In today’s lecture, we continue our study of error-correcting codes.

1 The Singleton Bound

We establish a simple trade-off between dimension and distance that any linear code satisfies.

Theorem 1.1. Any \([n, k, d]_q\) code must satisfy

\[k + d \leq n + 1 \]

Proof: Let \(C \) be an \([n, k, d]_q\) code. Let code \(C_1 \) be almost the same as \(C \) except with the first symbol removed from each codeword. The block size will now be of size \(n - 1 \). The Hamming distance will now be at least \(d - 1 \). This is because we are only removing one bit (one less possible differing bit) from the codewords produced by \(C \).

\[C^1 \rightarrow [n - 1, k, \geq d - 1]_q \]

We can now remove the first \(i \) symbols to produce code \(C^i \)

\[C^i \rightarrow [n - i, k, \leq d - i] \]

Choose \(i = d - 1 \)

\[C^{d-1} \rightarrow [n - (d - 1), k, 1] \]

The block size must be greater than or equal to the dimension of the code which gives us the singleton bound.

\[n - (d - 1) \geq k \]

\[k + d \leq n + 1 \]

This makes sense conceptually because as the number of messages increases, the more codewords you need to pack into \(\mathbb{F}^n \), and thus the distance must decrease.

2 Welch-Berlekamp Algorithm

Recall the Reed Solomon code: given a message \(\vec{a} \in \mathbb{F}^k \), we view it as the polynomial \(P_\vec{a}(x) = \sum_{i=0}^{k-1} a_i x^i \). Fix \(S = \{ \varphi_1, \varphi_2, ... \varphi_n \} \), and the codeword is produced as follows

\[a = (a_1, a_2, ..., a_{k-1}) \rightarrow (P_\vec{a}(\varphi_1), P_\vec{a}(\varphi_2), ..., P_\vec{a}(\varphi_n)) = c \in \mathbb{F}^n \]

The codeword is now sent through a noisy channel that makes \(e \) errors (i.e., changes at most \(e \) symbols).

\[c \xrightarrow{\text{noisy channel}} c' \in \mathbb{F}^n \]
We can represent \(c' \) as a function \(f \) that evaluates to the corresponding symbols in \(c' \) on all the points in \(S \)

\[
f : \mathbb{F} \rightarrow \mathbb{F} \quad \forall i \in [n], \ f(\varphi_i) = c'_i
\]

A key definition towards developing the algorithm for error-correcting RS codes is the following:

Definition 2.1. An Error-Locator Polynomial is a polynomial \(E \) is such that

\[
E(x) = 0 \iff f(x) \neq P_{\vec{a}}(x)
\]

In other words, \(E \) has a root whenever \(f \) and \(P_{\vec{a}} \) differ.

Observation 2.2. There exists a polynomial \(E \) of degree equal to \(e \) (the number of errors).

Proof: Let \(\{\beta_1, \beta_2, ..., \beta_e\} \) be the locations of the errors (all \(x \) where \(f(x) \neq P_{\vec{a}}(x) \))

\[
E(x) = \prod_{i=1}^{e} (x - \beta_i)
\]

The following is a simple but key identity.

Observation 2.3. \(\forall x \in S, \ f(x)E(x) = P_{\vec{a}}(x)E(x) \)

When \(f(x) \) and \(P_{\vec{a}}(x) \) differ, \(E(x) = 0 \) so the equality holds. When \(f(x) \) and \(P_{\vec{a}}(x) \) agree, the equality also clearly holds.

Now that we have proven the existence of \(E \) let

\[
E(x) = \sum_{i=0}^{e} \gamma_i x^i
\]

\[
P_{\vec{a}}(x) = \sum_{i=0}^{k-1} a_i x^i
\]

We can now construct a system of equations by plugging in the values in \(S \).

\[
\forall x \in S, \ f(x)E(x) = P_{\vec{a}}E(x) \quad (7)
\]

Notice that this is a quadratic system of equations, and in general this is NP-hard. There is a clever way to avoid this that will result in an efficient algorithm.

The Welch-Berlekamp Algorithm

On input \(c' \) or \(f \), let \(N(x) = \sum_{i=1}^{e+k-1} n_i x_i \).

Let \(E(x) = \sum_{i=0}^{e} \gamma_i x_i \).

Solve for \(\{n_i, \gamma_i\} \) in the following system of equations

\[
\forall x \in S, \ f(x)E(x) = N(x) \quad (8)
\]

Output \(p = N/E \).

Proof: We start off by observing that by choosing \(E^* = \prod_{i=1}^{e} (x - \beta_i) \) and \(N^* = P_{\vec{a}}(x)E(x) \),
indeed \(N^*, E^* \) satisfy \(\forall x \in S, \ f(x)E^*(x) = N^*(x) \).

Thus, if we can show that for any \((N_1, E_1)\) and \((N_2, E_2)\) that satisfy

\[
f(x)E(x) = N(x)
\]

then \(N_1/E_1 = N_2/E_2 \), the correctness of the algorithm will follow.

Let \(Q \equiv N_1(x)E_2(x) - N_2(x)E_1(x) \).

\[
\forall y \in S, \ N_1(y)E_2(y) = f(y)E_1(y)E_2(y) = E_1(y)f(y)E_2(y) = E_1(y)N_2(y)
\]

All \(x \in S \) are roots of \(Q \) (recall \(|S| = n\)). Additionally, we note that \(\deg(Q) \leq 2e + k - 1 \).

Recall that the Reed Solomon code has distance \(d = n - (k - 1) \), and thus combinatorially we can only correct codes up with \(e \) less than \(\frac{d}{2} \). So \(e < \frac{n-(k-1)}{2} \), or \(2e + k - 1 < n \).

\[
\deg(Q) \leq 2e + k - 1 < n
\]

\(Q \) has \(n \) roots but has degree less than \(n \) so \(Q \) must be the zero polynomial. This means \(N_1/E_1 = N_2/E_2 \), which finishes the proof of correctness.

3 Reed-Muller Codes

We now introduce a multivariate version of the Reed Solomon code.

Definition 3.1. The Reed-Muller code with \(m \) variables and degree \(r \), \(RS(m,r)_2 \) is constructed using a multivariate polynomial of at degree at most \(r \).

\[
P(x_1, x_2, ..., x_m) = \sum_{I \subseteq [m], |I| \leq r} a_I x^I,
\]

where \(x^I = \prod_{i \in I} x_i \) and \(a_I \in \mathbb{F}_2 \)

The number of coefficients is

\[
\sum_{i=0}^{r} \binom{m}{i} = \binom{m}{\leq r}
\]

The message is the vector of coefficients. To encode a message, we evaluate \(P \) at all points of \(\mathbb{F}_2^m \). Thus, the block length of the code is \(2^m \). Note that the Reed-Muller code is linear.

The Reed-Muller code is a \([2^m, (m \leq r), d] \) code, where we will see later that \(d = 2^m - r \).

Definition 3.2. The Hadamard Code is a special case of a Reed Muller Code, where we set \(r = 1 \).

Thus, the Hadamard Code is a \([2^m, m, 2^{m-1}] \) code. It is not hard to see that our construction of a pairwise independent distribution (from an earlier class) is simply to output a random codeword of the Hadamard code.