IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 10, OCTOBER 2000 1149

Sequential Synthesis Using S1S

Adnan Aziz, Felice BalarinMember, IEEE Robert K. Brayton Fellow, IEEE and
Alberto Sangiovanni-VincentelliFellow, IEEE

Abstract—We propose the use of the logic S1S as a mathemat-mode may never see requests on consecutive cycles. This may
ical framework for studying the synthesis of sequential designs. We help simplify the logical circuitry associated with the datalink
will show that this leads to simple and mathematically elegant solu- controller.

tions to problems arising in the synthesis and optimization of syn- . . -
chronous digital hardware. Specifically, we derive a logical expres- Typically, the synthesis process has two stages: First, the set

sion which yields a single finite state automaton characterizing the Of all possible implementations is characterized using some fi-
set of implementations that can replace a component of a larger nite structure (which is the topic of this paper); consequently,
design. The power of our approach is demonstrated by the fact one is chosen according to some optimality criteria (e.g., min-
that it generalizes immediately to arbitrary interconnection topolo- imum state [15]). For combinational designs, the problem of

gies, and to designs containing nondeterminism and fairness. We L Y
also describe control aspects of sequential synthesis and relate con-determlnlng and using the flexibility afforded by “don't care

troller realizability to classical work on program synthesis and tree conditions is well solved both in theory and practice [28].
automata. We propose the use of the logic S1S as a mathematical frame-
Index Terms—Automata theory, discrete control, mathematical work for studying the Syn_theSiS of sequential quigns' We will
logic, sequential logic synthesis. show that this leads to simple and mathematically elegant so-
lutions to problems arising in the synthesis and optimization of

synchronous digital hardware. Specifically, we derive a logical
expression which yields a single finite state automaton charac-
HE advent of modern VLSI CAD tools has radicallyterizing the set of implementations that can replace a particular
changed the process of designing digital systems. Themponent which is part of a larger design. The power of our
first CAD tools automated the final stages of design, such approach is seen by the fact that it can be applied to designs
placement and routing. As the low level steps became bet@@ntaining nondeterminism and fairness [8], [18], and also to
understood, the focus shifted to the higher stages. In particudbitrary interconnection topologies.
logic synthesis, the science of optimizing gate level designsOptimization of compositional designs may result in com-
for measures such as area, speed, or power, has shifted tobihational cycles, i.e., loops consisting solely of gates. Even
forefront of CAD research. though such loops can sometimes be used to optimize circuits, it

Logic synthesis algorithms originally targeted the optimizas considered good design practice to avoid them, because cyclic
tion of two-level logic; this was followed by research in synthesircuits are difficult to analyze, and can have undesired oscilla-
sizing more general multilevel logic. Currently, a major thrustitory behaviors [3], [19], [29]. Guided by design practice, we
logic synthesis is sequential synthesis, i.e., the automatic opdientify flexibility available for synthesis while ensuring that
mization of the entire system. This is for designs specified at thgcles of logic will not be introduced by optimization.
structural level in the form of netlists, or at the behavioral level, The term “synthesis” is used in the theoretical computer sci-
i.e., inthe form of finite state machines (FSMs). De Micheli [21§nce community to describe the process of taking a logical spec-
gives an excellent introduction to logic synthesis. ification, and checking if there exists a model which satisfies it.

Designs invariably consist of a set of interacting componeniBie model depends on the context; for example, it could be a
The environment of a particular component gives rise to a cdidring machine program [20], a finite state transducer [23], or
tain amount of flexibility when implementing it; this flexibility a dataflow graph [1]. The issues involved in this discipline in-
can be exploited by optimization tools. For example, a dataligkude decidability, complexity, and expressiveness of the spec-
controller interacting with a bus operating in single processtication language. In this paper we will be mostly concerned

with the optimization problem; we will make a connection to
program synthesis.

Manuscript received November 6, 1999; revised March 17, 2000. This work Previous work in the VLSI design automation community re-
was supported in part by grants from the Semiconductor Research Corporafigfad to optimizing interacting sequential designs has tended to
and the National Science Foundation. This paper was recommended by A%sg-ad hoc, incomplete, and, sometimes, simply incorrect. The
ciate Editor M. Papaefthymiou.))))

A. Aziz is with the Department of Electrical and Computer Engiconstructions and proofs offered are often extremely cumber-

neering, University of Texas at Austin, Austin, TX 78712 USA (e-mailsgme. This is withessed by a number of previous papers [10]
adnan@ece.utexas.edu). 61. I51. [171. 133135 !
F. Balarin is with the Cadence Berkeley Laboratories, Berkeley, CA 947(53]' []1 []! []_[]

USA. Similar problems have been considered in the control com-
R. K. Brayton and A. Sangiovanni-Vincentelli are with the Department Ot*nunity under the labelrhodel matchin’g [6] in the discrete

I. INTRODUCTION

Electrical Engineering and Computer Sciences, University of California at . .
Berkeley, Ber?(eley CgA 94720 USpA. Y event system (DES) community under the labsligervisory
Publisher Item Identifier S 0278-0070(00)09144-2. control’ [37] [25], and in concurrency theory they appear as

0278-0070/00$10.00 © 2000 IEEE

1150 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 10, OCTOBER 2000

“scheduler synthesi$36] and “equation solving[22]. Com- an infinite sequencg will be written as(bg, b1, bs, .. .). Givena
pared to model matching approaches [6] we limit somewhat teequence (finite or infinite), we will denote by«]; thekth el-
choice of possible controllers. The limitation is not serious iementin the sequence, i.e{k). The elements of the range that
hardware context, because it rules out only those circuits thoatcur infinitely often in an infinite sequencewill be denoted
result in a loop of combinational gates when composed (as pbs-inf («). Thelengthof a finite sequence: is the cardinality
viously remarked, avoiding combinational loops is considered its domain, and will be denoted iBy.

good design practice). On the positive side, we allow more gen-Given any sequencev (finite or infinite) and natural
eral specifications and provide a uniform methodology that imimber %, the kth prefix of « is the finite sequence
applicable to various model matching problems. This general(0), a(1),. .., a(k — 1)); it will be denoted byn*.
framework also strictly subsumes the problem considered inThe set of all finite sequences over a 5at denoted by:*;
[35]. Compared to supervisory control of DES [25], our apthe set of all infinite sequences overwill be denoted by,
proach offers the advantage of being compatible with FSM tecBubsets ob* will be referred to as-languagessubsets ok«
niques that have seen continuous developments in the past thvidebe referred to ass-languages

decades (e.g., [16] and [35]), provides more natural model of

reactive system, and allows significantly simpler developmeBt FSMs

of results.

We have chosen input-output language containment as a R
rectness criterion because it allows loose specifications, Whg
a range of behaviors may be acceptable. Here, we differ fr
most of the previous approaches in the process algebra settirég‘
where a much stronger relation, typically some form of bisim-

ulation equivalence is used [22]. The exception is [14] whic is a finite set referred to as thates s € Q is theinitial

offers a_ge_neral framework_ where the satisfa(_:tion rel_ation is Ete 7 andO are finite sets referred to as the setrgutsand
set a priori, but can be deflr_ned by a forr_nula na logic ”."“?‘ c tputsrespectivelys: Q x I — @ is thenext-state function
express, among other relations, both S|mulat|on and bisimu d\: Q x I — O is theoutput function
tlor_1. Howeve_r, the procgdure pre;gnted in [14] generates on Yhe next-state function can be inductively extended to yield
a single solution. We believe that it is advantageous to separfhtg functiond*: Q x I* — Q
the solution process in two stages: first, all the possible solutions '
are c_harat_:ter_lzed, and then one is chosen according to some op- §%(t,0) =t whenl, =0
timality criteria. . e 11 _

The rest of this paper is structured as follows: in Section Il 6% (t, 1) = 6(8"(¢,077), [tl,—1) otherwise
we give definitions, in particular those connected to hardware, _) o
design composition, and fairmess. In Section 111, we review S1SAN FSM can be represented graphically by a directed finite
logic and finite state automata, and use these notions to as§#§@Ph. referred to as state transition graphwhere the ver-
semantics to hardware. In Section IV, we use S1S to logicafffeS correspond to states. The edges are labeled with input-
characterize the flexibility that can be used to optimize comp8UtPut value pairs—the input value enables the transition, and
nents in hierarchical designs. The relationship to the more cld€ output value is produced. The destination node of the edge
sical view of program synthesis in the form of Church’s prob|e,_rr§apr_esents the next state for that input value. This is illustrated
[24], automata on trees, and fairness is described in Sectiod'\/.':'.g- 1(b). .
We summarize our contributions in Section VI and suggest aGiVen a states, and sequence of inputs= (i, i1, - - -), we
number of ways of extending our results. will refer to_the sequence of states= (so, 51, .)as be_lng the
run (sometimes referred to as thath) starting atso on inpute
iff for all &, we haveSys(sg, tx+1) = sk+1. The output sequence
o = {0o,01,...) correspondgo (¢, o) iff for all &, we have

In order to be able to formally reason about hardware, We sy, ix) = o.
need to develop mathematical models for digital systems. In
this section, we develop two formalisms for expressing desigits, Netlists
namely FSMs and netlists. FSMs are more abstract—they cor-,

respond to the behavioral specification as given by the designe, A netlistis arepresentation of a design atstrectural level
P P 9 y 9NFfiich is closer to the actual implementation of the design than

mit:tsat;oire structural’—they are closer to the actual Impl(?fSMs, \{vhich can be viewed as behavioral level descriptions of
' the design.

Definition 2: A netlistis a directed graph, where the nodes
correspond to elementary circuit elements, and the edges corre-

A finite sequencen a set’ is a function whose range isspond to wires connecting these elements. Each node is labeled
>} and domain is a prefix of the set of natural numbers= with a distinct variablev;. The three primitive circuit elements
{0,1,2,...}. Aninfinite sequencéwhich we will interchange- areprimary inputs, latchesandgates Primary input nodes have
ably refer to as aw-sequence) ol is a function mapping to no fanins; latches have a single input. Each latch has a desig-
.. We will denote the finite sequenceby {(ag, a1, ...,a,_1); nated initial value. Associated with each gatés a Boolean

FSMs provide a natural way of describing systems in which

r- .

€ output depends not only on the current input, but also on past

Hues of the input, while possessing only a bounded amount of
mory. FSMs are described in [13, p. 42]; below we develop
ugh theory to suffice for this paper.

Definition 1: An FSM is a six-tupl€@, s, I, O, A,) where

Il. FORMAL MODELS FORHARDWARE

A. Sequences

AZIZ et al: SEQUENTIAL SYNTHESIS USING S1S 1151

o
w2 .@ oL 1/1 @

170

|—| H 0/0,1/0
X1|_—_»7l> wi |__| L1 |__| 12 = @

(a) {b)

l

o/L /1

N

®

Fig. 1. Fig. 1 (a) A netlist and (b) its corresponding FSM.

Fig. 2. Composing netlists.

ack=0

function of its fanins’ variables. A subset of the set of nodes |
designated as being setmfimary outputs

For the reasons given in Section |, we require that every cycinemp=0
in a netlist to include at least one latch (i.e., there are no comt
national cycles).

Fig. 1(a) provides a graphical depiction of a netlist. The noc
x1 is a primary input; nodek andi, are latches, and nodes
andw- are gates. The nodeis designated a primary output. In
this example, the node- is driven solely by latches (i.e., there
is no path from an input node t0, which does not pass through
a latch), while the node; is driven by both primary inputs and
latches. We will only consider netlist composition when it does not result

Given a set of assignments to each primary input node anfg&ombinational cycles.
state, one can uniquely compute the values of each node in thé& Moore netlist is a netlist where there is no path from an
netlist by evaluating the functions at gates. In this way, a netli§iput to an output which does not pass through a latch; it has the
7 ON iNputsay , as, . . ., an, outputsby, by, . .., b, and latches Property that no combinational cycles can result on composing
r1,72,...,7% bears a natural correspondence to an HQMon it with any netlist. The FSM derived from such a netlist has the
inputs X = {0,1}", outputsY = {0,1}™, and state-space Property that the output is purely a function of the state; such
Q = {0,1}*, with an initial state given by the initial values forFSMs are referred to as Moore machines.

latches. An example of this correspondence is given in Fig. 1.)
E. Fairness

Fig. 3. A four-state abstraction of a processor.

D. Netlist Composition There are situations when a design cannot be captured using a
Composition of two netlists consists of placing the twéSM by itself. Consider, for example, what happens when a pro-
netlists next to each other and connecting the nodes for primagssor is abstracted to a four state machine which cycles through
inputs and primary outputs which are specified by the composiHe, request, lockandreleasestates, with the transition out of
tion. The primary inputs of the composed nelist are the primalgck being nondeterministic, as in Fig. 3. In order to model the
inputs of the original netlists which remain unconnected. processor accurately, it may be desirable to specify the condi-
subset of the primary outputs of the original netlists is desitjon that it does not remain in the stdbek forever. This cannot
nated as being the primary outputs of the composed netlist; theemodeled using an FSM;fairnessconstraint must be speci-
remainder are said to bedden fied as part of the design.
This is illustrated in Fig. 2, where the inputs andus are In this paper, we will take a very simple approach to fairness;
“tied” to v; andl, respectivelyw; is designated an output inwe will restrict our attention t@Uchifairness. A Blichi fairness
the composed design. As stated in the introduction, our notionagndition is a subset of the state-space of the FSM.
composition is synchronous, i.e., all the latches are assumed t®efinition 3: An infinite path ¢ satisfies a Blchi fairness
be driven by a single clock and, hence, change state in lockstepndition f iff inf (o) has a nonempty intersection with

1152 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 10, OCTOBER 2000

Al : A2 : A3
©O.LOED LOODMLD | ol @ ; (a,% abc
(e @—@
A 00] | N -

/T c
@QT 0.1 ab, C

@_{@ ()
Y |
X4 = (0.0,0,1D.1,0,(1,1) Xp=1{0,1} Xa={abc}

Fig. 4. Examples of finite state automata.

The patho is fair relative to a set of Blichi fairness conditions The x-language accepted by theautomaton is the set of

I ={f1, fo,.... fu} (collectively referred to as Buchi fair- all sequences in £* such that there is a corresponding rn
ness constraint iff it is fair with respect to each fairness con-starting ats for which[o],,|—; € F, i.e., the last state ia is an
dition. accepting state.

Fairness constraints on components of a design can be exAs an example, for the-automatonM; = (A;, {s1,s2}),
tended to fairness on the composed design: a path in the desidnere. 4, is as given in Fig. 4, the-language accepted b\,
is fair exactly when it is fair with respect to each component. is the set of all sequences in which a (0,0) never appears at any
point after (1,1).
lll. FINITE STATE AUTOMATA AND S1S 2) Properties ofx-automata: It is easy to test whether the

We start this section by defining finite state automata. V\}gnguage accepted by-aautomaton is nonempty—use depth

will then develop S1S which is the logical system concernjﬁStsearCh to seeifthere is an accepting state which is reachable

with “second order” properties of the natural numbers with t £om the initial state.

successor operation. We present a classical theorem of BiicHpiven languages.; and L, accepted by-automatal; =
which shows a surprising relationship between finite state at{Z, S1, ¢, 71), £1) andMz = ((Z, Sz, 7,13), Ib), itis readily
tomata and S1S. Thomas [31] provides an excellent surveySgen that there existautomata accepting the languadas N

the material covered in this section. Ly andL; U L. The proofis by exhibiting the requiredau-
tomata by theproduct constructionthe automaton fof; U Lo
A. Finite State Automata is simply M = ((2,51 x S2,(q,7),T), F1 x S2 U S1 x

Definition 4: A finite state automaton is a four-tuplef2), whereT = {((s1,s2),%, (f1,2))[(s1,4,81) € T1 and
(, 5, s0,T) whereX is a finite set called thalphabetwhose (52,%,t2) € T2}. A similar construction works fof, N L.
elements are referred to agmbols S is a finite set referredto Given any nondeterministic x-automaton AN =
as thestates so € S is theinitial state andZ C S x . x S ((Z,Sn,s,T),F), there exists a deterministic automaton
is the transition relation The relation7” is required to be D which accepts exactly the same language. The proof
completely specifiedhat is for everys andi, there is someé proceeds by the subset construction [13], which build a de-
such that(s,,t) € T. terministic x-automaton on state-spa@, which accepts

A run corresponding to a finite input sequences >* is a the same language. The complement of a language accepted
sequence € S* starting atsg such that for every < [, itis by a x-automaton is also accepted byxaautomaton. This
the case that{o];, [z]:, [¢]:+1) € T’; the notion of a run extends follows from the fact that for any-automaton, there exists
naturally to the case whenis anw-sequence. an equivalent deterministie-automaton; complementation of

One can represent a finite state automaton using a graphdaterministick-automata is trivial.
shown in Fig. 4. Vertices correspond to states, the édgg is For a languagel. over ¥; x 3, accepted by ax-au-
labeled with all symbols such thats, a, ¢) is an element of the tomaton A/, the projection of L to X; consists of all

transition relation. sequences {ag,a1,...,a,—1) for which there exists
Itis useful to classify finite state automata as bedetermin- a sequence {(bg,b;,...,b,_1) such that the sequence
istic andnondeterministicAn automaton is deterministic if for {(ao, bo), (a1,01),. .., (@n—1,bn—1)) IS a member of L.

all statess and for all inputsi there is exactly one statesuch The projected language is also accepted by-automaton:

that(s, ,t) € T; otherwise it is nondeterministic. The automat#here is a trivial construction to derive the accepting automaton

A; and Az in Fig. 4 are deterministicil; is nondeterministic. from M—replace each transition labgt, b) in M by a. We

Note that nondeterminism may lead to multiple runs starting edfer to the resulting automaton as the projectiodbfo >;;

the initial state for a particular input word. note that projection can result in a nondeterministic automaton,
Now we describe how a finite state automaton, together widven when the original automaton was deterministic.

an “acceptance conditions” can be used to specify languages3) w-automata: Informally, an w-automaton differs from

This will be done for both-languages and-languages. a x-automaton in that it operates on infinite rather than finite
1) x-automata: sequences. Unlike--automata,w-automata come in various
Definition 5: A x-automaton}/ is a tuple(.A, I'), where forms. We will concentrate on Bichi automata; details on the

A= (%,8,s,T) is afinite state automaton, add C S is the other brands ofs-automata can be gleaned from the survey

set ofaccepting states article of Thomas [31].

AZIZ et al: SEQUENTIAL SYNTHESIS USING S1S 1153

Definition 6: A Bichi automaton is a tupléA, F'), where readability, we will abuse notation, e.g., we will refer to the for-
A =(%,8,s,T) is afinite state automaton, add C S is the mula{s, 5, 0) asSS0.
set of Blchi states « Terms: 0|z;|St, wheret is a term.

The w-language accepted by the Bilichi automaton is the set Examples: 0550, $55S5z.
of all sequences in 2« such that there is a corresponding run « \Well formed formulas: ¢ — ult < ult € Xp|(=)|(¢ A

o starting ats for whichinf (o) N F # 0, i.e., there are ¥)|(3z)¢|(3X)¢, wheret andu are terms, angh andy
accepting states which occur infinitely oftendn are well-formed formulas.
For example, the Buchi language accepted(lay, {3}), Examples0 < S0, z3 = Szj, Szr € X5, (0 <
where 4, is as in Fig. 4, is the set of all sequences in which S0) A (Sz7 € X5), (3X.3x) ((z € X) A (Sz € X)).
a 1 occurs infinitely often at multiples of 3. A variable occurdreelyin a formula, if it appears in the for-
Properties of Blchi automatalt is easy to test whether themula, and is not quantified [9]. We writg(X1, Xo,..., X,) to
language accepted by a Buichi-automaton is nonempty—cheg#ficate that at mosky, X», . .., X,, occur freely ing.
for the existence of an accepting state which lies on a loop andn the sequel, we will refer to well formed formulas simply
is reachable from the initial state. as formulas. We will routinely use the symbsls—, —, V, etc.,

Given languaged; and L, accepted by Blchi automata,as |ogical abbreviations, and drop the use of parentheses unless
there exists Buchi automata accepting the langu@ges) L> needed to avoid ambiguity.
andL, U Lo; asimilar (albeit marginally more complex) con- we now consider the semantics of S1S. An S1S formula can
struction to that for-automata can be applied. be interpreted over the structure consisting of the set of nat-
The complement of a language accepted by a Buchi ayal numbers, where the successor synbds interpreted as
tomaton is also accepted by a Blchi automaton, although tiae functionf(x) = = + 1. In this way, a formulad(X;) in
proof of this fact is nontrivial. An early proof [4] proceedssiSdefinesa set of subsets @f, i.e., a subset a2“. The de-
by taking the (possibly nondeterministic) defining Blchfined set contains alB < w such that the formuld@(X,) is
automaton and creating a deterministic finite state automat@ge whenX; is assigned to be8. More generally, formulas
with a “Muller” acceptance condition [31], which accepts th@)(Xl,XQ, ..., X,,) define subsets ¢&~)"; we will denote this
same language; the need for a Muller acceptance conditigst by[¢(X1, Xs, ..., X,)]. Formal semantics of S1S can be
stems from the fact that deterministic Blichi automata afgund in [31]; below, we illustrate the interpretation of formulas
strictly less expressive than nondeterministic Blichi automagy means of examples.
Following this, complementation is relatively straightforward. Example 1: Nonempty subsets af contain minimal ele-
The determinization step, while similar in spirit to the subsefents
construction forx-automata [13], is extremely complex. The
best known procedure [27] starts with a nondeterministic Buchi) = (VX) ((3z)(x € X)
automaton onn states, and yields a Biichi automaton with A -
20(nlog(n)) states in the wors%/case. — @y e X) A =@ e X Az <y))
For anw-languagel overX; x X, accepted by a Blichi au- Example 2: The set of subsets afwhich contain five when-
tomaton,L projected down td; is also accepted by a Biichigyer they contain three
automaton; the construction is the same asfautomata.

$o(X) = (5SS0 € X) — (SSS5S0 € X).
B. S1S

S1S s a logical system concerned with “second order” prop-EXa@mple 3: The set containing the set of even integers
erties of the set of natural numbers with the successor function;
the term “second order” refers to the fact that the logic refers $1(X) =(0€ X) A =(50 € X) A (Va)
to both subsets as well as individual natural numbers. It was (zeX & SSzeX).
studied in detail by Blchi in [2]; in particular it was shown to
be decidable. S1S provides an extremely powerful mechanisnEXxample 4: The binary relation org* x 2 defined by
for analyzing and manipulating sequential systems—the exprééX, Y): every even number i is in Y}
siveness of logic (conjunction, negation, and quantification) is

available to define sets of sequences. $2(X,Y) = (vV2)((32)(¢1(2) Az € 2Z)
Definition 7: S1S formulas are finite sequences over the fol- —(zeX—-zeY)).
lowing set:

The set ofw-sequences ofi0, 1} is in a natural one-to-one

Ysis = {(,),0,9,=, <,€,A,—,3,z1,70,...,X;,Xo,...} correspondence with the set of subsetsspfor example the

sequenc®10 101 - - - corresponds to the subddt, 3, 5,...}. In
The lower case variables,, z,... are first order variables this way, an S1S formul&(X) definesanw-language over the
ranging over elements of the natural numbers, and the uppéshabet{0,1}.
case variables(;, X», ... are second order variables ranging The following result relates S1S formulasteautomata.
over subsets of the natural numbers. Theorem 3.1 (Buichi 1961)An w-language o0, 1}" is de-

We are now ready to describe the syntax yieldingtdrens finable in S1S if and only if it is accepted by some Buichi au-

and thewell formed formula®f S1S logic. In the interests of tomaton on alphabei0, 1}™.

1154 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 10, OCTOBER 2000

init=0

0/0 /1/{* o/1 0,0) K ©,1)

FSM * automaton

Netlist

Fig. 5. Relating hardware to Bulichi automata.

The right-to-left direction of the theorem follows from Logical formulation
a straightforward construction of a formula coding up the SIS formula S1S formula
transition structure of the automaton. T l

The left-to-right direction of the theorem is by induction on
the length of the S1S formula. Automata for the atomic formulas
are easily derived; an inductive construction is used-for, D1 | Automatic construction ~| D2
andd. The case oH is handled by automaton projection by
automaton intersection, anrdby automaton complementation,
as discussed in Section I11-A2.

1) WS1S:With minor modifications, the formal treatmentrig. 6. A paradigm for sequential synthesis.
of w-languages done in S1S can be applied-fanguages. In
this case the resulting logic is referred to as weak S1S (W51§‘-\anguage of the composed design is defined by the WS1S for-
the weak referring to the fact that set variables range over fin%|a¢DlxD2 given below
subsets ofv. In a manner analogous to Theorem 3.1, it can be
shown that ax-language is accepted bysaautomaton if and d)DlXDz(Ul, Vi)

only if it is definable by a formula in WS1S. .)
Given the relative ease with whichautomata can be com- = (3X1.3L2 - A0)(¢1(Xy, L2) A $2(U, U, V1)

Design to be optimized All safe replacements

plemented, it is not surprising that the proof of this fact is much A (L2 =Uz) A (Xy =VW1)).
easier than that of Biichi’s theorem; in fact it predates Buichi’s
result [7].

D. Applications to Synthesis

C. Netlists, FSMs, Languages, and Compositional Designs ~ Fig. 6 illustrates the approach we will be using. Given de-

We now make orecise the relationshio between desians sri]%n, we will first identify a formula for it; this formula will
P P 9ns ghin ws1s or S1S, depending on the context. We will cast
languages accepted by automata.

Recall that in Section Il we defined formal models for haroﬁmd s_olye the P“’b'e”.‘ of Charactenzm_g permissible solutions
mnlLog|c, essentially this amounts to writing down a system of

ware, these.con5|sted .Of FSMs and net!|sts. We made the p?c'>g|cal constraints. This takes the form of a formula which can
there that given a netlist, we could derive a FSM from it. Al en be reflected back to an automaton

FSMM = (Q,s,I,0,)\, 6)bears anatural correspondence to a . S v build ;
<-automatorB = ((Q. s, (I x), T), Q) where(u, (i, 0), v) € In practice, it is not necessary to actually build any for-
T [A e mulas—we can mimic the steps taken in the construction of an

aizrfg;fiwnhferf& g &gﬁnn?nAl(:?él)S_ 0. An example of auto.maton fr_om a.formula tq derive the automato.n for the syn-

Observe the language of th’tsautoﬁwaiton characterizes th t.h es!zedl design directly. This correqunds to.taT"'”g the dOtFEd
input—output behavior of/; given any finite input sequenceqlne In Fig. 6. The advantage OT S;S is that !t. is much easier
. : to come up with the characterizations. Additionally, elegant
i, we can construct the output sequencthat M would have yet rigorous proofs can be given; furthermore, these proofs

produced on appl|cat|on ¢y examining the-automqton. By are constructive. Furthermore, as we will see in Section V, the
Theorem 3.1, it follows that we can also characterize a netlist

by a formula of WS1S. agg;?;cr:,v?tinfzri?rl]lggi én;rg(tagianttesly to nondeterministic designs,
As described in Section 1I-D, designs are built compositior?— y '
ally. For designs specified as netlists, composition is specified
by simply placing the two netlists next to each other and making
the connections required by the composition. Inputs and output#As mentioned in Section I, a critical first step toward synthe-
which are not hidden by this composition become the inputs asiding a component in a design is characterizing the set of all
outputs of the composed design. valid implementations for that component. There is an obvious
We illustrate the relationship between the WS1S formula féoperational” characterization: given a candidate implementa-
thex-language of the composed design and the WS1S formutam, plug it in, and test if there is no change in the input-output
for the components by considering the netlist composition thehavior observed from the external world, i.e., if the language
lustrated in Fig. 2. Let; (X1, L2) and¢(Uy, Uz, V1) be the of the composed design remains unchanged. Since equivalence
WSS formula defining the-language of); andD,. Thenthe of automata is decidable, this check is effective.

IV. SYNTHESIZING COMPOSITIONAL DESIGNS

AZIZ et al: SEQUENTIAL SYNTHESIS USING S1S 1155

Fig. 7. A feedforward network.

This characterization is correct, since if the condition hold& M. Note that the variables, y, «, andv may correspond to
there is no way the change can be determined by looking at thextors of inputs.
external inputs and outputs. Conversely, if there were some input.et the x-language ofdf be defined by the WS1S formula
on which the composed design had an output differing from that? (X, U, V,Y), and thex-language ofC be defined by the
in the original design, there is a surrounding environment whiah'S1S formulap© (V, U). Then thes-language of the composed
could observe the change and as a result function incorrectigsign is defined by the formul@!/.3v) (¢ (X, U, V,Y) A
Following the parlance of Singhal [30], we will refer to im-¢<(V,U)); denote this formula by (X, Y).
plementations satisfying this condition as being “safe replace-We now characterize all possible netlists those which can
ments” for the component. safely replac& without changing the input-to-output behavior

However, this characterization is not well suited for synthesisf the overall design. }
we want a finite structure, on which some kind of algorithmic Theorem 4.1:Let C' be a netlist. Ther” is a safe replace-
search for simple solutions can be performed. In this section, went forC if and only if the language defined by~ (V, U) is
will show that the flexibility available for sequential synthesisncluded in the language defined by the formula
can be characterized using-automaton.

This result was previously shown by Watanabe and Braytor?”™*(V,U) = (YX.VY)(¢M (X, U, V,Y) — ¢°(X,Y)).
[35], who referred to this automaton as tBenachinethe “E” s
standing for environment. Their approach was based on exam- Proof: Supposd¢(V,U)] € [¢“===(V, U)]. Lety be
ining the design on a state-by-state basis; we derive this regjiiarbitrary finite sequence of inputs applied to the composition
using S1S. We also derive an approximation to the set of vaffi# andC. o
implementations on which it is easier to perform optimization, Since the composed design is a feedforward networis,
and adapt the E-machine construction to a number of intercdr€ly @ function ofr and the desigr/. Let « be the result
nect schemes. atv of applyingy atz. The output seen atis purely a function

We can gain some intuition as to the source of the flexibilit9f the input atv and the desigrC’; let 3 be the output at
available for optimization by considering a componérin the ~ corresponding tar. This fixes the output seen gtto somes,
design. Observe that nature of the surrounding components ridiey is a function of the sequencesand. and the design/.
make it impossible for certain sequences to be inpdtigim- Observe that(y,,a.6) € [¢(X,U,V,Y)]; further-
ilarly, there may be input sequences for which the output fromore, (o, 3) € [¢€(V,U)], which in turn is contained in
C does not affect the external outputs. Knowledge of these fafs ™= (V, U)]. Hence,(v,§) € [¢°(X,Y)], i.e., the output
may make it possible to simplifg, while preserving the overall of the composition ot/ with C on inputv is the same as the
input-to-output behavior. output of the composition a¥/ with C' on inputy. But v was
chosen arbitrarily, and s€'is a safe replacement f@r.

Conversely, supposgy“(V,U)] ¢ [¢pT==x(V,U)]. Take
(a,8) € [¢7(V.I)] — [¢p7===(V,U)]; thus, (e, B) is an

In order to illustrate the principles and arguments we will belement of the complement §f&“===(V,U)], i.e., (3, a) is
using, we start with the simple case of computing the set ah element of (3X.3Y) (¢ (X, U, V,Y) A —¢°(X,Y))].
permissible behaviors for feedforward networks. A feedforwatdence, there exists an ordered pairy,§) such that
network corresponds to a composition of a set of componght, 3, o, §) € [¢™ (X, U, V,Y)] and(v, §) € [¢° (X, Y)].
netlists in such a way that there is no path in the composed netlisSince the composed design is a feedforward networis,
from an output of a component netlist to one of its inputs whigburely a function ofr and 4. Thus, on application of to the
passes only through vertices from other netlists. An example@mposition of\/ andC, the sequence seenatill again bew.
such a netlist is given in Fig. 7. Sinceu is purely a function of and the design’, applyinga to

In a feedforward network, it is possible to compose the enw> will produce at the output. This in turn uniquely determines
ronment around” to form a single netlisfi/, and have” con- the output seen at to beé.
nected tal/ as shown on the right of Fig. 7. The external inputs However, (v,) € [-¢°(X,Y)]; thus,§ was not the output
and outputs of this design areandy. Herev is an output of\/ of M composed withC’ when~ was the input. Hence] is not
and an input ta@”; similarly, « is an output fronC' and an input a safe replacement fdr. [|

A. Feedforward Designs

1156 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 10, OCTOBER 2000

x Yy

—_— M —_—

L v

Fig. 8. A feedback network.

Thus, the formula©==~(V, U) completely characterizes the[¢ === (V, U)]; thus,(3, «) € [(3X.3TY) [pM(X,U,V,Y) A
set of implementations that can replace the compofie'we —¢°(X,Y)]. Hence, there exists an ordered p@jt §) such
will see in Section IV-C how to construct-aautomaton that that(vy, 3, a, §) € [¢M (X, U, V,Y)] and(v,6) & [¢°(X,Y)].
acceptg[¢“==(V,U)]; this is a finite representation which is |t now suffices to show that applying to the composition
suitable for constructing an optimal implementation. of M andC will result in § as an output. Ler and 3 be the
outputs produced atandw on applyingy. We now prove that
& andg are equal tax andg3, respectively. We do this by using

We now consider the case of a general compositional desigme fact that the output of a Moore netlist at stejs uniquely
as illustrated in Fig. 8. Given a componéntve can coalesce its determined by its inputs at stepsl, ...,k — 1 to inductively
environmentinto a single netlist in the topology shown on the show that for allk we havela]s, = [a]x and[3]x = [F]x.
right of Fig. 8. The external input is and the external outputis The pase case is direct—the initial output &f at v is
y; vis an output of\/ and an inputtd’; similarly, . is an output yniquely determined by the initial state sindé is a Moore
from C'and an input tal/. Again, we want to characterize allpetiist, so[a], = [«]o. The initial output ofC’ is purely a func-
netlists which can replace the component without changing tign of the initial state and the input at and s3] = [S]o.

input-to-output behavior of the overall design. Now for the induction step. considefa it s
Case 141 is Moore: In the presence of feedback, there e)ﬁniquvgly determir:edu b;/ the vF;Iues tilfy]ofc[xf]y’]e;l.’. . " Mlk

ists the possibility of a combinational cycle resulting on com: [/9]0 [/9]1 [B]k. But by the induction hypothesis
position. In order to avoid this possibility, we will first consider[m _ /3<7for a{ll p - k. This determine&ilus, = axyr. Since '
the case wheré/ is a Moore netlist. (Actually, we only need [@]k-l—l is a function of[alo, [l1,. . ., [@]ess, it follows that

there to be no combinational path franto «.) [Alk+1 = [Blasa. Hence, the induction step goes through.

Let t}De +language of M be defined by the for- The outputs at ¢ is uniquely determined by and3; since
mula ¢™(X,U,V,Y), and the x-language of C be de- 5 — 3 itfoll thaté — 8. But (~. S(X YOI thus.C'
fined by the formula ¢<(V,U). Then the *-language p =0, itfollows thaté = . Bu (7,6) & [¢7(X, V)] thus,

e is not a safe replacement for.]

of the ccx{mposed design is dgﬁned by the formula Case 2—Generald: Now we consider the case whé is
]SEU'E}/)S) é)gél/;/v’) A ¢~ (V,17)); denote this not a Moore netlist. Observe that if we picKawhich is Moore,
orvrcu a W)h(’ ;)'. Il netlists which ; | then its composition wittd/ will still be guaranteed to have no

© now characterize afl NEtISts which are sale rep acemegz)smbinational cycles. In order to characterize the Moore netlists

for C. .
) x . . which can replac€’, we need the concept of a Moore language.
Theorem 4.2:Let C' be a netlist. Therd' is a safe replace- Definition 8: Let I, C (%, x o) be a=-language.

ment forC if and only if the language defined by” (V. U) is The languagel is a Moore language if whenever we have
contained in the language defined by the formula ((i0s 00), (i1, 01) (in_1,0n_1)) € L, then for any

¢Cmen (V,U) = (VXY)M (X, U, V,Y) — ¢5(X,Y)). a € Yo, we have((ig,00), (i1,01), ..., (v, 0,-1)) € L.
@) Intuitively, a Moore language is a language with the prop-
) erty that for any string: in the language, the second component
Proof: Supposd¢ (V,U)] C [¢%===(V,U)]. Letybe of the last symbol in: is independent of the first component.
an arbitrary finite sequence of inputs applied to the compositidine +-language corresponding to the input—output behavior of
of M with C. Note that the nets, u, andy are functions of: a Moore netlist is a Moore language, since the output at fime
in the netlist consisting af/ composed withC. Let, 3, and§ does not depend on the input at tife
be the result at, . andy respectively on applying atx; The following proposition is a consequence of the fact that
Observe thaty, 3, o, §) is an element ofp™ (X, U, V,Y)]; the set of Moore languages is closed under union.
furthermore,(«, 8) € [¢€(V,U)]. By hypothesig¢© (V, U)] Proposition 4.3: Given an arbitrary«-languageL defined
isincluded inf¢p“===(V, U)]. Hence(~, §) € [¢°(X,Y)],i.e., over¥y x ¥o, there exists a unique maximal Moore language
the output of the composition @ with C on inputy is the same Lnoore CONtained in it.
as the output of the composition #f with C on inputy. But~y We will refer to Laioore @S theMoore restrictionof L.
was chosen arbitrarily, and €bis a safe replacement fGr. We are now ready to characterize the set of Moore netlists
Conversely, supposs®(V,U)] € [¢“===(V.U)]. which can safely replacé; unlike the previous case, this argu-
Let (a,3) be an element off¢“(V,U)] which is not in ment does not require tha¥ be Moore.

B. Feedback Designs

AZIZ et al: SEQUENTIAL SYNTHESIS USING S1S 1157

function Moore States(DSA D: (Sp, s, Zv X Ty, Tp, Ap)) {
Sc = Ap;
while (TRUE) {
remove states s from S¢ and T¢ such that
(3w ((Bv38) (5, (v,0), 1) € Te) A ~(F0'3E) (5, (v, w), ¥) € Tc))
if (no states were removed)
break;

return Sg¢;

}

Fig. 9. Computing the Moore restriction for a language accepted by a
*-automaton.

Theorem 4.4:Let C be a Moore netlist. The@' is a safe re- Fig- 10 Design to be optimized.
placement for” if and only if the language defined Iy (V, U)

is contained in the Moore restriction of the language defined lyize the componert (shown with a dotted outline), we first
the formula characterize all safe replacements €or The construction for
each step is shown in Fig. 11; by inspection, we can segthat
P (V1) = (VXY)(¢M (X, U, V,Y) = ¢°(X,Y). can be replaced by an inverter.
1) Complexity issuesit is straightforward to build &-au-
ﬂ)mata corresponding &/, C, andS (cf. Section 1lI-C). Since
the automaton fof is deterministic, an automaton for its com-
plement, constructed in Step 1, is trivially obtained; it [f&g | -
|Sc| states. The product automaton in Step 2 has a state-space
whose cardinality is the size of the product of the state-spaces
of the automata foi/, and.S. The projection of the signals
andy in Step 3 is also easy to achieve.
. The complexity comes in the complementation performed in
rest of the proof can be completed as in Theorem 4.2. Step 4. Even though the product automaton resulting in Step 2

Let A be as-automaton on alphabgl; x ., accepting the is deterministic, the projection of Step 3 makes it nondetermin-

languagel.. Using the subset construction, one can construct. - : .
from A a deterministic-automatonD acceptinglL. Given D, |stuc. The complementation in Step 4 is performed by first deter

o : I minizing the nondeterministic automaton, which, in the worst
it is straightforward to construct a deterministic automat®n Su] |Sae 150l
o) . case, can lead to an automaton @fu'15sl = 2lSul™ISc
for the Moore restriction of : recursively remove fron edges
: . Doy states.
(s, (4,0),t) whenever for somé applying (¢, o) to s leads to

. i) By virtue of Theorems 4.1, 4.2, and 4.4, the automaton
a nonaccepting staté An algorithm which returns exactly the . .

. .= R capturing the entire set of replacements for a component
set of states in the DFA is given in Fig. 9.

C interacting with an environmentd accepts exactly
- : the language defined by an S1S formula of the form
c, Gonsinctng an Automato Acceptin T s T oo
o T ’ if we want to capture all the flexibility available for optimizing
In Section 1V-B, we saw the set of replacements for @ py an automaton, then the automaton is obliged to accept
componentC' in a compositional design is characterize(E(VX_Vy)(¢A4(X7 U,V,Y) — ¢5(X,Y))], and it may be
by a formula of the form(VX.VY)(¢M(X, U, VY) — very large.
¢7(X,Y)). This formula can be rewritten as follows: e complemented the automatehy, by first determinizing
—(AXAY)($M(X, U, V,Y) Ay ~¢5(X,Y)). This iy may be the case that the final automatoty, ., after
formula suggests the following four-step — construGyeging equivalent states, is much smaller than the determiniza-
tion for constructing an automatondc,,, accepting tion of 4, i.e., generating the complement by determinizing as
[(VXYY)(M(X, U V,Y) — ¢5(X,Y))]. a first step leads to an intermediate blow-up. However, comple-
Step 1) Complement the automatonds accepting menting a nondeterministic finite automaton is inherently com-
[¢°(X,Y)] to obtain an automatomdz which putationally expensive. This is due to the fact that the problem of

Proof. The first stage of the proof, namely demonstratin
thatC can be safely substituted f6f when its language is in-
cluded in the Moore restriction === (V, U)] is identical to
that for Theorem 4.2.

Now supposd¢<(V, /)] is not contained in the Moore re-
striction of [¢“==x (V, U)]. Observe thafp (V, U)] is a Moore
language (by hypothesis is a Moore netlist); by Proposition
4.3, this implies that it is not contained [p<===(V, I/)]. The

acceptd—¢” (X, Y)]. _ _ deciding if a nondeterministic finite automatafiis universal
Step 2) Form an automato#p for the intersection ofd,; i.e., accepts all sequences, is PSPACE-complete [11]. Once an
andAz. automatonM (deterministic or nondeterministic) accepting the

Step 3) Project out the inputsc and y from Ap complement of\ is constructed, checking the emptiness\df
to obtain an automaton .A; accepting is trivial; hence, performing complementation is as difficult as

[(AXIV)(@M (X, U, V,Y) A=¢(X,Y))]. checking universality.
Step 4) Complement, to obtain an automatodc,,,,, for Watanabe and Brayton [35] have successfully constructed
(XA (M (X, U, V,Y) A ¢ (X,Y)). the automatondc,,. accepting[¢<===(V,1/)] on some ex-

We illustrate the construction fad¢, ., by means of an ex- amples. However, the designs they used were synthetic—they

ample. Consider the design specified in Fig. 10. In order to opensisted of randomly composed MCNC benchmarks. Fur-

1158 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 10, OCTOBER 2000

0.1,00) (110,0) (1.0) 0.0

007 00 ~0e 00~ & o

(0.1,00) (1100) ‘0” (00)(1 1)
otherwisa otherwise otherwise otherwise otherwise otherwise
Q TRUE <_> TRUE Q TRUE

Automaton for M(x,u,v,y) Automaton for C(v,u) Automaton for S = (Eu.Ev) [M(x,u,v,y).C(v,u)]

+ 10.0)(1,0)
0.0)(L1)
otherwise otherwise

O TRUE

Automaton for S on xy)

* 0.1,0.0) (1.10.0) (oo)uo)

1,1,0,0) (0,10, 0) w
(1,000) (1LLLD) (1.0) (L1 ©0
wooo \ %7 o110 (0.1,1.0) wo)| (00 (0.0)
otherwise ‘ ©.100) (LLO0) ‘otherwlse otharwnse (0.0) (10) othermse

Q

(LLLID) (1,0 (L1
0.10,1) (0.0) .0

(0.0) (10)

(1,000}
(0.0,0,0)
0.1,00) (1,1,0.0)

Automaton for M(x,u,v,y) . S(x,y) Automaton for (Ex.Ey)[M(x,u,v,y).S(v,u}]

(L1)(01)

ege

(1,0) (0,0

Automaton for Cmax(v,u)

Fig. 11. Constructing the E-machine—circled states are accepting.

thermore, they were small—the component to be synthesizaation for conformance, e.gsimulation [32] which can be

contained at most 18 states, and the entire design contaitested in polynomial time. If we did so, the development of the

at most 336 states. Their results suggest that the final siEemachine would be quite different. Such an approach could

of Ac,... is much smaller than the upper bound we derivedduce complexity, at the cost of completeness.

above. The run times they report vary by orders of magnitude,

and can be very large. In view of the fact that their experimerig Optimization from Automata Specifications

were performed on small and synthetic examples, a definitiveOnce ax-automaton characterizing the set of safe replace-

statement about the average case time and space complexityiefits possible for a component is available, the next step is

constructing4c,,,,, cannot be made at this time. to find an optimal replacement. There are many criteria for
One reason for the high complexity of constructing theptimality such as area, timing, power consumption, etc. One

Ac,..x 1S the fact that we chose language containment as ayarting point is determining a replacement whose underlying

criterion for conformance %(cf. the remarks in Section IFSM is minimum state.

Testing language containment for nondeterministic finite stateNot surprisingly, this is closely related to the problem of min-

automata is PSPACE complete; we could have used a strongeizing anincompletely specified finite state mach{il@FSM)

AZIZ et al: SEQUENTIAL SYNTHESIS USING S1S 1159

[12]. However, there is a subtle distinction: for an incompletel u y X L% fx 3
specified FSM, at a given state, for a specific input, either t u v
next-state and output is fixed, or any output and next-state is Cascade-1 Supervisory Control Rectification-I
lowed. In the context of the E-machine, at a given state, for X y
specific input, a subset of all possible outputs and next—sta‘
may be allowed; this is referred to pseudo-nondeterminism v v Hw2 v
[35]. Watanabe and Brayton [35] explain why the problem c.
flndmg a minimum state FSM.C.OIT.lpathle with qspemﬂcgﬂpgi . 12. A variety of FSM interconnection schemes—the names suggest
given as a pseudo-nondeterministic automaton is more difficgfipiications.

than when the specification is given as an ICFSM.

Cascade-I1 2-way Cascade Rectification-1I

E. An Approximation to the Full Set of Safe Replacements Nnondeterministic automaton as is the case for the automaton ac-
cepting[¢©=== (V, U)]. This follows from the fact that the au-

We now again consider optimization of a compositional d?— e . e
.) N . ; omaton acceptin V,U)] is completely specified and de-
sign with feedback as in Fig. 8. It is of some interest to StUdytgrministic an% fo@ri) e([[(/)IL]IC(V)]] sny qulf)enca will do.

particular subset of the set of safe replacement&fanamely Thus, for any sequence either it is in[¢/2(V)], and then

that corresponding to tthUt don’t care setThis wil h.EIP us any sequence of outputs is allowed (implying that the next-state
better understand previous work; furthermore, we will see that output of the FSM is not specified), @is uniquely deter-
this subset in certain respects is better suited for optimizatio '

Input don't care sequences for are those sequences-at hined. Henpe, the spoc (V, U7)] can be characterizeq by an
which can never be generated in the compositiof @nd M ICFSM, WhICh.’ as Watanabe and Brayton [35] ShOW’. IS easier
S . ' to perform optimization on than a pseudo-nondeterministic au-
intuitively, we are free to change the behaviotdbn such se- tomaton.

?nuisgggrsl’tl)ejgmg to flexibility which can be exploited by opti- Wang and Brayton [33] report results on computing an
. automaton accepting¢“™c(V,U)]. On comparing their

u\éveeisfzajgfdwe;isng d'\goct)rri- P:rtrlfuti ﬁ}s ;efgr?/, ;?t tgr?cljatﬂ-e results with those in [35], we see that an automaton accepting
guag y @ (X UV, Y), [¢<c (V, U)] can be constructed far more efficiently than an

_ 3 C
* lgg?l;i%i%[_C_Fﬁeqr?ﬂnfgo?{tt:;fsrggl%% '(s‘?hlé)s.et defined automaton acceptindp“===(V, {/)]; this is in concordance
initl) inpu ' : with the reasoning above. Again, their examples are small

by the formula and synthetic, so no definitive claims can be made about the
HIPC(V) = ~(QUAX.IY)M (X, U, V.Y) A ¢S (V,U)). practical applicability of their approach.

This formula defines precisely the set of finite sequences whigh General Topologies

can never arise at when M is pomposed witrC; as a CON* e of the benefits of the S1S approach is its generality. For
sequence, any component which seeks to replaée free to le.in th diff loai h for i
roduce any output for inputs which lie in the set defined YA In the past different topologies (schemes or intercon-
ZIDC(V) |¥ect|ng networks) have been studied separately. Using the style
More formally, we have the following theorem: of reasoning given previously, one can easily characterize safe

Theorem 4.5:Let ¢ be a netlist. Ther@ can be safely sub- replacements for components for the topologies in Fig. 12. In all

_stituted forC if the Ian_guage defined by“ (V, U) is contained g?nsaetisc;r:gle ;iglzglﬂjstdbzsﬁggsé in Section IV-B2 to avoid com-
in the x-language defined by the formula Cascade—l(a)¢ (X, U) = (VY)(¢*2(U,Y) — ¢5(X,
Cipc — _4IDC _, 4C) Y.
P L) = ngV) = 9T 0) @) Cascade—I(b)¢*2 (U, Y) = (VX)(¢M(X,U) — ¢5(X,
Proof: Let~ be some sequence of inputs to the compos¥)).
tion of M andC. Note thatv, », andy are uniquely determined ~ Cascade—II$? (U, V) = (VXYY) (P (X, U) A ¢P3(V,
by ~; call the resulting sequencas3, ands. It suffices to show Y) — ¢°(X,Y)).
that applyingy to the composition of/ andC also results in Supervisory Control ¢ (X, Y, U) = ¢7(U, X) — ¢°(X,
a, 3, andé. Y).
Let the result of applying to the composition ofi/ andC Bidirectional Cascade—(a)¢™ (X, V,U) = (VY)(¢p*>
be &, 3, andé. The construction used in Theorem 4.2 to shoW, U,Y) — ¢°(X,Y)).
thaté = «, 3 = 3, andé = & can be applied in this case also, Bidirectional Cascade (b)¢™: (U, V,Y) = (VX) (M1 (X,
and the result follows immediately. B V,U) — ¢5(X,Y)).
A closer analysis of the formula®™c (V, U') demonstrates Rectification—I ¢% (V,U) = (YX.VY)(¢" (X, V,U,Y)
that the corresponding automaton has, in the worst case,$*(X,Y)).
|Sc| - 219ml15el states; contrast this with the automaton for Rectification—Il ¢V (X, V,U,Y) = ¢">(V,U) — ¢°
¢C=ex (V,U) which, as shown in Section IV-C, hat IS¢l (X v).
states in the worst case. It is worth noting that when there is no “hiding” of signals,
Furthermore, the automaton acceptfag e (V, U)] corre- i.e., all inputs and outputs of the components are visible in the
sponds to an incompletely specified FSM, rather than a pseudomposed design, the size of the corresponding automaton is

1160 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 10, OCTOBER 2000

polynomial in the number of states in the component FSMs. This ©90)
is because we begin with deterministic components, and, since
no signals are hidden, there are no projected variables in the o) (10) 01/

(,0)

formula for the automaton (cf. Section Ill-A1—projection can
make a deterministic automaton nondeterministic). This is the

{a.n
case for the Supervisory Control and Rectification-Il examples. (02)4 é\‘;) (‘g g) (Oé
V. SYNTHESIZING PROPERTIES
NP NF NS Uy

L A

) {
Up to this point we have addressed the problem of optimizing 7 '’ (A

components of larger designs. We now examine the problgig_ 13, Infinite tree for realizabilty.
of selecting a component so that the larger design meets user-
specified properties.

The scenario is as follows: Le¥/ be a design on primary Again, the caveats about introducing combinational cycles must
inputz, auxiliary inputu, primary outputy and auxiliary output be taken.

v, exactly as in Fig. 8, and &t be some specification on accept- 1) Realizability: Computing the Buchi automaton for the
able primary input—output fak/. It is natural to ask: does thereformula ¢==(V,U) does not directly answer the existence
exist a desigrC’ which when composed with/ results in the duestion we posed at the beginning of this section. Our question
primary input—output behavior conforming &2 is closely linked to the problem oéalizability. Given anv-lan-

In order to answer this question, we need to formalize tf@lageL C (Xv x X)) accepted by a Buchi automat it
notions of specification and conformance. L8 and &y is natural to ask if there exists a netlist whose corresponding
be the sets of values thatandy can take. A natural way of language is contained ih.
specifying acceptable input—output behaviors zorand y is Note that this can be trivially answered in the affirmative
by specifying a Biichi automaton accepting adanguage When dealing with the optimization problem, since it would suf-
L5 C (¥x x ¥y)¥, ie., for an infinite input sequencefice to use the original component. However, when the spec-

v € %, exactly thoseS € 35 should be produced for which ification is given by an arbitrary Biichi automaton, it may be
(Yo, [6]0), ()1, [611)s (]2 [6]2), .- -) € LS. Similarly, it the case that there is no netlist whose language is contained in
is natural to say that the composition of the composed desi#¢ specification. A necessary condition for the existence of a
conforms tal* if its language is included id>. netlist is that for anyx € X, there exists & € X such

It is preferable to specify the input—output behavior usingat (([a]o; [Blo), ([a]1, [B]1), ([@]2, [B]2),---) € L. However,
w-sequences rather than finite sequences (as we used in dpif condition is not sufficient, because it does not guarantee
mization). This is because the use of Biichi automata allows t@usality the netlist realizingl. must producés]; based only
specification of fairess. This is because whenever we wanta the valueg[alo, [a]1, [a]2, . . ., [a]x).
specify a liveness property, it is invariably necessary to includePnueli and Rosner [23] argue that a necessary and sufficient
a fairness constraint in the description of the systéii this condition for a languagé C (X3 x Xy)* to be realizable by
case). Use of a fairness constraint makes it possible to ignérgetlist is tha{3y|-branching infinite tree must exist, whose
behaviors that correspond to extreme execution scenarios wiiglges are labeled with paifs, «.) such that:
would not occur in any reasonable system. 1) at each vertex, for everyv € >y, there is au € Yy

Let thew-language of” and M be defined by the S1S for- such thafv, «) labels some edge coming out#pf
mulas¢® (V,U) andp™ (X, U, V,Y). Letus re-examinethe ex- 2) for every infinite path from the root of the tree, the se-
pression characterizing the set of safe replacements for a com- quence ofu, v) pairs is an element df.

ponentC’ interacting with desigril/ An example of such a tree, wheka, = {0,1} and>y =
{0,1}, is shown in Fig. 13.
GivenL¢" C (Xv x Xy)“ accepted by a nondeterministic

where¢®(X,Y) = AX.3Y)(¢"(X, U, V,Y) A ¢“(V,U)). Biichi automaton over the alphabet x %, the following is

We argued that any netligt whose language was included i procedure for determining if a netlistexists whose language

. I
[¢Cm==(V, U)] would be a safe replacement 0¥ i.e., compo- Is contained in.® . _ o

sition of C' with M would result a netlist whose language was 1) Use the construction of [27] to determinize the automaton
contained in[¢° (X, Y)]. C™ to obtain a deterministic Streett automaton.

Now supposes (X, Y) was some arbitrary specification on 2) In this Streett automaton, project the symbols of the al-
the input-output behavior G¥/, as discussed above. Exactlythe ~ Phabe®y x %y down toXy . Interpret the new structure
same arguments as were used in proving Theorem 4.2 can be &S @ Streett automaton eesand check for tree empti-
applied to prove the following: ness [24].

Theorem 5.1:The composition of netlis€ with netlist A Asis shownin[23], an implementable controller (a netlist in our
conforms to the Biichi specificatiaf® (X, Y") if and only if the ~ context) exists if and only if the tree emptiness check is negative;
language of” is included in the language defined by the formulghis approach will produce an implementation if one exists.

The complexity of this procedure is very high—the construc-

PG (V,U) = (VXYY)M (X, U, V,Y) — ¢°(X,Y)). tion of the deterministic Streett automaton potentially yields an

PCmex(V.U) = (VANVY)(¢™ (X, U V,Y) — ¢3(X.Y))

AZIZ et al: SEQUENTIAL SYNTHESIS USING S1S

1161

automaton whose state-space is exponentighjn and doubly richer systems, such as those which include timing functionality
exponential inSs. Furthermore, the tree-emptiness check isnd statistical behavior, can be studied in our framework.
NP-complete; the algorithm of [23] has complexity polynomial In a broader context, the ideas brought forward in this paper
in the number of states and exponential in the number démonstrate the power and elegance of employing mathemat-

accepting pairs of the Streett automaton.

ical logic to solve problems in design automation. We hope this

paper will motivate researchers in EDA to learn more about
mathematical logic; we recommend the excellent textbook of

VI. SUMMARY

We have proposed the logic S1S as a formalism to describe
permissible behaviors of an FSM interacting with other FSMs.
We believe that this framework offers several advantages.

First, for any S1S formula it is possible to generate autom
ically an automaton describing the same behaviors as the for-
mula. Thus, fully automatic synthesis is possible that takes into
account all available degrees of freedom. In practice, the gener-
ated automaton is often too large to handle with state-of-the-artil
optimization algorithms. Nevertheless, S1S provides a rigorou%Z]
framework in which one can prove that a set of behaviors used as
a don’t-care condition indeed represents permissible behaviors
of the system. This allows easy development of a spectrum o
methods that explore trade-offs between flexibility provided by
the information about the environment, and the price of storing[4]
and using this information—on one side of the spectrum is the 5]
optimization of a component in isolation, and on the other side
is the construction of the E-machine. A concrete example of this
trade-off was presented in Section IV-D, where we saw that by[6]
restricting our attention to the flexibility afforded by input don’t
care sequences, we arrived at an approximation which was sig-!
nificantly more tractable. The formalism S1S provides a system—[S]
atic and simple way of reducing the problem of optimizing inter-
acting FSMs to optimizing a single FSM, with different methods
generating FSMs of different sizes. Thus, any future improve—[9
ment in FSM optimization algorithms will provide immediate [10]
benefits to optimization of interacting FSMs.

Second, in contrast to previous approaches, our approach ['ﬁ]
easily extended to different interconnection topologies. In this
paper we have derived specifications of permissible behavior$?]
for several topologies, some of which have not been previously
investigated. By observing specifications for different topolo-
gies we were able to formulate the following general principle:[13]
if a component FSM can observe values of all the signals in thF14
system, then the size of its E-machine is polynomial; otherwise
it is exponential.

Finally, our approach immediately generalizes to the syn£15]
thesis of properties, such as safety and liveness. In doing so,
we have also shed some light on the relationship between intef]
pretations of the term “synthesis” in different communities.

Future Work: There are a number of ways in which this work [17]
can be extended. Experiments need to be performed on a mean-
ingful set of examples to see how the proposed procedures P&y
form in the average case. Additionally, studies can be made on
the use of partitioning and peephole optimization techniques (d$°]
are used in combinational logic synthesis) to reduce complexi%O]
when dealing with large designs.

Our approach should be applicable to software synthesis, af!]
plications of which include optimizing embedded controllers, ;5
and hardware-software co-design. Similarly, the synthesis of

Enderton [9] to interested readers.

ACKNOWLEDGMENT

The authors would like to thank V. Singhal for his help with
eveloping the notation used in this paper, and the reviewers for
eir detailed feedback.

REFERENCES

S. S. Bhattacharyya, P. K. Murthy, and E. A. L&gftware Synthesis
from Dataflow Graphs Norwell, MA: Kluwer Academic, 1996.

J. R. Buchi, “On a decision method in restricted second order arith-
metic,” in Proc. Int. Congress Logic, Methodology, and Philosophy of
Science 1960, pp. 1-11.

3] J. R. Burch, D. L. Dill, E. Wolf, and G. D. Micheli, “Modeling hierar-

chical combinational circuits,” ifProc. Int. Conf. Computer-Aided De-
sign, Nov. 1993, pp. 612-617.

Y. Choueka, “Theories of automata on omega-tapes: A simplified ap-
proach,”JCSSvol. 8, no. 2, pp. 117-141, 1974.

S. Devadas, “Optimizing interacting finite state machines using sequen-
tial don't cares,lEEE Trans. Computer-Aided Desigop. 1473-1484,
Dec. 1991.

M. DiBenedetto, A. Saldanha, and A. Sangiovanni-Vincentelli, “Model
matching for finite state machines,” presented at the IEEE Conf. Deci-
sion and Control, Dec. 1994.

C. C. Elgot, “Decision problems of finite automation design and related
decision problems,Trans. Amer. Math. Socvol. 98, pp. 21-52, 1961.
Formal models and semantics (Handbook of Theoretical Computer Sci-
ence) vol. B, J. van Leeuwen, Ed., Elsevier Science, Amsterdam, The
Netherlands, 1990, pp. 996-1072.

] H. Enderton A Mathematical Introduction to Logic New York: Aca-

demic, 1972.

J. Fron, J. C.-Y. Yang, M. Damiani, and G. De Micheli, “A synthesis
framework based on trace and automata theoryPrac. Int. Symp. Cir-
cuits and System$lay 1994, pp. 291-294.

M. R. Garey and D. S. Johnso@pmputers and Intractability San
Francisco, CA: Freeman, 1979.

G. D. Hachtel, J.-K. Rho, F. Somenzi, and R. Jacoby, “Exact and
heuristic algorithms for the minimization of incompletely specified
state machines,” ifProc. Eur. Conf. Design Automatipimsterdam,
The Netherlands, Feb. 1991, pp. 184-191.

J. E. Hopcroft and J. D. Ulimamntroduction to Automata Theory, Lan-
guages and Computation Reading, MA: Addison-Wesley, 1979.

] O. H. Jensen, J. T. Lang, C. Jeppesen, and K. G. Larsen, “Model con-

struction for implicit specifications in modal logic,” inecture Notes in
Computer Science Berlin, Germany: Springer-Verlag, 1993, vol. 715.
T. Kam, “State minimization of finite state machines using implicit tech-
niques,” Ph D dissertation, Electron. Res. Lab., College Eng., Univ. Cal-
ifornia, Berkeley, May 1995.

T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli, “A fully
implicit algorithm for exact state minimization,” iRroc. Design Au-
tomation Conf.June 1994, pp. 684—690.

J. Kimand M. M. Newborne, “The simplification of sequential machines
with input restrictions,1RE Trans. Electron. Compuipp. 1440-1443,
Dec. 1972.

R. P. KurshanAutomata-Theoretic Verification of Coordinating Pro-
cesses Princeton, NJ: Princeton Univ. Press, 1993.

S. Malik, “Analysis of cyclic combinational circuits|EEE Trans. Com-
puter-Aided Designvol. 13, pp. 950-956, July 1994.

Z. Manna and J. Waldinger, “Toward automatic program synthesis,”
Commun. ACMvol. 14, no. 3, pp. 151-165, Mar. 1971.

G. De Micheli, Synthesis and Optimization of Digital CircuitsNew
York: McGraw Hill, 1994.

J. Parrow, “Submodule construction and equation solving in CTigg*
oretical Comput. Scivol. 68, 1989.

1162

(23]

(24]
(25]

(26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 10, OCTOBER 2000

A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” | Felice Balarin (S5'90-M'95) received the Ph.D. de-
Proc. ACM Symp. Principles of Programming Languagk389, pp. gree in electrical engineering and computer science
179-190. from the University of California at Berkeley in 1994.
M. O. Rabin, Automata on Infinite Objects and Church’'s He has been a Research Scientist with the Ca-
Problem Providence, RI: Amer. Math. Soc., 1971. dence Berkeley Labs., Berkeley, CA, since 1994. His
P. Ramadge and W. Wonham, “The control of discrete event system research is focused on development and application
Proc. IEEE vol. 77, pp. 81-98, 1989. of formal methods to design, verification and timing
J.-K. Rho, G. Hachtel, and F. Somenzi, “Don’t care sequences and i analysis of systems consisting of both hardware and
optimization of interacting finite state machines,” Broc. Int. Conf. software.

Computer-Aided DesigmNov. 1991, pp. 418-421.
S. Safra, “Complexity of Automata on Infinite Objects,” Ph.D. disseta-
tion, The Weizmann Inst. Sci., Rehovot, Israel, Mar. 1989.

H. Savoj, “Don’t Cares in Multi-Level Network Optimization,” PhD
thesis, The University of California at Berkeley, Electronics Resear
Laboratory, College of Engineering, University of California, Berkele
CA, May 1992.

T. R. Shiple, “Formal Analysis of Synchronous Hardware,” Ph.D. dig
sertation, Electron. Res. Lab., College Eng., Univ. California, Berkele
CA, 1996.

V. Singhal, “Design Replacements for Sequential Circuits,” Ph.D. di¢
sertation, Electron. Res. Lab., College Eng., Univ. California, Berkele
CA, 1996.

Robert K. Brayton (M'75-SM'78-F'81) received
the B.S.E.E. degree from lowa State University,
Ames, in 1956 and the Ph.D. degree in mathematics
from Massachusetts Institute of Technology, Cam-
bridge, in 1961.

From 1961 to 1987 he was a member of the Mathe-
matical Sciences Department of the IBM T. J. Watson
Research Center, Yorktown Heights, NY. In 1987, he
joined the Electrical Engineering and Computer Sci-
Formal models and semantics (Handbook of Theoretical Computer Sj ence Department at the University of California at
ence) vol. B, J. van Leeuwen, Ed., Elsevier Science, Amsterdam, T Berkeley, where he is the Cadence Distinguished Pro-
Netherlands, 1990, pp. 133-191. fessor of Engineering and the director of the SRC Center of Excellence for De-
R. J. van Glabbeek, “Comparative Concurrency Semantics and Refirggn Sciences. He has authored over 400 technical papers, and eight books. His
ment of Actions,” PhD thesis, Centrum voor Wiskunde en Informaticgiast contributions have been in analysis of nonlinear networks, electrical sim-
Vrije Universiteit te Amsterdam, Amsterdam, The Netherlands, Maplation and optimization of circuits, and asynchronous synthesis. His current
1990. research involves combinational and sequential logic synthesis for area/perfor-
H.-Y. Wang and R. K. Brayton, “Input don’t care sequences in FSM neinance/testability, formal design verification and synthesis for DSM designs.
works,” inProc. Int. Conf. Computer-Aided Desigt893, pp. 321-328. Dr. Brayton held the Edgar L. and Harold H. Buttner Endowed Chair in Elec-
—, "Permissible observability relations in FSM networks,"Rroc. trical Engineering at Berkeley. He is a member of the National Academy of
Design Automation Conflune 1994, pp. 677-683. Engineering, and a Fellow the AAAS. He received the 1991 IEEE CAS Tech-
Y. Watanabe and R. K. Brayton, “The maximum set of permissible bexcal Achievement Award, the IEEE CAS Golden Jubilee Medal, and five best
haviors for FSM networks,” ifProc. Int. Conf. Computer-Aided Design paper awards, including the 1971 IEEE Guilleman-Cauer award, and the 1987
1993, pp. 316-320. ISCAS Darlington award. He was the editor of ttmurnal on Formal Methods
H. Wong-Toi and D. L. Dill, “Synthesizing processes and scheduleif Systems Designom 1992—-1996. He received the CAS Golden Jubilee Medal
from temporal specifications,” iRroc. 2nd Workshop Computer-Aided and the IEEE Millennium Medal in 2000.

Verification, 1990, pp. 272-281.

W. Wonham and P. Ramadge, “On the supremal controllable language

of a given language SIAM J. Contr. Optimizatigrvol. 25, pp. 637-659,
1988.

Alberto Sangiovanni-Vincentelli (M'74-SM’'81—
F'83) received the electrical engineering and
computer science degree (“Dottore in Ingegneria”)
summa cum laudéom the Politecnico di Milano,
Milano, Italy in 1971.
He holds the Edgar L. and Harold H. Buttner Chair
of Electrical Engineering and Computer Sciences at
the University of California at Berkeley, where he
has been on the Faculty since 1976. In 1980-1981,
he spent a year as a Visiting Scientist at the Mathe-
matical Sciences Department of the IBM T.J. Watson
Research Center, Yorktown Heights, NY. In 1987, he was Visiting Professor
at Massachusetts Institute of Technology, Cambridge. He was a co-founder of
Cadence and Synopsys, two leading companies in the area of electronic design
automation. He was a Director of ViewLogic and Pie Design System and Chair
of the Technical Advisory Board of Synopsys. He is the Chief Technology Ad-
Adnan Aziz received the undergraduate degree fronvisor of Cadence Design System. He is a member of the Board of Directors
the Indian Institute of Technology, Kanpurthe, India.of Cadence, where he is the Chairman of the Nominating Committee, Sonics
Hereceivedthe Ph.D. degree in electrical engineerintnc., and Accent, an ST-Cadence joint venture. He is the founder of the Ca-
and computer sciences from The University of Cali-dence Berkeley Laboratories and of the Cadence European laboratories. He is
fornia at Berkeley in 1996. the Scientific Director of the Project on Advanced Research on Architectures
He joined The University of Texas, Austin, in and Design of Electronic Systems (PARADES), a European Group of Economic
the Spring of 1996. His research interests lie irinterest supported by Cadence, Magneti-Marelliand ST Microelectronics. He is
algorithms for design and verification, particularly in an author of over 520 papers and ten books in the area of design methodologies,
the area of VLSI; he has made contributions to bottlarge-scale systems, embedded controllers, hybrid systems and tools.
the theory and practice of synthesizing and verifying In 1981 Dr. Sangiovanni-Vincentelli received the Distinguished Teaching
digital systems. More specifically, he has written aAward of the University of California. He received the worldwide 1995

number of papers on design verification and sequential synthesis. AdditionaBraduate Teaching Award of the IEEE (a Technical Field award for “inspi-
he is one of the architects of the VIS system, a software tool that is widely usedional teaching of graduate students”). He has received numerous awards
for formal verification. His current interests include enhancing simulation witimcluding the Guillemin-Cauer Award (1982—-1983) and the Darlington Award
symbolic algorithms, and integration of logic synthesis with physical design.(1987-1988). He is a Member of the National Academy of Engineering.

