have an augmenting path, which is a path from s to ¢ with
positive capacities; by construction of G’, every edge on this path is saturated
by f. Take p to be the path flow on that path whose value is the bottleneck
capacity. Then the two flows p and f — p are both flows in G’, and at least
one edge on the path (the bottleneck edge) is saturated by p.

Now we repeat the process with f — p to get ¢’ < ¢ and G”, and so on.
Note that G” has strictly fewer edges than G', since at least the bottleneck
edge of p has disappeared. This process can therefore be repeated at most m
times before the flow value vanishes. The original f is then the sum of the
remaining flow of value 0 and the path flows found in each step. O

We now consider the complexity of maximum-capacity augmentation.

Theorem 17.5 If the edge capacities are integers, then the heuristic of aug-
mentation by augmenting paths of mazimum bottleneck capacity results in a
mazimum flow f* in at most O(mlog|f*|) augmenting steps.

Proof. By Lemma 17.4, f* is a sum of at most m path flows and a flow
of value 0, therefore one of the path flows must be of value | f*|/m or greater.
An augmenting path of maximum bottleneck capacity must have at least this
capacity. Augmenting by such a path therefore increases the flow value by at
least |f*|/m, so by Lemma 16.7(d) of the previous lecture, the max flow in
the residual graph has value at most |f*| — |f*|/m = | f*|(==1). Thus after
k augmenting steps, the max flow in the residual graph has value at most
| £*|(2=1)*. Hence the number of augmenting steps required to achieve a max
flow is no more than the least number k such that

w1
—)" < 1.
=)
Using the estimate
1
logm —log(m —1) = @(E) , (24)

we obtain k = ©(mlog|f*|). The estimate (24

lim (1 — 4} —

n—oo n

follows from the limit

D | -

O

Finding a maximum capacity augmenting path can be done efficiently using
a modification of Dijkstra’s algorithm (Homework 5).

*



94 LECTURE 17 MORE ON MaAx FLow

17.2 Edmonds and Karp’s Second Heuristic

The method described above is still less than completely satisfactory, since the
complexity depends on the capacities. It would be nice to have an algorithm
whose asymptotic worst-case complexity is a small polynomial in m and n
alone.

The following algorithm produces a max flow in time independent of the
edge capacities. This algorithm is also due to Edmonds and Karp [30]. It uses
the following heuristic to achieve an O(m?n) running time:

Always choose an augmenting path of minimum length.

Definition 17.6 The level graph L¢ of G is the directed breadth-first search
graph of G with root s with sideways and back edges deleted. The level of a
vertex u is the length of a shortest path from s to u in G. N O

Note that the level graph has no edges from level i to level j for j > i+ 2.
This says that any shortest path from s to any other vertex is a path in the
level graph. Any path with either a back or sideways edge of the breadth-first
search graph would be strictly longer, since it must contain at least one edge
per level anyway.

Lemma 17.7 (a) Let p be an augmenting path of minimum length in G,
let G' be the residual graph obtained by augmenting along p, and let q
be an augmenting path of minimum length in G'. Then |q| > |p|. Thus
the length of shortest augmenting paths cannot decrease by applying the
above heuristic.

(b) We can augment along shortest paths of the same length at most m = |E|
times before the length of the shortest augmenting path must increase
strictly.

Proof. Choose any path p from s to ¢ in the level graph and augment along
p by the bottleneck capacity. After this augmentation, at least one edge of
p will be saturated (the bottleneck edge) and will disappear in the residual
graph, and at most |p| new edges will appear in the residual graph.;All these
new edges are back edges and cannot contribute to a shortest path from s to
t as long as t is still reachable from s in the level graph.; We continue finding
paths in the level graph and augmenting by them as long as t is reachable from
s. This can occur at most m times, since each time an edge in the level graph
disappears. When t is no longer reachable from s in the level graph, then any

augmenting path must use a back or side edge, hence must be strictly longer.
O

This gives rise to the following algorithm:



LECTURE 17 MORE ON MaAx FLow 95

Algorithm 17.8 (Edmonds and Karp [30]) Find the level graph L.
Repeatedly augment along paths in Lg, updating residual capacities and
deleting edges with zero capacity until ¢ is no longer reachable from s.
Then calculate a new level graph from the residual graph at that point
and repeat. Continue as long as ¢t is reachable from s.

With each level graph calculation, the distance from s to t increases by at
least 1 by Lemma 17.7(a), so there are at most n level graph calculations. For
each level graph calculation, there are at most m augmentations by Lemma
17.7(b). Thus there are at most mn augmentations in all. Each augmentation
requires time O(m) by DFS or BFS, or O(m?®n) in all. It takes time O(m)
to calculate the level graphs by BFS, or O(mn) time in all. Therefore the
running time of the entire algorithm is O(m?n).



Lecture 18 Still More on Max Flow

18.1 Dinic’s Algorithm

We follow Tarjan’s presentation [100]. In the Edmonds-Karp algorithm, we
continue to augment by path flows along paths in the level graph L¢g until
every path from s to ¢t in Lg contains at least one saturated edge. The flow at
that point is called a blocking flow. The following modification, which improves
the running time to O(mn?), was given by Dinic in 1970 [29]. Rather than
constructing a blocking flow path by path, the algorithm constructs a blocking
flow all at once by finding a maximal set of minimum-length augmenting pa.ths
Each such construction is called a phase.

The following algorithm describes one phase. As in Edmonds-Karp, there
are at most n phases, because with each phase the minimum distance from s
to ¢ in the residual graph increases by at least one. We traverse the level graph
from source to sink in a depth-first fashion, advancing whenever possible and
keeping track of the path from s to the current vertex. If we get all the way
to t, we have found an augmenting path, and we augment by that path. If
we get to a vertex with no outgoing edges, we delete that vertex (there is no
path to ¢ through it) and retreat.

In the following, v denotes the vertex currently being visited and p is a
path from s to w.

96



LECTURE 18 STILL MORE ON Max FLow 97

Algorithm 18.1 (Dinic [29])

Initialize. Construct a new level graph Lg. Set u := s and p := [s]. Go
to Advance.

Advance. If there is no edge out of u, go to Retreat. Otherwise, let
(u,v) be such an edge. Set p :=p-[v] and u := v. If v # ¢ then go
to Advance. If v =t then go to Augment.

Retreat. If u = s then halt. Otherwise, delete u and all adjacent edges
from L¢ and remove u from the end of p. Set u := the last vertex
on p. Go to Advance.

Augment. Let A be the bottleneck capacity along p. Augment by the
path flow along p of value A, adjusting residual capacities along p.
Delete newly saturated edges. Set u := the last vertex on the path
p reachable from s along unsaturated edges of p; that is, the start
vertex of the first newly saturated edge on p. Set p := the portion
of p up to and including u. Go to Advance.

We now discuss the complexity of these operations.

Initialize. This is executed only once per phase and takes O(m) time using
BFS.

Advance. There are at most 2mn advances in each phase, because there
can be at most n advances before an augment or retreat, and there are at
most m augments and m retreats. Each advance takes constant time, so the
total time for all advances is O(mn).

Retreat. There are at most n retreats in each phase, because at least one
vertex is deleted in each retreat. Each retreat takes O(1) time plus the time
to delete edges, which in all is O(m); thus the time taken by all retreats in a
phase is O(m + n).

Augment. There are at most m augments in each phase, because at least
one edge is deleted each time. Each augment takes O(n) time, or O(mn) time
in all.

Each phase then requires O(mn) time. Because there are at most n phases,
the total running time is O(mn?).

18.2 The MPM Algorithm

The following algorithm given by Malhotra, Pramodh-Kumar, and Mahesh-
wari in 1978 [77] produces a max flow in O(n®) time. The overall structure is



98 LECTURE 18 STILL MORE ON MAx FLow

similar to the Edmonds-Karp or Dinic algorithms. Blocking flows are found
for level graphs of increasing depth. The algorithm’s superior time bound is
due a faster (O(n?)) method for producing a blocking flow.

For this algorithm, we need to consider the capacity of a vertex as opposed
to the capacity of an edge. Intuitively, the capacity of a vertex is the maximum
amount of commodity that can be pushed through that vertex.

Definition 18.2 The capacity c(v) of a vertex v is the minimum of the total
capacity of its incoming edges and the total capacity of its outgoing edges:

c(v) = min{)_ c(u,v), Y c(v,u)}.

ueV uev
0

This definition applies as well to residual capacities obtained by subtracting
a nonzero flow.

The MPM algorithm proceeds in phases. In each phase, the residual graph
is computed for the current flow, and the level graph L is computed. If ¢ does
not appear in L, we are done. Otherwise, all vertices not on a path from s to
t in the level graph are deleted.

Now we repeat the following steps until a blocking flow is achieved:



LECTURE 18 STIiLL MORE ON MAXx FLow 99

1. Find a vertex v of minimum capacity d according to Definition
18.2. If d = 0, do step 2. If d # 0, do step 3.

2. Delete v and all incident edges and update the capacities of the
neighboring vertices. Go to 1.

3. Push d units of flow from v to the sink and pull d units of flow
from the source to v to increase the flow through v by d. This is
done as follows:

Push to sink. The outgoing edges of v are saturated in order,
leaving at most one partially saturated edge. All edges that
become saturated during this process are deleted. This pro-
cess is then repeated on each vertex that received flow during
the saturation of the edges out of v, and so on all the way to
t. It is always possible to push all d units of flow all the way
to t, since every vertex has capacity at least d.

Pull from source. The incoming edges of v are saturated in or-
der, leaving at most one partially saturated edge. All edges
that become saturated by this process are deleted. This pro-
cess is then repeated on each vertex from which flow was taken
during the saturation of the edges into v, and so on all the
way back to s. It is always possible to pull all d units of flow
all the way back to s, since every vertex has capacity at least
d.

Either all incoming edges of v or all outgoing edges of v are satu-
rated and hence deleted, so v and all its remaining incident edges
can be deleted from the level graph, and the capacities of the neigh-
bors updated. Go to 1.

It takes O(m) time to compute the residual graph for the current flow
and level graph using BFS. Using Fibonacci heaps, it takes O(nlogn) time
amortized over all iterations of the loop to find and delete a vertex of minimum
capacity. It takes O(m) time over all iterations of the loop to delete all the
fully saturated edges, since we spend O(1) time for each such edge. It takes
O(n®) time over all iterations of the loop to do the partial saturations, because
it is done at most once in step 3 at each vertex for each choice of v in step 1.

Note that when we delete edges, we must decrement the capacities of
neighboring vertices; this is done using the decrement facility of Fibonacci
heaps.

The loop thus achieves a blocking flow in O(n?) time. As before, at most
n blocking flows have to be computed, because the distance from s to ¢ in the
level graph increases by at least one each time. This gives an overall worst-case
time bound of O(n?).

The max flow problem is still an active topic of research. Although O(n?)



100 LECTURE 18 STILL MORE ON MaAx FLow

remains the best known time bound for general graphs, new approaches to the
max flow problem and better time bounds for sparse graphs have appeared
more recently [38, 98, 4, 41, 95, 37].

18.3 Applications of Max Flow
Bipartite Matching

Definition 18.3 A matching M of a graph G is a subset of edges such that no
two edges in M share a vertex. We denote the size of M by |M|. A mazimum
matching is one of maximum size. O

We can use any max flow algorithm to produce a maximum matching in
a bipartite graph G = (U, V, E) as follows. Add a new source vertex s and a
new sink vertex t, connect s to every vertex in U, and connect every vertex
in V to t. Assign every edge capacity 1. The edges from U to V used by a
maximum integral flow give a maximum matching.

Minimum Connectivity

Let G = (V, E) be a connected undirected graph. What is the least number
of edges we need to remove in order to disconnect G? This is known as the
minimum connectivity problem.

The minimum connectivity problem can be solved by solving n — 1 max
flow problems. Replace each undirected edge with two directed edges, one in
each direction. Assign capacity 1 to each edge. Let s be a fixed vertex in V'
and let ¢ range over all other vertices. Find the max flow for each value of t,
and take the minimum over all choices of t. This also gives a minimum cut,
which gives a solution to the minimum connectivity problem.



