
Design and Analysis of Algorithms Lecture Notes on Convex Optimization
CS 6820, Fall 2016 21 Nov – 2 Dec 2016

Let D be a convex subset of Rn. A function f : D → R is convex if it satisfies

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for all x, y ∈ Rn and 0 ≤ t ≤ 1. An equivalent (but not obviously equivalent) definition is that f is
convex if and only if for every x in the relative interior of D there is a lower bounding linear function of
the form

`x(y) = f(x) + (∇xf)ᵀ(y − x)

such that f(y) ≥ `x(y) for all y ∈ D. The vector ∇xf ∈ Rn is called a subgradient of f at x. It need
not be unique, but it is unique almost everywhere, and it equals the gradient of f at points where the
gradient is well-defined. The lower bounding linear function `x can be interpreted as the function whose
graph constitutes the tangent hyperplane to the graph of f at the point (x, f(x)).

The constrained convex optimization problem is to find a point x ∈ D at which f(x) is minimized
(or approximately minimized). Unconstrained convex optimization is the case when D = Rn. The
coordinates of the optimal point x need not, in general, be rational numbers, so it is unclear what it means
to output an exactly optimal point x. Instead, we will focus on algorithms for ε-approximate convex
optimization, meaning that the algorithm must output a point x̃ such that f(x̃) ≤ ε + minx∈D{f(x)}.
We will assume that we are given an oracle for evaluating f(x) and ∇xf at any x ∈ D, and we will
express the running times of algorithms in terms of the number of calls to these oracles.

The following definition spells out some properties of convex functions that govern the efficiency of
algorithms for minimizing them.

Definition 0.1. Let f : D → R be a convex function.

1. f is L-Lipschitz if
|f(y)− f(x)| ≤ L · ‖y − x‖ ∀x, y ∈ D.

2. f is α-strongly convex if

f(y) ≥ `x(y) + 1
2α‖y − x‖

2 ∀x, y ∈ D.

Equivalently, f is α-strongly convex if f(x)− 1
2α‖x‖

2 is a convex function of x.

3. f is β-smooth if
f(y) ≤ `x(y) + 1

2β‖y − x‖
2 ∀x, y ∈ D.

Equivalently, f is β-smooth if its gradient is β-Lipschitz, i.e. if

‖∇xf −∇yf‖ ≤ β‖x− y‖ ∀x, y ∈ D.

4. f has condition number κ if it is α-strongly convex and β-smooth where β/α ≤ κ.

The quintessential example of an α-strongly convex function is f(x) = xᵀAx when A is a symmetric
positive definite matrix whose eigenvalues are all greater than or equal to 1

2α. (Exercise: prove that
any such function is α-strongly convex.) When f(x) = xᵀAx, the condition number of f is also equal
to the condition number of A, i.e. the ratio between the maximum and minimum eigenvalues of A. In
geometric terms, when κ is close to 1, it means that the level sets of f are nearly round, while if κ is
large it means that the level sets of f may be quite elongated.

The quintessential example of a function that is convex, but is neither strongly convex nor linear, is
f(x) = (aᵀx)+ = max{aᵀx, 0}, where a is any nonzero vector in Rn. This function satisfies ∇xf = 0
when aᵀx < 0 and ∇xf = a when aᵀx > 0.

1 Gradient descent for Lipschitz convex functions

If we make no assumption about f other than that it is L-Lipschitz, there is a simple but slow algorithm
for unconstrained convex minimization that computes a sequence of points, each obtained from the
preceding one by subtracting a fixed scalar multiple of the gradient.

Algorithm 1 Gradient descent with fixed step size
Parameters: Starting point x0 ∈ Rn, step size γ > 0, number of iterations T ∈ N.

1: for t = 0, . . . , T − 1 do
2: xt+1 = xt − γ∇xtf
3: end for
4: Output x̃ = arg min{f(x0), . . . , f(xT)}.

Let x∗ denote a point in Rn at which f is minimized. The analysis of the algorithm will show that if
‖x∗ − x0‖ ≤ D then gradient descent (Algorithm 3) with γ = ε/L2 succeeds in T = L2D2/ε2 iterations.
The key parameter in the analysis is the squared distance ‖xt − x∗‖2. The following lemma does most
of the work, by showing that this parameter must decrease if f(xt) is sufficiently far from f(x∗).

Lemma 1.1. ‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − 2γ(f(xt)− f(x∗)) + γ2L2.

Proof. Letting x = xt we have

‖xt+1 − x∗‖2 = ‖x− x∗ − γ∇xf‖2

= ‖x− x∗‖2 − 2γ(∇xf)ᵀ(x− x∗) + γ2‖∇xf‖2

= ‖x− x∗‖2 − 2γ [`x(x)− `x(x∗)] + γ2‖∇xf‖2

≤ ‖x− x∗‖2 − 2γ(f(x)− f(x∗)) + γ2‖∇xf‖2.

The proof concludes by observing that the L-Lipschitz property of f implies ‖∇xf‖ ≤ L.

Let Φ(t) = ‖xt − x∗‖2. When γ = ε/L2, the lemma implies that whenever f(xt) > f(x∗) + ε, we have

Φ(t)− Φ(t+ 1) > 2γε− γ2L2 = ε2/L2. (1)

Since Φ(0) ≤ D and Φ(t) ≥ 0 for all t, the equation (1) cannot be satisfied for all 0 ≤ t ≤ L2D2/ε2.
Hence, if we run gradient descent for T = L2D2/ε2 iterations, it succeeds in finding a point x̃ such that
f(x̃) ≤ f(x∗) + ε.

2 Gradient descent for smooth convex functions

If f is β-smooth, then we can obtain an improved convergence bound for gradient descent with step
size γ = 1/β. The analysis of the algorithm will show that O(1/ε) iterations suffice to find a point x̃
where f(x̃) ≤ f(x∗) + ε, improving the O(1/ε2) iteration bound for convex functions that are Lipschitz
but not necessarily smooth. The material in this section is drawn from Bubeck, Convex Optimization:
Algorithms and Complexity, in Foundations and Trends in Machine Learning, Vol. 8 (2015).

A first observation which justifies the choice of step size γ = 1/β is that with this step size, under the
constraint that f is β-smooth, gradient descent is guaranteed to make progress.

Lemma 2.1. If f is convex and β-smooth and y = x− 1
β (∇xf) then

f(y) ≤ f(x)− 1

2β
‖∇xf‖2. (2)

Proof. Using the definition of β-smoothness and the formula for y,

f(y) ≤ f(x) + (∇xf)ᵀ
(
− 1

β
∇xf

)
+

1

2
β

∥∥∥∥ 1

β
(∇xf)

∥∥∥∥2 = f(x)− 1

2β
‖∇xf‖2. (3)

as claimed.

The next lemma shows that if f is β-smooth and ∇x and ∇y are sufficiently different, the lower bound
f(y) ≥ `x(y) can be significantly strengthened.

Lemma 2.2. If f is convex and β-smooth, then for any x, y ∈ Rn we have

f(y) ≥ `x(y) +
1

2β
‖∇xf −∇yf‖2. (4)

Proof. Let z = y − 1
β (∇yf −∇xf). Then

f(z) ≥ `x(z) = f(x) + (∇xf)ᵀ(z − x) (5)

f(z) ≤ `y(z) +
1

2
β‖y − z‖2 = f(y) + (∇yf)ᵀ(z − y) +

1

2
β‖y − z‖2 (6)

and, combining (5) with (6), we have

f(y) ≥ f(x) + (∇xf)ᵀ(z − x) + (∇yf)ᵀ(y − z)− 1

2
β‖y − z‖2 (7)

= f(x) + (∇xf)ᵀ(y − x) + (∇yf −∇xf)ᵀ(y − z)− 1

2
β‖y − z‖2 (8)

= `x(y) +
1

2β
‖∇yf −∇xf‖2, (9)

where the last line follows from the equation y − z = 1
β (∇yf −∇xf).

Remark 2.3. Lemma 2.2 furnishes a proof that when f is convex and β-smooth, its gradient satisfies
the β-Lipschitz inequality

‖∇xf −∇yf‖ ≤ β‖x− y‖ ∀x, y ∈ D, (10)

as claimed in Definition 0.1. The converse, i.e. the fact that β-smoothness follows from property (10),
is an easy consequence of the mean value theorem and is left as an exercise.

Lemma 2.2 implies the following corollary, which says that an iteration of gradient descent with step
size γ = 1/β cannot increase the distance from the optimum point, x∗, when the objective function is
convex and β-smooth.

Lemma 2.4. If y = x− 1
β (∇xf) then ‖y − x∗‖ ≤ ‖x− x∗‖.

Proof. Applying Lemma 2.2 twice and expanding the formulae for `x(y) and `y(x), we obtain

f(y) ≥ f(x) + (∇x)ᵀ(y − x) +
1

2β
‖∇xf −∇yf‖2

f(x) ≥ f(y) + (∇y)ᵀ(x− y) +
1

2β
‖∇xf −∇yf‖2

Summing and rearranging terms, we derive

(∇xf −∇yf)ᵀ(x− y) ≥ 1

β
‖∇xf −∇yf‖2. (11)

Now expand the expression for the squared distance from y to x∗.

‖y − x∗‖2 =
∥∥∥x− x∗ − 1

β (∇xf)
∥∥∥2

= ‖x− x∗‖2 − 2

β
(∇xf)ᵀ(x− x∗) +

1

β2
‖∇xf‖2

= ‖x− x∗‖2 − 2

β
(∇xf −∇x∗f)ᵀ(x− x∗) +

1

β2
‖∇xf‖2

≤ ‖x− x∗‖2 − 2

β2
‖∇xf −∇x∗f‖2 +

1

β2
‖∇xf‖2

= ‖x− x∗‖2 − 1

β2
‖∇xf‖2,

which confirms that ‖y − x∗‖ ≤ ‖x− x∗‖.

To analyze gradient descent using the preceding lemmas, define δt = f(xt)− f(x∗). Lemma 2.1 implies

δt+1 ≤ δt −
1

2β
‖∇xtf‖2. (12)

Convexity of f also implies

δt ≤ (∇xtf)ᵀ(xt − x∗)
≤ ‖∇xtf‖ · ‖xt − x∗‖
≤ ‖∇xtf‖ ·D

δt
D ≤ ‖∇xtf‖ (13)

where D ≥ ‖x1 − x∗‖, and the third line follows from Lemma 2.4. Combining (12) with (13) yields

δt+1 ≤ δt −
δ2t

2βD2

1

δt
≤ 1

δt+1
− δt
δt+1

· 1

2βD2

δt
δt+1

· 1

2βD2
≤ 1

δt+1
− 1

δt
1

2βD2
≤ 1

δt+1
− 1

δt

where the last line used the inequality δt+1 ≤ δt (Lemma 2.1).

We may conclude that
1

δT
≥ 1

δ0
+

T

2βD2
≥ T

2βD2

from which it follows that δT ≤ 2βD2/T , hence T = 2βD2ε−1 iterations suffice to ensure that δT ≤ ε,
as claimed.

3 Gradient descent for smooth, strongly convex functions

The material in this section is drawn from Boyd and Vandenberghe, Convex Optimization, published
by Cambridge University Press and available for free download (with the publisher’s permission) at
http://www.stanford.edu/~boyd/cvxbook/.

We will assume that f is α-strongly convex and β-smooth, with condition number κ = β/α. Rather
than assuming an upper bound on the distance between the starting point x0 and x∗, as in the preceding
section, we will merely assume that f(x0)− f(x∗) ≤ B for some upper bound B.

We will analyze an algorithm which, in each iteration, moves in the direction of −∇f(x) until it reaches
the point on the ray {x− t∇f(x) | t ≥ 0} where the function f is (exactly or approximately) minimized.
This one-dimensional minimization problem is called line search and can be efficiently accomplished by
binary search on the parameter t. The advantage of gradient descent combined with line search is that
it is able to take large steps when the value of f is far from its minimum, and we will see that this is a
tremendous advantage in terms of the number of iterations.

Algorithm 2 Gradient descent with line search
1: repeat
2: ∆x = −∇xf .
3: Choose t ≥ 0 so as to minimize f(x+ t∆x).
4: x← x+ t∆x.
5: until ‖∇xf‖ ≤ 2εα

To see why the stopping condition makes sense, observe that strong convexity implies

`x(x∗)− f(x∗) ≤ −α
2 ‖x− x

∗‖2

f(x)− f(x∗) ≤ (∇xf)T (x− x∗)− α
2 ‖x− x

∗‖2

≤ max
t∈R

{
‖∇xf‖t− α

2 t
2
}

≤ ‖∇xf‖2
2α . (14)

The last line follows from basic calculus. The stopping condition ‖∇xf‖2 ≤ 2εα thus ensures that
f(x)− f(x∗) ≤ ε as desired.

To bound the number of iterations, we show that f(x)− f(x∗) decreases by a prescribed multiplicative
factor in each iteration. First observe that for any t,

f(x+ t∆x)− `x(x+ t∆x) ≤ β

2
‖t∆x‖2 =

β

2
‖∇f(x)‖2t2

f(x+ t∆x)− f(x∗) ≤ `x(x+ t∆x)− f(x∗) +
β

2
‖∇f(x)‖2t2

= f(x)− f(x∗) +∇f(x)ᵀ(t∆x) +
β

2
‖∇f(x)‖2t2

= f(x)− f(x∗)− ‖∇f(x)‖2t+
β

2
‖∇f(x)‖2t2

The right side can be made as small as f(x) − f(x∗) − ‖∇f(x)‖
2

2β by setting t = ‖∇f(x)‖
β . Our algorithm

sets t to minimize the left side, hence

f(x+ t∆x)− f(x∗) ≤ f(x)− f(x∗)− ‖∇f(x)‖2

2β
. (15)

Recalling from inequality (14) that ‖∇f(x)‖2 ≥ 2α(f(x)− f(x∗)), we see that inequality (15) implies

f(x+ t∆x)− f(x∗) ≤ f(x)− f(x∗)− α

β
[f(x)− f(x∗)] =

(
1− 1

κ

)
[f(x)− f(x∗)]. (16)

This inequality shows that the difference f(x) − f(x∗) shrinks by a factor of 1 − 1
κ , or better, in each

iteration. Thus, after no more than log1−1/κ(ε/B) iterations, we reach a point where f(x)− f(x∗) ≤ ε,
as was our goal. The expression log1−1/κ(ε/B) is somewhat hard to parse, but we can bound it from
above by a simpler expression, by using the inequality ln(1− x) ≤ −x.

log1−1/κ(ε/B) =
ln(ε/B)

ln(1− α/β)
=

ln(B/ε)

− ln(1− α/β)
≤ κ ln

(
B

ε

)
.

The key things to notice about this upper bound are that it is logarithmic in 1/ε—as opposed to the
algorithm from the previous lecture whose number of iterations was quadratic in 1/ε—and that the
number of iterations depends linearly on the condition number. Thus, the method is very fast when the
Hessian of the convex function is not too ill-conditioned; for example when κ is a constant the number
of iterations is merely logarithmic in 1/ε.

Another thing to point out is that our bound on the number of iterations has no dependence on the
dimension, n. Thus, the method is suitable even for very high-dimensional problems, as long as the high
dimensionality doesn’t lead to an excessively large condition number.

4 Constrained convex optimization

In this section we analyze algorithms for constrained convex optimization, when D ⊂ Rn. This introduces
a new issue that gradient-descent algorithms must deal with: if an iteration starts at a point xt which is
close to the boundary of D, one step in the direction of the gradient might lead to a point yt outside of
D, in which case the algorithm must somehow find its way back inside. The most obvious way of doing
this is to move back to the closest point of D. We will analyze this algorithm in §?? below. The other
way to avoid this problem is to avoid stepping outside D in the first place. This idea is put to use in
the conditional gradient descent algorithm, also known as the Franke-Wolfe algorithm. We analyze this
algorithm in §?? below.

4.1 Projected gradient descent

Define the projection of a point y ∈ Rn onto a closed, convex set D ⊆ Rn to be the point of D closest
to y,

ΠD(y) = arg min{‖x− y‖ : x ∈ D}.

Note that this point is always unique: if x 6= x′ both belong to D, then their midpoint 1
2(x + x′) is

strictly closer to y than at least one of x, x′. A useful lemma is the following, which says that moving
from y to ΠD(y) entails simultaneously moving closer to every point of D.

Lemma 4.1. For all y ∈ Rn and x ∈ D,

‖ΠD(y)− x‖ ≤ ‖y − x‖.

Proof. Let z = ΠD(y). We have

‖y − x‖2 = ‖(y − z) + (z − x)‖2 = ‖y − z‖2 + 2(y − z)ᵀ(z − x) + ‖z − x‖2 ≥ 2(y − z)ᵀ(z − x) + ‖z − x‖2.

The lemma asserts that ‖y − x‖2 ≥ ‖z − x‖2, so it suffices to prove that (y − z)ᵀ(z − x) ≥ 0. Assume
to the contrary that (y − z)ᵀ(x − z) > 0. This means that the triangle formed by x, y, z has an acute
angle at z. Consequently, the point on line segment xz nearest to y cannot be z. This contradicts the
fact that the entire line segment is contained in D, and z is the point of D nearest to y.

We are now ready to define and analyze the project gradient descent algorithm. It is the same as the
fixed-step-size gradient descent algorithm (Algorithm 3) with the sole modification that after taking a
gradient step, it applies the operator ΠD to get back inside D if necessary.

Algorithm 3 Projected gradient descent
Parameters: Starting point x0 ∈ D, step size γ > 0, number of iterations T ∈ N.

1: for t = 0, . . . , T − 1 do
2: xt+1 = ΠD(xt − γ∇xtf)
3: end for
4: Output x̃ = arg min{f(x0), . . . , f(xT)}.

There are two issues with this approach.

1. Computing the operator ΠD may be a challenging problem in itself. It involves minimizing the
convex quadratic function ‖x−yt‖2 over D. There are various reasons why this may be easier than
minimizing f . For example, the function ‖x− yt‖2 is smooth and strongly convex with condition
number κ = 1, which is about as well-behaved as a convex objective function could possibly be.
Also, the domain D might have a shape which permits the operation ΠD to be computed by a
greedy algorithm or something even simpler. This happens, for example, when D is a sphere
or a rectangular box. However, in many applications of projected gradient descent the step of
computing ΠD is actually the most computationally burdensome step.

2. Even ignoring the cost of applying ΠD, we need to be sure that it doesn’t counteract the progress
made in moving from xt to xt − γ∇xtf . Lemma 4.1 works in our favor here, as long as we are
using ‖xt − x∗‖ as our measure of progress, as we did in §1.

For the sake of completeness, we include here the analysis of projected gradient descent, although it is a
repeat of the analysis from §1 with one additional step inserted in which we apply Lemma 4.1 to assert
that the projection step doesn’t increase the distance from x∗.

Lemma 4.2. ‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − 2γ(f(xt)− f(x∗)) + γ2L2.

Proof. Letting x = xt we have

‖xt+1 − x∗‖2 = ‖ΠD(x− γ∇xf)− x∗‖2

≤ ‖(x− γ∇xf)− x∗‖2(By Lemma 4.1)

= ‖x− x∗ − γ∇xf‖2

= ‖x− x∗‖2 − 2γ(∇xf)ᵀ(x− x∗) + γ2‖∇xf‖2

= ‖x− x∗‖2 − 2γ [`x(x)− `x(x∗)] + γ2‖∇xf‖2

≤ ‖x− x∗‖2 − 2γ(f(x)− f(x∗)) + γ2‖∇xf‖2.

The proof concludes by observing that the L-Lipschitz property of f implies ‖∇xf‖ ≤ L.

The rest of the analysis of projected gradient descent is exactly the same as th analysis of gradient
descent in §1; it shows that when f is L-Lipschitz, if we set γ = ε/L2 and run T ≥ L2D2ε−2 iterations,
the algorithm finds a point x̃ such that f(x̃) ≤ f(x) + ε.

4.2 Conditional gradient descent

In the conditional gradient descent algorithm, introduced by Franke and Wolfe in 1956, rather than
taking a step in the direction of −∇xf , we globally minimize the linear function (∇xf)ᵀy over D, then
take a small step in the direction of the minimizer. This has a number of advantages relative to projected
gradient descent.

1. Since we are taking a step from one point of D towards another point of D, we never leave D.

2. Minimizing a linear function over D is typically easier (computationally) than minimizing a
quadratic function of D, which is what we need to do when computing the operation ΠD in
projected gradient descent.

3. When moving towards the global minimizer of (∇xf)ᵀy, rather than moving parallel to −∇xf , we
can take a longer step without hitting the boundary of D. The longer steps will tend to reduce
the number of iterations required for finding a near-optimal point.

Algorithm 4 Conditional gradient descent
Parameters: Starting point x0 ∈ D, step size sequence γ1, γ2, . . ., number of iterations T ∈ N.

1: for t = 0, . . . , T − 1 do
2: yt = arg miny∈D{(∇xtf)ᵀ y}
3: xt+1 = γtyt + (1− γt)xt
4: end for
5: Output x̃ = arg min{f(x0), . . . , f(xT)}.

We will analyze the algorithm when f is β-smooth and γt = 2
t+1 for all t.

Theorem 4.3. If D is an upper bound on the distance between any two points of D, and f is β-smooth,
then the sequence of points computed by conditional gradient descent satisfies

f(xt)− f(x∗) ≤ 2βR2

t+ 1

for all t ≥ 2.

Proof. We have

f(xt+1)− f(xt) ≤ (∇xtf)ᵀ (xt+1 − xt) + 1
2β‖xt+1 − xt‖2β-smoothness

≤ γt (∇xtf)ᵀ (yt − xt) + 1
2βγ

2
tR

2def’n of xt+1

≤ γt (∇xtf)ᵀ (x∗ − xt) + 1
2βγ

2
tR

2def’n of yt
≤ γt(f(x∗)− f(xt)) + 1

2βγ
2
tR

2convexity.

Letting δt = f(xt)− f(x∗), we can rearrange this inequality to

δt+1 ≤ (1− γt)δt + 1
2βγ

2
tR

2.

When t = 1 we have γt = 1, hence this inequality specializes to δ2 ≤ 1
2βR

2. Solving the recurrence for
t > 1 with initial condition δ2 ≤ β

2R
2, we obtain δt ≤ 2βR2

t+1 as claimed.

