
This is page 119
Printer: Opaque this

Lecture 17

Two-Way Finite Automata

Two-way finite automata are similar to the machines we have been study-
ing, except that they can read the input string in either direction. We think
of them as having a read head, which can move left or right over the input
string. Like ordinary finite automata, they have a finite set Q of states and
can be either deterministic (2DFA) or nondeterministic (2NFA).
Although these automata appear much more powerful than one-way finite
automata, in reality they are equivalent in the sense that they only accept
regular sets. We will prove this result using the Myhill–Nerode theorem.
We think of the symbols of the input string as occupying cells of a finite
tape, one symbol per cell. The input string is enclosed in left and right
endmarkers ` and a, which are not elements of the input alphabet Σ. The
read head may not move outside of the endmarkers.

` a1 a2 a3 a4 a5 a6 a7 · · · an a

%6Q

Informally, the machine starts in its start state s with its read head pointing
to the left endmarker. At any point in time, the machine is in some state q
with its read head scanning some tape cell containing an input symbol ai or
one of the endmarkers. Based on its current state and the symbol occupying

120 Lecture 17

the tape cell it is currently scanning, it moves its read head either left or
right one cell and enters a new state. It accepts by entering a special accept
state t and rejects by entering a special reject state r. The machine’s action
on a particular state and symbol is determined by a transition function δ
that is part of the specification of the machine.

Example 17.1 Here is an informal description of a 2DFA accepting the set

A = {x ∈ {a, b}∗ | #a(x) is a multiple of 3 and #b(x) is even}.

The machine starts in its start state scanning the left endmarker. It scans
left to right over the input, counting the number of a’s mod 3 and ignoring
the b’s. When it reaches the right endmarker a, if the number of a’s it
has seen is not a multiple of 3, it enters its reject state, thereby rejecting
the input—the input string x is not in the set A, since the first condition
is not satisfied. Otherwise it scans right to left over the input, counting
the number of b’s mod 2 and ignoring the a’s. When it reaches the left
endmarker ` again, if the number of b’s it has seen is odd, it enters its
reject state; otherwise, it enters its accept state. 2

Unlike ordinary finite automata, a 2DFA needs only a single accept state
and a single reject state. We can think of it as halting immediately when
it enters one of these two states, although formally it keeps running but
remains in the accept or reject state. The machine need not read the entire
input before accepting or rejecting. Indeed, it need not ever accept or reject
at all, but may loop infinitely without ever entering its accept or reject
state.

Formal Definition of 2DFA

Formally, a 2DFA is an octuple

M = (Q, Σ, `, a, δ, s, t, r),

where

• Q is a finite set (the states),

• Σ is a finite set (the input alphabet),

• ` is the left endmarker, ` 6∈ Σ,

• a is the right endmarker, a 6∈ Σ,

• δ : Q× (Σ ∪ {`,a}) → (Q× {L,R}) is the transition function (L,R
stand for left and right, respectively),

• s ∈ Q is the start state,

• t ∈ Q is the accept state, and

Two-Way Finite Automata 121

• r ∈ Q is the reject state, r 6= t,

such that for all states q,

δ(q,`) = (u,R) for some u ∈ Q,
δ(q,a) = (v, L) for some v ∈ Q, (17.1)

and for all symbols b ∈ Σ ∪ {`},

δ(t, b) = (t, R), δ(r, b) = (r,R),
δ(t,a) = (t, L), δ(r,a) = (r, L). (17.2)

Intuitively, the function δ takes a state and a symbol as arguments and
returns a new state and a direction to move the head. If δ(p, b) = (q, d),
then whenever the machine is in state p and scanning a tape cell containing
symbol b, it moves its head one cell in the direction d and enters state q.
The restrictions (17.1) prevent the machine from ever moving outside the
input area. The restrictions (17.2) say that once the machine enters its
accept or reject state, it stays in that state and moves its head all the way
to the right of the tape. The octuple is not a legal 2DFA if its transition
function δ does not satisfy these conditions.

Example 17.2 Here is a formal description of the 2DFA described informally in Example
17.1 above.

Q = {q0, q1, q2, p0, p1, t, r},
Σ = {a, b}.

The start, accept, and reject states are q0, t, and r, respectively. The tran-
sition function δ is given by the following table:

` a b a
q0 (q0, R) (q1, R) (q0, R) (p0, L)
q1 − (q2, R) (q1, R) (r, L)
q2 − (q0, R) (q2, R) (r, L)
p0 (t, R) (p0, L) (p1, L) −
p1 (r,R) (p1, L) (p0, L) −
t (t, R) (t, R) (t, R) (t, L)
r (r,R) (r,R) (r,R) (r, L)

The entries marked − will never occur in any computation, so it doesn’t
matter what we put here. The machine is in states q0, q1, or q2 on the first
pass over the input from left to right; it is in state qi if the number of a’s it
has seen so far is i mod 3. The machine is in state p0 or p1 on the second
pass over the input from right to left, the index indicating the parity of the
number of b’s it has seen so far. 2

122 Lecture 17

Configurations and Acceptance

Fix an input x ∈ Σ∗, say x = a1a2 · · · an. Let a0 = ` and an+1 = a. Then

a0a1a2 · · · anan+1 = ` x a .

A configuration of the machine on input x is a pair (q, i) such that q ∈ Q
and 0 ≤ i ≤ n + 1. Informally, the pair (q, i) gives a current state and
current position of the read head. The start configuration is (s, 0), meaning
that the machine is in its start state s and scanning the left endmarker.

A binary relation 1−→
x

, the next configuration relation, is defined on con-
figurations as follows:

δ(p, ai) = (q, L) ⇒ (p, i) 1−→
x

(q, i− 1),

δ(p, ai) = (q,R) ⇒ (p, i) 1−→
x

(q, i+ 1).

The relation 1−→
x

describes one step of the machine on input x. We define
the relations n−→

x
inductively, n ≥ 0:

• (p, i) 0−→
x

(p, i); and

• if (p, i) n−→
x

(q, j) and (q, j) 1−→
x

(u, k), then (p, i) n+1−→
x

(u, k).

The relation n−→
x

is just the n-fold composition of 1−→
x

. The relations
n−→
x

are functions; that is, for any configuration (p, i), there is exactly one
configuration (q, j) such that (p, i) n−→

x
(q, j). Now define

(p, i) ∗−→
x

(q, j) def⇐⇒ ∃n ≥ 0 (p, i) n−→
x

(q, j).

Note that the definitions of these relations depend on the input x. The
machine is said to accept the input x if

(s, 0) ∗−→
x

(t, i) for some i.

In other words, the machine enters its accept state at some point. The
machine is said to reject the input x if

(s, 0) ∗−→
x

(r, i) for some i.

In other words, the machine enters its reject state at some point. It cannot
both accept and reject input x by our assumption that t 6= r and by
properties (17.2). The machine is said to halt on input x if it either accepts
x or rejects x. Note that this is a purely mathematical definition—the
machine doesn’t really grind to a halt! It is possible that the machine
neither accepts nor rejects x, in which case it is said to loop on x. The set
L(M) is defined to be the set of strings accepted by M .

Two-Way Finite Automata 123

Example 17.3 The 2DFA described in Example 17.2 goes through the following sequence
of configurations on input aababbb, leading to acceptance:

(q0, 0), (q0, 1), (q1, 2), (q2, 3), (q2, 4), (q0, 5), (q0, 6), (q0, 7), (q0, 8),
(p0, 7), (p1, 6), (p0, 5), (p1, 4), (p1, 3), (p0, 2), (p0, 1), (p0, 0), (t, 1).

It goes through the following sequence of configurations on input aababa,
leading to rejection:

(q0, 0), (q0, 1), (q1, 2), (q2, 3), (q2, 4), (q0, 5), (q0, 6), (q1, 7), (r, 6).

It goes through the following sequence of configurations on input aababb,
leading to rejection:

(q0, 0), (q0, 1), (q1, 2), (q2, 3), (q2, 4), (q0, 5), (q0, 6), (q0, 7),
(p0, 6), (p1, 5), (p0, 4), (p0, 3), (p1, 2), (p1, 1), (p1, 0), (r, 1). 2

This is page 124
Printer: Opaque this

Lecture 18

2DFAs and Regular Sets

In this lecture we show that 2DFAs are no more powerful than ordinary
DFAs. Here is the idea. Consider a long input string broken up in an ar-
bitrary place into two substrings xz. How much information about x can
the machine carry across the boundary from x into z? Since the machine
is two-way, it can cross the boundary between x and z several times. Each
time it crosses the boundary moving from right to left, that is, from z into
x, it does so in some state q. When it crosses the boundary again moving
from left to right (if ever), it comes out of x in some state, say p. Now if
it ever goes into x in the future in state q again, it will emerge again in
state p, because its future action is completely determined by its current
configuration (state and head position). Moreover, the state p depends only
on q and x. We will write Tx(q) = p to denote this relationship. We can
keep track of all such information by means of a finite table

Tx : (Q ∪ {•}) → (Q ∪ {⊥}),

where Q is the set of states of the 2DFA M , and • and ⊥ are two other
objects not in Q whose purpose is described below.
On input xz, the machine M starts in its start state scanning the left end-
marker. As it computes, it moves its read head. The head may eventually
cross the boundary moving left to right from x into z. The first time it
does so (if ever), it is in some state, which we will call Tx(•) (this is the
purpose of •). The machine may never emerge from x; in this case we

2DFAs and Regular Sets 125

write Tx(•) = ⊥ (this is the purpose of ⊥). The state Tx(•) gives some
information about x, but only a finite amount of information, since there
are only finitely many possibilities for Tx(•). Note also that Tx(•) depends
only on x and not on z: if the input were xw instead of xz, the first time
the machine passed the boundary from x into w, it would also be in state
Tx(•), because its action up to that point is determined only by x; it hasn’t
seen anything to the right of the boundary yet.
If Tx(•) = ⊥,M must be in an infinite loop inside x and will never accept or
reject, by our assumption about moving all the way to the right endmarker
whenever it accepts or rejects.
Suppose that the machine does emerge from x into z. It may wander around
in z for a while, then later may move back into x from right to left in state
q. If this happens, then it will either

• eventually emerge from x again in some state p, in which case we
define Tx(q) = p; or

• never emerge, in which case we define Tx(q) = ⊥.

Again, note that Tx(q) depends only on x and q and not on z. If the machine
entered x from the right on input xw in state q, then it would emerge again
in state Tx(q) (or never emerge, if Tx(q) = ⊥), because M is deterministic,
and its behavior while inside x is completely determined by x and the state
it entered x in.
If we write down Tx(q) for every state q along with Tx(•), this gives all
the information about x one could ever hope to carry across the boundary
from x to z. One can imagine an agent sitting to the right of the boundary
between x and z, trying to obtain information about x. All it is allowed
to do is observe the state Tx(•) the first time the machine emerges from x
(if ever) and later send probes into x in various states q to see what state
Tx(q) the machine comes out in (if at all). If y is another string such that
Ty = Tx, then x and y will be indistinguishable from the agent’s point of
view.
Now note that there are only finitely many possible tables

T : (Q ∪ {•}) → (Q ∪ {⊥}),

namely (k + 1)k+1, where k is the size of Q. Thus there is only a finite
amount of information about x that can be passed across the boundary to
the right of x, and it is all encoded in the table Tx.
Note also that if Tx = Ty and M accepts xz, then M accepts yz. This is
because the sequence of states the machine is in as it passes the boundary
between x and z (or between y and z) in either direction is completely
determined by the table Tx = Ty and z. To accept xz, the machine must
at some point be scanning the right endmarker in its accept state t. Since

126 Lecture 18

the sequence of states along the boundary is the same and the action when
the machine is scanning z is the same, this also must happen on input yz.
Now we can use the Myhill–Nerode theorem to show that L(M) is regular.
We have just argued that

Tx = Ty ⇒ ∀z (M accepts xz ⇐⇒M accepts yz)
⇐⇒ ∀z (xz ∈ L(M)⇐⇒ yz ∈ L(M))
⇐⇒ x ≡L(M) y,

where ≡L(M) is the relation first defined in Eq. (16.1) of Lecture 16. Thus
if two strings have the same table, then they are equivalent under ≡L(M).
Since there are only finitely many tables, the relation ≡L(M) has only
finitely many equivalence classes, at most one for each table; therefore,
≡L(M) is of finite index. By the Myhill–Nerode theorem, L(M) is a regular
set.

Constructing a DFA

The argument above may be a bit unsatisfying, since it does not explicitly
construct a DFA equivalent to a given 2DFA M . We can easily do so,
however. Intuitively, we can build a DFA whose states correspond to the
tables.
Formally, define

x ≡ y def⇐⇒ Tx = Ty.

That is, call two strings in Σ∗ equivalent if they have the same table. There
are only finitely many equivalence classes, at most one for each table; thus
≡ is of finite index. We can also show the following:

(i) The table Txa is uniquely determined by Tx and a; that is, if Tx = Ty,
then Txa = Tya. This says that ≡ is a right congruence.

(ii) Whether or not x is accepted by M is completely determined by Tx;
that is, if Tx = Ty, then either both x and y are accepted by M or
neither is. This says that ≡ refines L(M).

These observations together say that ≡ is a Myhill–Nerode relation for
L(M). Using the construction ≡ 7→ M≡ described in Lecture 15, we can
obtain a DFA for L(M) explicitly.
To show (i), we show how to construct Txa from Tx and a.

• If p0, p1, . . . , pk, q0, q1, . . . , qk ∈ Q such that δ(pi, a) = (qi, L) and
Tx(qi) = pi+1, 0 ≤ i ≤ k − 1, and δ(pk, a) = (qk, R), then Txa(p0) =
qk.

2DFAs and Regular Sets 127

• If p0, p1, . . . , pk, q0, q1, . . . , qk−1 ∈ Q such that δ(pi, a) = (qi, L) and
Tx(qi) = pi+1, 0 ≤ i ≤ k − 1, and pk = pi, i < k, then Txa(p0) = ⊥.

• If p0, p1, . . . , pk, q0, q1, . . . , qk ∈ Q such that δ(pi, a) = (qi, L), 0 ≤ i ≤
k, Tx(qi) = pi+1, 0 ≤ i ≤ k − 1, and Tx(qk) = ⊥, then Txa(p0) = ⊥.

• If Tx(•) = ⊥, then Txa(•) = ⊥.

• If Tx(•) = p, then Txa(•) = Txa(p).

For (ii), suppose Tx = Ty and consider the sequence of states M is in as it
crosses the boundary in either direction between the input string and the
right endmarker a. This sequence is the same on input x as it is on input
y, since it is completely determined by the table. Both strings x and y are
accepted iff this sequence contains the accept state t.
We have shown that the relation ≡ is a Myhill–Nerode relation for L(M),
where M is an arbitrary 2DFA. The construction ≡ 7→ M≡ of Lecture 15
gives a DFA equivalent to M . Recall that in that construction, the states of
the DFA correspond in a one-to-one fashion with the ≡-classes; and here,
each ≡-class [x] corresponds to a table Tx : (Q ∪ {•})→ (Q ∪ {⊥}).
If we wanted to, we could build a DFA M ′ directly from the tables:

Q′
def= {T : (Q ∪ {•})→ (Q ∪ {⊥})},

s′
def= Tε,

δ′(Tx, a)
def= Txa,

F ′
def= {Tx | x ∈ L(M)}.

The transition function δ′ is well defined because of property (i), and Tx ∈
F ′ iff x ∈ L(M) by property (ii). As usual, one can prove by induction on
|y| that

δ̂′(Tx, y) = Txy;

then

x ∈ L(M ′) ⇐⇒ δ̂′(s′, x) ∈ F ′

⇐⇒ δ̂′(Tε, x) ∈ F ′

⇐⇒ Tx ∈ F ′

⇐⇒ x ∈ L(M).

Thus L(M ′) = L(M).
Another proof, due to Vardi [113], is given in Miscellaneous Exercise 61.

128 Lecture 18

Historical Notes

Two-way finite automata were first studied by Rabin and Scott [96] and
Shepherdson [105]. Vardi [113] gave a shorter proof of equivalence to DFAs
(Miscellaneous Exercise 61).

