Cornell University, Fall 2010 CS 6820: Algorithms
Lecture notes: Combinatorial applications of max-flow September 15, 2010

1 Introduction

In combinatorics, there are many examples “min-max theorems” asserting that the minimum of
XXX equals that maximum of YYY, where XXX and YYY are two different combinatorially-defined
parameters related to some object such as a graph. Often these min-max theorems have two
other salient properties.

1. It’s straightforward to see that the maximum of YYY is no greater than the minimum of
XXX, but the fact that they are equal is usually far from obvious, and in some cases quite
surprising.

2. The theorem is accompanied by a polynomial-time algorithm to compute the minimum of
XXX or the maximum of YYY.

Most often, these min-max relations can be derived as consequences of the max-flow min-cut
theorem. (Which is, of course, one example of such a relation.) This also explains where the
accompanying polynomial-time algorithm comes from.

There is a related phenomenon that applies to decision problems, where the question is
whether or not an object has some property P, rather than a question about the maximum or
minimum of some parameter. Once again, we find many theorems in combinatorics asserting
that P holds if and only if Q holds, where:

1. It’s straightforward to see that Q is necessary in order for P to hold, but the fact that Q is
also sufficient is far from obvious.

2. The theorem is accompanied by a polynomial-time algorithm to decide whether property
P holds.

Once again, these necessary and sufficient conditions can often be derived from the max-flow
min-cut theorem

The main purpose of these notes is to illustrate five examples of this phenomenon. Before
getting to these applications, it’s worth making a few other remarks.

1. The max-flow min-cut theorem is far from being the only source of such min-max relations.
For example, many of the more sophisticated ones are derived from the Matroid Intersection
Theorem, which is a topic that may come up later in the semester.

2. Another prolific source of min-max relations, namely LP Duality, will be discussed later in
the semester. LP duality by itself yields statements about continuous optimization prob-
lems, but one can often derive consequences for discrete problems by applying additional
special-purpose arguments tailored to the problem at hand.

3. The “applications” in these notes belong to mathematics (specifically, combinatorics) but
there are many real-world applications of maximum flow algorithms. See Chapter 7 of
Kleinberg & Tardos for applications to airline routing, image segmentation, determining
which baseball teams are still capable of getting into the playoffs, and many more.

2 Preliminaries

The combinatorial applications of max-flow frequently rely on two additional easy observations
about the flow algorithms we’ve discussed, such as Edmonds-Karp and Dinic.

The first theorem asserts that essentially everything we’ve said about network flow problems
remains valid if some edges of the graph are allowed to have infinite capacity. Thus, in the
following theorem, we define the term flow network to be a 4-tuple G = (V, ¢, s,t) as before —
including the stipulation that the vertex set V is finite — but we allow edge capacities ¢(u,v)
to be any non-negative real number or infinity. A flow is defined as before, except that when
c(u,v) = 0o it means that there is no capacity constraint for edge (u,v).

Theorem 1. If G = (V,¢,s,t) is a flow network containing an s — t path made up of infinite-
capacity edges, then there is no upper bound on the mazimum flow value. Otherwise, the maxi-
mum flow value and the minimum cut capacity are finite, and they are equal. Furthermore, any
mazximum flow algorithm that specializes the Ford-Fulkerson algorithm (e.g. Edmonds-Karp or
Dinic) remains correct in the presence of infinite-capacity edges, and its worst-case running time
remains the same.

Proof. If P is an s —t path made up of infinite capacity edges, then we can send an unbounded
among of flow from s to ¢ by simply routing all of the flow along the edges of P. Otherwise,
if A denotes the set of all vertices reachable from s by following a directed path made up on
infinite-capacity edges, then by hypothesis t ¢ A. So if we set B = V \ A, then (A, B) is an
s-t cut and every edge from A to B has finite capacity. It follows that ¢(A, B) is finite, and the
maximum flow value is finite.

We now proceed by constructing a different flow problem G = (V,é,s,t) with finite edge
capacities, and arguing that the outcome of running Ford-Fulkerson doesn’t change when its
input is modified from G to G. The modified edge capacities in G are defined by

o, v) = {c(u,v) if c(u,v) < o0
7 c¢(A,B)+1 if c(u,v) = 0.

If (A’, B') is any cut in G then either ¢(A’, B') > é(A, B) = ¢(A, B), or else ¢(A', B') = ¢(A', B');
in particular, the latter case holds if (A’, B’) is a minimum cut in G. To see this, observe that if
¢(A,B") < ¢(A,B) = ¢(A, B), then for any u € A’ v € B’, we have ¢(u,v) < ¢(A, B) and this in
turn implies that ¢(u,v) = ¢(u,v) for all w € A';v € B’, and consequently ¢(A’, B") = ¢(A’, B').
Since G has finite edge capacities, we already know that any execution of the Ford-Fulkerson
algorithm on input G will terminate with a flow f whose value is equal to the minimum cut
capacity in G. As we've seen, this is also equal to the minimum cut capacity in G itself, so the
flow must be a maximum flow in G itself. Every execution of Ford-Fulkerson on G is also a valid

execution on G and vice-versa, which substantiates the final claim about running times. O

Theorem 2 (Flow integrality). If G = (V, ¢, s,t) is a flow network whose edge capacities belong
to NU {oo} and if the mazimum flow value in G is finite, then there exists an integer-valued
mazximum flow, i.e. one such that f(u,v) € N for every edge (u,v).

Proof. Assume that edge capacities belong to NU {oc}. In any execution of the Ford-Fulkerson
algorithm, at the end of any iteration of the main loop, the flow values f(u,v) and the residual
capacities r(u, v) will be integers. This is easily proven by induction on the number of iterations of
the main loop. In particular, this property holds when the algorithm terminates, thus establishing
the theorem. O]

3 Menger’s Theorem

As a first application, we consider the problem of maximizing the number of disjoint paths
between two vertices s,t in a graph. Menger’s Theorem equates the maximum number of such
paths with the minimum number of edges or vertices that must be deleted from G in order to
separate s from t.

Definition 1. Let G be a graph, either directed or undirected, with distinguished vertices s, t.
Two s —t paths P, P" are edge-disjoint if there is no edge that belongs to both paths. They are
vertex-disjoint if there is no vertex that belongs to both paths, other than s and ¢. (This notion
is sometimes called internally-disjoint.)

Definition 2. Let G be a graph, either directed or undirected, with distinguished vertices s, t.
An s —t edge cut is a set of edges C' such that every s —t path contains an edge of C. An s —¢
vertex cut is a set of vertices U, disjoint from {s,t}, such that every s —t path contains a vertex
of U.

Theorem 3 (Menger’s Theorem). Let G be a (directed or undirected) graph and let st be two
distinct vertices of GG. The mazimum number of edge-disjoint s — t paths equals the minimum
cardinality of an s — t edge cut, and the maximum number of vertex-disjoint s — t paths equals
the minimum cardinality of an s — t vertex cut. Furthermore the mazimum number of disjoint
paths can be computed in polynomial time.

Proof. The theorem actually asserts four min-max relations, depending on whether we work with
directed or undirected graphs and whether we work with edge-disjointness or vertex-disjointness.
In all four cases, it is easy to see that the minimum cut constitutes an upper bound on the max-
imum number of disjoint paths, since each path must intersect the cut in a distinct edge/vertex.
In all four cases, we will prove the reverse inequality using the max-flow min-cut theorem.

To prove the results about edge-disjoint paths, we simply make G into a flow network by
defining ¢(u,v) = 1 for all directed edges (u,v) € E(G); if G is undirected then we simply set
c(u,v) = c(v,u) =1 for all (u,v) € E(G). The theorem now follows from two claims: (A) an
integer s — t flow of value k£ implies the existence of k edge-disjoint s — ¢ paths and vice versa;
(B) a cut of capacity k implies the existence of an s —t edge cut of cardinality k and vice-versa.
To prove (A), we can decompose an integer flow f of value k into a set of edge-disjoint paths by
finding one s — ¢ path consisting of edges (u,v) such that f(u,v) = 1, setting the flow on those
edges to zero, and iterating on the remaining flow; the transformation from £ disjoint paths to a
flow of value k is even more straightforward. To prove (B), from an s—t edge cut C' of cardinality
k we get an s — t cut of capacity k by defining A to be all the vertices reachable from s without
crossing C'; the reverse transformation is even more straightforward.

To prove the results about vertex-disjoint paths, the transformation uses some small “gad-
gets”. Every vertex v in G is transformed into a pair of vertices vi,, Uout, With ¢(vin, vous) = 1 and
¢(Vout, Vin) = 0. Every edge (u,v) in G is transformed into an edge from uoy to vy, with infinite
capacity. In the undirected case we also create an edge of infinite capacity from vy, to uy,. Now
we solve max-flow with source so,; and sink t;,. As before, we need to establish two claims: (A)
an integer Squt — tin flow of value k£ implies the existence of k£ vertex-disjoint s — ¢ paths and vice
versa; (B) a cut of capacity k implies the existence of an s, — t;, vertex cut of cardinality & and
vice-versa. Claim (A) is established exactly as above. Claim (B) is established by first noticing
that in any finite-capacity cut, the only edges crossing the cut must be of the form (vin, Vout);
the set of all such v then constitutes the s — ¢ vertex cut. O]

4 The Konig-Egervary Theorem

Recall that a matching in a graph is a collection of edges such that each vertex belongs to at
most one edge. A wvertex cover of a graph is a vertex set S such that every edge has at least
one endpoint in S. Clearly the cardinality of a maximum matching cannot be greater than the
cardinality of a minimum vertex cover. (Every edge of the matching contains a distinct element
of the vertex cover.) The Konig-Egervary Theorem asserts that in bipartite graphs, these two
parameters are always equal.

Theorem 4 (Konig-Egervary). If G is a bipartite graph, the cardinality of a mazimum matching
i G equals the cardinality of a minimum vertex cover in G.

Proof. The proof technique illustrates a very typical way of using network flow algorithms: we
make a bipartite graph into a flow network by attaching a “super-source” to one side and a
“super-sink” to the other side. Specifically, if G is our bipartite graph, with two vertex sets
X,Y, and edge set E, then we define a flow network G = (X UY U{s,t}, ¢ s,t) where the
following edge capacities are nonzero, and all other edge capacities are zero:

c(s,z) =1 forallz e X
c(y,t)=1 forallyeY
c(r,y) =00 forall (x,y) € FE

For any integer flow in this network, the amount of flow on any edge is either 0 or 1. The set of
edges (z,y) such that x € X,y € Y, f(x,y) = 1 constitutes a matching in G whose cardinality
is equal to |f|. Conversely, any matching in G gives rise to a flow in the obvious way. Thus the
maximum flow value equals the maximum matching cardinality.

If (A, B) is any finite-capacity s — ¢ cut in this network, let S = (X N B)U (Y N A). The
set S is a vertex cover in G, since an edge (z,y) € E with no endpoint in S would imply that
x € Ay € B,c(x,y) = oo contradicting the finiteness of ¢(A, B). The capacity of the cut is
equal to the number of edges from s to B plus the number of edges from A to t (no other edges
from A to B exist, since they would have infinite capacity), and this sum is clearly equal to |S].
Conversely, a vertex cover S gives rise to an s — ¢t cut via the reverse transformation, and the
cut capacity is |5]. O

5 Hall’s Theorem

Theorem 5. Let G be a bipartite graph with vertex sets X,Y and edge set E. Assume | X| =Y.
For any W C X, let T'(W) denote the set of all y € Y such that (w,y) € E for at least one
w € W. In order for G to contain a perfect matching, it is necessary and sufficient that each

W C X satisfies |I'(W)| > |W|.

Proof. The stated condition is clearly necessary. To prove it is sufficient, assume that |T'(W)| >
|W| for all W. Transform G into a flow network G as in the proof of the Konig-Egervary Theorem.
If there is a integer flow of value | X| in G, then the edges (r,y)suchthatx € X,y €Y, f(z,y) =1
constitute a perfect matching in G and we are done. Otherwise, there is a cut (A, B) of capacity
k < n. We know that

IXNB|+|YNA =k<n=|XNB|+|XNA|

from which it follows that Y N A| < |X N AJl. Let W = X N A. The set I'(W) is contained
in Y N A, as otherwise there would be an infinite-capacity edge crossing from A to B. Thus,
IT(W)| < Y NA| < |W]|, and we verified that when a perfect matching does not exist, there is
a set W violating Hall’s criterion. O

6 Dilworth’s Theorem

In a directed acyclic graph G, let us say that a pair of vertices v, w are incomparable if there is no
path passing through both v and w, and define an antichain to be a set of pairwise incomparable
vertices.

Theorem 6. In any finite directed acyclic graph G, the mazimum cardinality of an antichain
equals the minimum number of paths required to cover the vertex set of G.

The proof is much trickier than the others. Before presenting it, it is helpful to introduce a
directed graph G* called the transitive closure of G. This has same vertex set V', and its edge
set E* consists of all ordered pairs (v, w) such that v # w and there exists a path in G from v to
w. Some basic facts about the transitive closure are detailed in the following lemma.

Lemma 7. If G is a directed acyclic graph, then its transitive closure G* is also acyclic. A
vertez set S constitutes an independent set in G* (i.e. no edge in E* has both endpoints in S) if
and only if S is an antichain in G. A sequence of vertices vy, vy, ..., v, constitutes a path in G*
if and only if it is a subsequence of a path in G. For all k, G* can be partitioned into k or fewer
paths if and only if G can be covered by k or fewer paths.

Proof. The equivalence of antichains in G' and independent sets in G* is a direct consequence
of the definitions. If vg,..., v is a directed walk in G* — i.e., a sequence of vertices such that
(vi—1,v;) is an edge for each i = 1,...,k — then there exist paths P; from v;_; to v; in G, for
each i. The concatenation of these paths is a directed walk in G, which must be a simple path
(no repeated vertices) since G is acyclic. This establishes that vy, ..., v is a subsequence of a
path in G, as claimed, and it also establishes that vy # v, hence G* contains no directed cycles,
as claimed. Finally, if G* is partitioned into k paths then we may apply this construction to each
of them, obtaining k paths that cover G. Conversely, given k paths Py, ..., P, that cover G, then
G* can be partitioned into paths Py, ..., P} where P’ is the subsequence of P; consisting of all

)

vertices that do not belong to the union of P, ..., P;_y. O
Using these facts about the transitive closure, we may now prove Dilworth’s Theorem.

Proof of Theorem 6. Define a flow network G = (W, ¢, s,t) as follows. The vertex set W contains
two special vertices s,t as well as two vertices x,, ¥y, for every vertex v € V(G). The following
edge capacities are nonzero, and all other edge capacities are zero.

c(s,z,) =1 forallveV
c(xy, yw) = 00 for all (v,w) € E*
(Y, t) =1 forallweV

For any integer flow in the network, the amount of flow on any edge is either 0 or 1. Let F
denote the set of edges (v,w) € E* such that f(x,,y,) = 1. The capacity and flow conservation
constraints enforce some degree constraints on F: every vertex of G* has at most one incoming

edge and at most one outgoing edge in F. In other words, F' is a union of disjoint paths and
cycles. However, since G* is acyclic, F' is simply a union of disjoint paths in G*. In fact, if a
vertex doesn’t belong to any edge in F', we will describe it as a path of length 0 and in this
way we can regard F' as a partition of the vertices of G* into paths. Conversely, every partition
of the vertices of G* into paths translates into a flow in G in the obvious way: for every edge
(v, w) belonging to one of the paths in the partition, send one unit of flow on each of the edges
(8, 20), (T, Yu)s (Yo, T)-

The value of f equals the number of edges in F'. Since F' is a disjoint union of paths,
and the number of vertices in a path always exceeds the number of edges by 1, we know that
n = |F| 4 p(F). Thus, if the maximum flow value in G equals k, then the minimum number of
paths in a path-partition of G* equals n — k, and Lemma 7 shows that this is also the minimum
number of paths in a path-covering of G. By max-flow min-cut, we also know that the minimum
cut capacity in G equals k, so to finish the proof, we must show that an s — t cut of capacity k
in G implies an antichain in G — or equivalently (again using Lemma 7) an independent set in
G* — of cardinality n — k.

Let A, B be an s — t cut of capacity k in G. Define a set of vertices S in G* by specifying
that v € S if z, € A and y,inB. If a vertex v does not belong to S then at least one of the
edges (s,z,) or (y,,t) crosses from A to B, and hence there are at most k such vertices. Thus
|S| > n — k. Furthermore, there is no edge in G* between elements of S: if (v, w) were any such
edge, then (v,w’) would be an infinite-capacity edge of G crossing from A to B. Hence there is
no path in GG between any two elements of S, i.e. .S is an antichain. n

